
In Gerhard Lakemeyer, Elizabeth Sklar, Domenico Sorenti, and Tomoichi Takahashi, editors, RoboCup-2006,

Springer Verlag, 2007.

Selective Visual Attention for Object Detection

on a Legged Robot

Daniel Stronger and Peter Stone
Department of Computer Sciences, The University of Texas at Austin

stronger,pstone@cs.utexas.edu

http://www.cs.utexas.edu/~{stronger,pstone}

Abstract. Autonomous robots can use a variety of sensors, such as
sonar, laser range finders, and bump sensors, to sense their environ-
ments. Visual information from an onboard camera can provide particu-
larly rich sensor data. However, processing all the pixels in every image,
even with simple operations, can be computationally taxing for robots
equipped with cameras of reasonable resolution and frame rate. This pa-
per presents a novel method for a legged robot equipped with a camera
to use selective visual attention to efficiently recognize objects in its en-
vironment. The resulting attention-based approach is fully implemented
and validated on an Aibo ERS-7. It effectively processes incoming images
50 times faster than a baseline approach, with no significant difference
in the efficacy of its object detection.

1 Introduction

Processing a stream of visual images is an important but time-consuming task.
One technique that has been used to speed up vision processing is that of selective
visual attention [1]. This technique is based on the idea that not all areas in a
given visual scene are relevant to the task at hand. Therefore by restricting
one’s attention to the relevant parts of the scene, the agent can greatly increase
its visual processing speed. This intuition is corroborated by work in cognitive
science confirming that human vision processing takes advantage of selective
attention. For example, Sprague et al. [2] present a model of visual attention
and compare it to human eye-tracking data.

In robotic vision, selective attention can take two main forms. One is gaze
direction, in which a robot moves its camera so that its field of view is faced
towards the important information [3–5]. That approach is analogous to human
eye saccading, but does not address the question of how to process each image,
an often time-consuming process.

The other main approach to selective attention, which is taken in this paper,
involves only processing the areas of the image that are likely to have relevant
features. Because of the large amount of data in every image, processing each
image in its entirety is difficult to do at frame rate, and where it is possible, it
severely limits the amount of time the robot can spend processing the interesting
areas of the image. By restricting its attention to the parts of the image that
are most likely to contain the important information, the robot can dramatically
speed up its image processing. This approach raises the challenge of identifying
the useful areas of the image.

One common way to find the useful areas of the image is to first compute a
saliency map [6], which represents the conspicuity at each point in the image. The



most salient regions of the image can then be processed in detail. This approach
has been applied to tasks such as face and handwritten digit recognition [7] and
recognizing an object in a cluttered visual field [8]. Unfortunately, constructing
the saliency map still requires processing the entire image, a time-consuming
task in the context of trying to process a video stream at frame rate.

Another method for focusing attention on the important parts of the image
is feature tracking [9, 10]. For example, Shi and Tomasi [9] present a method for
identifying the optimal features in the image for tracking, i.e. the ones that are
most likely to correspond to points in the real world. In feature tracking, a specific
area of the image is analyzed between two consecutive images to characterize
the movement of the feature. This method requires that corresponding points
in consecutive images be close to each other, so that the tracking mechanism
can properly identify the differences between consecutive frames as movement.
However, there are sometimes cases in which objects in the field of view can move
across a large portion of the image between consecutive frames. For example, in
the case of a legged robot, the jerky motion caused by walking can lead to very
sharp motion in the image. In these cases, feature tracking is not applicable.

This paper considers the situation of an autonomous legged robot equipped
with a camera that moves within an environment with fixed landmarks. The
robot’s goal is to visually detect the landmarks as efficiently as possible. In this
context, we present a novel technique for applying selective visual attention to
the task of object detection. Like feature tracking, the technique is based on the
idea that the robot can use prior information to predict the expected location in
the image of each object. However, unlike previous work, it does not assume that
an object’s expected location in one frame is necessarily close to its location in
the previous frame. The robot uses the objects’ expected locations to direct its
visual search towards the most likely areas of the image, enabling it to perform
object detection very efficiently, despite the sharp motion caused by walking.

This approach presents three main challenges. First, predicting the location
of an object in the image requires having an accurate estimate of the camera’s
pose, its position and orientation in space. On a legged robot, meeting this
requirement is particularly challenging because as the robot walks, its body, and
thus also its camera, rock quickly from side to side. Second, when preliminary
analysis suggests that the object is not present at the expected location, the
robot must have a strategy for continuing its search of the image for the target
object. Third, the fact that most of the image is not processed at all presents
a new challenge for object recognition: When processing a few pixels suggests
the presence of an object, the robot must decide which pixels to process next to
complete the object detection.

Although each image on our test platform contains over 33000 pixels, our
technique allows the robot to examine fewer than 1200 of them on average as it
identifies landmarks. This reduced processing enables the robot to process images
50 times faster than a baseline approach. Nonetheless, there is no significant
drop in the success rate of object detection. The technique is implemented and
validated on a popular mobile robot platform, the Sony Aibo ERS-7.



The remainder of this paper is organized as follows. The following section
presents an overview of our technique. Sections 3-5 present solutions to the three
challenges raised by this approach. Section 6 presents experimental results and
Section 7 concludes and discusses future work.

2 Overview

In this paper we consider the task of a vision-based autonomous robot operating
in a known environment. The robot has access to a series of images that are
generated by a camera located on board the moving robot, which arrive at
video frame rate. We assume that there is a fixed set of objects relevant to the
robot’s decision making (e.g., landmarks). The goal of the robot’s vision module
is to identify these objects when they are present in the image. The robot also
maintains an estimate of its own pose in the environment over time, based on
its visual observations and its odometry estimate. One popular approach to this
self-localization problem, which we use in the experiments reported in this paper,
is Monte-Carlo localization, or particle filtering [11, 12].

At each time step, the robot estimates its camera’s pose. The details of how
this is accomplished while the robot is walking are presented in Section 3. Then,
given the camera’s pose, the robot can loop through the fixed objects in the
environment and, for each one, predict whether or not and where it is expected
to appear in the robot’s field of view. This prediction is achieved by projecting
the object location onto the image plane (correcting for distortion if necessary).

For each object, if it is expected to be behind the image plane and therefore
invisible to the robot, it is discarded. Similarly, if the object’s projection onto the
image plane is outside the field of view of the camera, it is discarded. Otherwise,
the resulting image location is considered the object’s expected location in the
captured visual frame. If the expected location is examined and the object is not
found, then the robot continues to search for it throughout the remainder of the
image. This process is described in Section 4. Notably, a key challenge compared
to previous approaches is that an object’s location in the image plane may not
be close to its location in the previous frame.

When preliminary analysis of an image location suggests that the object is
present there, the robot must analyze that region of the image in detail. The
goal of this processing is to accurately and efficiently determine whether or not
the object is present in that location, and if so, how large it is in the image plane.
A solution to this problem in our test-bed domain is presented in Section 5.

Finally, once the objects in the image have been identified, they can be used
as landmarks for the purposes of localization. This process consists of converting
the size and location of objects in the image into the corresponding distances
and angles from the robot.

The entire method is summarized in Algorithm 1. The variable Obj loops
through all of the environmental landmarks. Each one is projected onto the
image plane if possible, initializing TestLocation to be the expected location
of the object. This location is advanced by the routine SeededSearch, specified
in Section 4. If the object is found, it is then used to inform localization. The
underlined procedures in the algorithm will be described in the following sections.



Algorithm 1 Algorithm Summary
ComputeCameraPose

for all (objects Obj in the environment) do

transform location of Obj into camera reference frame
if (Obj is in front of the image plane) then

project Obj onto ExpectedLocation in image plane
if (Obj is in the camera’s field of view) then

TestLocation ← ExpectedLocation

repeat

Examine TestLocation for match with Obj

advance TestLocation according to SeededSearch

until (Obj is found) OR (entire image searched)
if (Obj is found) then

determine extent of Obj in the image
project Obj back into global reference frame
compute distance and angle from Obj

incorporate information in localization
end if

end if

end if

end for

3 Computing the Camera Pose

In order to accurately predict the location of the objects in the image, the robot
needs to have an accurate estimate of its camera’s pose. On a legged robot, this
is particularly difficult because of the jagged motion caused by walking. The
details of the method for finding the camera pose are necessarily dependent on
the configuration and sensors of the specific robot being used. Nevertheless, the
principles used here can be extended to apply to any robotic platform.

The experiments reported in this paper were performed on a Sony Aibo
ERS-7.1 The robot is roughly 280mm tall and 320mm long. It has 20 degrees
of freedom: three in each of four legs, three in the neck, and five more in its
ears, mouth, and tail. At the tip of its nose there is a CMOS color camera
that captures images at 30 frames per second in YCbCr format. The images are
208 × 160 pixels giving the robot a field of view of 56.9◦ horizontally and 45.2◦

vertically. The robot’s processing is performed entirely on-board on a 576 MHz
processor.

Preliminary experiments have shown that an object’s location in the robot’s
field of view can change by as much as 80 pixels between two consecutive video
frames. This distance is a large fraction of the 208-pixel width of the image. The
fact that a fixed point in the robot’s view can move so far in one thirtieth of a
second demonstrates the instability of the camera’s pose. A video depicting the
world from the robot’s point of view is available online.2

The camera’s pose can be estimated from the robot’s joint angles and ac-
celerometer values. This computation occurs in three phases. First, the height of
the robot’s body is estimated based on the back legs’ joint angles. Second, the
body’s tilt and roll are estimated based on the accelerometer values. Finally, the
head and neck angles are used to complete the computation.

1 http://www.aibo.com
2 http://www.cs.utexas.edu/~AustinVilla/?p=research/selective-vision



Ideally, the pose of the camera with respect to the ground plane could be
computed by multiplying a series of homogeneous transformation matrices based
only on the robot’s joint configuration and angles [13]:

T cam
foot = T

hip
foot · T

body
hip · Tneck

body · T cam
neck (1)

where TA
B represents the transformation from coordinate system A to coordinate

system B. However, as the robot walks, the coordinate system of any given foot
is not constrained to be either parallel to the ground or in contact with the
ground. To compensate for this problem, we separately estimate the height of
one of the rear hips and use the robot’s internal accelerometers to estimate the
body’s tilt and roll. The resulting equation is

T cam
ground = T

hip
ground · T

body
hip · Tneck

body · T cam
neck (2)

In this equation, the hip coordinate frame is parallel to the ground. Then
T

hip
ground is only a vertical translation, whose magnitude is determined by the

rear legs’ joint angles (based on the assumption that the more outstretched leg
is the one touching the ground). The body coordinate frame is attached to the

robot’s body, so that the transformation T
body
hip must account for the body’s tilt

and roll. These quantities are estimated by using the robot’s accelerometers. The
three accelerometers report the component of gravity (combined with the body’s
acceleration) in the direction of each of the three cardinal axes in the body’s
reference frame. By taking the average of a rolling window of accelerometer
values for each direction, the robot is able to filter out the effects of noise and
acceleration and isolate the body’s tilt and roll. The final transforms from the
body to the neck and camera are done via standard DH-transforms, as described
by Schilling [13]. The full details of our implementation are presented in our
technical report [14].

Once the camera pose has been determined, it can be combined with the
robot’s prior body pose estimate in its environment to compute expected loca-
tions for objects in the robot’s field of view. These locations can then be used
to seed the visual search for those objects.

4 Seeded Visual Search
After the camera pose has been used to compute an object’s expected location in
the image, the robot must search for the object, as per Algorithm 1. This section
describes our solution to the seeded visual search problem. That is, given that
the robot has an expected location for an object in the image, how can the robot
best take advantage of this knowledge to find the object as quickly as possible?
We assume that, for each object, the robot has an object decision mechanism

that can start at any pixel and eventually determine whether or not that pixel is
part of the object in question. Ideally, the mechanism should usually reject pixels
that are not part of the object after only some quick preliminary processing. For
example, in a color-coded domain, the object decision mechanism can segment

the pixel in question into a color category, and only for pixels that are the
correct color, examine the surrounding region in more detail. In other settings
the preliminary processing may require examining multiple pixels. The object
decision mechanisms we use in our test-bed domain are described in Section 5.



Once the robot has identified an expected location for a given object, it first
applies the object decision mechanism starting at the expected location. If the
mechanism fails to find the object in its first application, the robot continues by
applying the decision mechanism repeatedly, starting at a different pixel each
time. If the mechanism starts at a pixel and successfully identifies the target ob-
ject, the search can terminate. Otherwise, the searching process should continue
starting the decision mechanism at different points, gradually moving outwards
from the original expected location. In the worst case, the search could expand
to cover the entire image. But in practice this rarely happens as will be demon-
strated in Section 6.

Fig. 1. The circles repre-
sent the locations in the
image that are analyzed,
starting from the expected
object center. The dis-
tance between adjacent
circles depends on the size
of the target object.

To accomplish this goal, we use a series of start-
ing points that follows a square spiraling pattern
that expands outwards. The pattern used is de-
picted in Figure 1, and the points examined are all
on a square lattice. The distance between lattice
points depends on the minimum possible size of
the target object. This property allows the robot
to process as little of the image as possible while
still ensuring that if the object is in the image it
will be found. The spiral expands until either the
target object is found or the entire image is filled.
Because the image is filled in the worst case, the
method is able to recover from a completely incor-
rect prior localization estimate.

5 Object Detection

The previous section describes how to process the image in a manner that enables
the target object to be found quickly, given an object decision mechanism. This
section presents our object decision mechanism, completing the description of
the attention-based approach to object detection presented in this paper. First,
however, it is necessary to specify the types of objects that are detected in the
experiments reported in this paper.

The Aibo’s environment used in this paper is a legged-league field measuring
4.4 meters by 2.9 meters. It has one blue goal, one yellow goal, and four visually
distinct cylindrical beacons each with two colors: one is pink, and the other is
blue or yellow. The robot is faced with the task of accurately identifying the
goal and beacons that appear in the image.

Since the RoboCup field is color-coded, the object decision mechanism dis-
cussed in Section 4 analyzes pixels in the image by segmenting them and observ-
ing whether or not they are the color corresponding to the desired object: blue
or yellow for a goal, or pink for a beacon. Color segmentation is carried out via a
color table, a three-dimensional array with a color label for each possible combi-
nation of Y, Cb, and Cr values. The color table is created off-line, by manually
labeling a large suite of training data and using a Nearest Neighbor learning al-
gorithm to learn the best label for each YCbCr combination. The full details of



our color segmenting algorithm are presented in our technical report [14]. After
segmentation, a goal appears to the robot as a blue or yellow rectangle and a
beacon appears as a pink square above or below a blue or yellow square of the
same size. Whether the pink is above or below, and whether the other color is
blue or yellow, uniquely determine which of the four beacons it is.

For each object, a single point is projected onto the image plane, as specified
in Section 3, to yield an expected location. For goals, the center of the rectangle
is used, while for beacons the center of the pink square is used. After the pink
square is identified, the rest of the the beacon can be found easily.

As discussed in Section 4, an object decision mechanism is needed that exam-
ines the image starting at a given pixel and decides whether or not that pixel is
part of the target object. The mechanism begins by segmenting the given pixel.
If it is not the color corresponding to the target object, the mechanism rejects
the pixel. Otherwise, the point is expanded into a maximal approximate rectan-
gle of pixels all the same color. Since it starts with only one pixel segmented, it
segments further pixels as they are needed.

To expand a point into a rectangle of a given color, we first expand the point
into a line, by expanding to the right and then to the left. Expanding to the right
consists of segmenting consecutive pixels, each one to the right of the previous
one. This process continues until a sufficiently long string of consecutive pixels
are all not the given color, marking the right end of the line. The threshold used
for consecutive wrong-colored pixels, denoted as ConsecThresh, is three.

The pixel is expanded to the right and left, and then the process is repeated
on the pixel directly above. This process continues upward until a pixel is found
that cannot expand in either direction, which we consider to signify the top of the
rectangle. Similarly the robot proceeds downward from the root pixel until the
bottom of the rectangle is found. The rightmost right edge of an expansion line,
and the leftmost left edge, are taken to be the left and right edges of the rectangle.
Pseudocode for this point expansion routine is given in Algorithm 2. BaseX and
BaseY are the image coordinates of the starting point for the expansion routine.
The returned values represent the boundary coordinates of the rectangle.

Once a rectangle of the appropriate color has been found, the object decision
mechanism decides whether or not the target object has been found, as opposed
to some spurious pixels of the target color. For goals, the blue or yellow rectangle
found is assumed to be the goal, as long as it is sufficiently large. For beacons,
depending on the beacon’s identity, the robot expects a blue or yellow square,
either directly above or below the pink square that has been found. The location
of the expected square center is based on the size and location of the pink square
that has already been found. This new center is expanded into a blue or yellow
rectangle in accordance with Algorithm 2. If this operation is successful and
the resulting combined beacon rectangle is sufficiently large, the object decision
mechanism registers a success. The resulting goal and beacon rectangles are the
output of the vision processing.

Although the description in this section of the object detection mechanism is
specific to our test-bed environment, the overall algorithm (presented in Section



Algorithm 2 Color Expanding Routine
Given: ConsecThresh, ColorTable, DesiredColor
Given: BaseX, BaseY
Given: ColorTable[Pixel[BaseX, BaseY ]] = DesiredColor
x← BaseX, y ← BaseY
repeat

y goes up, then down, from BaseY, one pixel at a time
repeat

x goes right, then left, from BaseX, one pixel at a time
Compare ColorTable[Pixel[x,y]] to DesiredColor
if equal then

ConsecutiveMisses ← 0
else

ConsecutiveMisses ← ConsecutiveMisses +1
end if

until on each side, ConsecutiveMisses reaches ConsecThresh OR x reaches image edge
until on top and bottom, y reaches a row where no DesiredColor is found or the image edge
MinX, MaxX, MinY , MaxY ← lowest and highest values of x and y, respectively to segment
to DesiredColor

Return: MinX, MaxX, MinY , MaxY

2) does not depend on the details of the object detection mechanism. As long
as the robot is equipped with a local method for determining whether a pixel or
set of pixels depict an object of interest, that object decision mechanism can be
plugged into Algorithm 1.

6 Experimental Validation

The goal of the method presented in this paper is to obtain a high object-
detection accuracy without much computational complexity. As such, the mark
of success is to perform roughly as well at object detection as a state-of-the-
art approach that processes the entire image. In this section, we evaluate the
technique presented in this paper by comparing it to a common baseline ap-
proach [14–16]. Section 6.1 describes our implementation of this baseline ap-
proach, and Section 6.2 presents experiments comparing the two methods.

6.1 Baseline Method

Our group has previously solved the problem of object detection on the Aibo
ERS-7 on the RoboCup field using the baseline method mentioned above. How-
ever, this solution involves processing all of the pixels in every image, and despite
the fact that we have optimized it aggressively, it consumes almost all of the
robot’s available processing time. The methods used are summarized in this sec-
tion, while the full details of this baseline approach can be found in our technical
report [14]. The robot executes the following three steps.

1. Color Segmentation: Classify every image pixel as one of a small set of dis-
tinct colors.

2. Region Merging: Collect adjacent pixels of the same color into monochro-
matic regions.

3. Object Detection: Identify the monochromatic regions that correspond to
specific objects in the environment.



During the robot’s image processing, it loops through every pixel in each
image, classifying it according to the color table. Note that each image measures
208 × 160 pixels, for over 33000 pixels total.

As each pixel is segmented, it is also incorporated into a run-length encoding
of the image. That is, each maximal horizontal string of consecutive pixels that
are the same color is stored as a run-length. These run-lengths comprise a highly
compressed version of the segmented image. Next, vertically adjacent run-lengths
of the same color are combined into a bounding box, a rectangular structure
consisting of the rectangle’s coordinates and the color inside. The robot continues
to merge bounding boxes that are adjacent and of the same color. Heuristics are
used to determine if some adjacent boxes should not be merged, and also if some
boxes should be deleted because they contain a density of the desired color that
is too low. These bounding boxes are the input to object detection.

The robot first attempts to detect goals in the image, because they are gen-
erally the largest objects found. Thus the blue and yellow bounding boxes are
sorted from largest to smallest, and tested for being the goal in that order. The
goal tests consist of heuristics to ensure that the bounding box in question is
close enough to the right height to width ratio, and that there is a high enough
density of the desired color inside the bounding box for a goal, as well as other
heuristics. To find the beacons, the robot finds bounding boxes of pink and blue
or yellow that satisfy appropriate beacon heuristics, and then combines them
into beacon bounding boxes, labeled by which beacon is inside. The resulting
goal and beacon bounding boxes are the output of the vision process.

Once goals and beacons have been identified in the image, the robot uses
them to update its localization estimate. This update takes place in two stages:
translating the bounding box information into object distances and angles and
incorporating these distances and angles into the robot’s pose estimate.

The robot first computes its distance and horizontal angle to any objects
it has identified. We have found it to be more effective to use the left and
right edges of each goal instead of goal centers as landmarks for localization.
To compute its distances and angles to the landmarks in the image, the robot
takes into account the camera pose and the location and size of the object in
the image. The distances and angles yielded by this process are often quite
noisy, and it is rare to see enough objects in one frame to triangulate one’s pose
uniquely. To alleviate these factors, the robot maintains an estimate of its pose
through particle filtering [11, 12], which gathers the robot’s visual information
and odometry into a coherent pose estimate over time.

The details in this section summarize our own baseline implementation for
object detection that has been used successfully for a couple of years. Though
there are many other object detection implementations within this domain that
differ in their details [15–17], none of the approaches that we know of on the
legged robot process the image based on the projected locations of objects.

6.2 Results

The baseline and attention-based methods were evaluated and compared based
on their rate of success identifying landmarks in the image. In order to measure



these success rates, we had the robot save a series of representative images to
its memory stick with the identified landmarks marked. Then the images were
viewed on a monitor and the objects were labeled manually.

B
L

U
E

 G
O

A
L

Y
E

L
L

O
W

 G
O

A
L

10

13

5

4

3

6

14

11

8 12

9
2

17

Fig. 2. The points on the field
visited by the Aibo

In order to generate a series of repre-
sentative images, the robot walked to a se-
quence of fixed poses on the field while con-
tinually moving its head from side to side,
stopping at each pose for 15 seconds. The
points and their order are shown in Figure 2.
They were specifically chosen to represent a
wide range of difficulty for object detection.
Every ten seconds, the robot saved an image
for evaluation. This ensured that a represen-
tative and varied sample of images was used
for the evaluation.

Both methods were evaluated for ten tri-
als. In each trial, the robot walked between the poses until it had taken 50 images
total. The robot’s rate of success within each trial was recorded. This rate is de-
fined as the number of correctly identified landmarks (goal edges and beacons)
divided by the number of landmarks identified by the manual labeling. This
quantity represents the fraction of the objects that were actually in the image
that the object detection successfully identified. We also counted the number
of false positives: instances in which the robot reported a landmark that was
not actually there. The false positive rate was extremely low for both methods.
There were none at all recorded with the baseline method and two with the
attention-based method over all ten trials. Compared to the total number of
objects in the images captured while testing the attention-based method, 597,
these errors represent a false positive rate of only 0.34 percent.

Furthermore, we recorded the amount of time taken to process each image.
That is, for each image frame the robot receives, the amount of time taken to
identify the vision objects in the image is recorded. These times do not include
the time taken for particle filtering, nor for behavior and motion processing,
which also occur in real time on-board the robot. The vision processing times
are averaged over the full extent of all ten trials. We also measured the average
number of pixels examined by the attention-based method on a typical run. This
is compared to the number of pixels examined by the baseline method, which is
the total number of pixels in the image. The average processing times, accuracies,
and numbers of pixels processed attained by the baseline method and the new
method are shown in Table 1.

The prediction-based method took an average of 0.695 ms to process each
image, compared to the baseline method taking 35.049 ms on average. This rep-
resents a speed up of a factor of 50.4. To process at frame rate, there is 33
ms of computation time available per frame. Using the baseline method, vision
processing takes 35 ms of computation, so that there is no time for additional
processing while continuing to operate at roughly 30 Hz. In fact, even with min-



imal computation performed for localization and decision-making, the baseline
process leads to an ability to process at only 24 Hz. Thus the robot completely
ignores information from 20% of the available frames. In contrast, when using
our method, the vision processing of stationary objects takes only 0.7 ms, leav-
ing more than enough time to perform localization and decision-making while
operating at 30Hz, and in fact freeing up much additional processing time. This
time could potentially be used for precise tracking of mobile objects, as well
as enabling the exploration of completely new approaches that would not have
been tractable previously, perhaps such as detailed behavior planning or team-
mate/opponent modeling.

Method Baseline New Method

Avg Detection Rate 77.54 ± 7.32 74.33 ± 10.63

Avg Pixel Count 33280 1138

Avg Time/Frame 35.049 ms 0.695 ms
Table 1. Comparison of the baseline and new, prediction-based methods.

At the same time, the new method achieved a very similar quality of vision
accuracy to the baseline method. Over the ten trials, the attention-based method
attained an average detection rate of 77.54 ± 7.32 percent, while the baseline
method attained an average rate of 74.33 ± 10.63. Based on the variances in
these measurements, the difference in their means is statistically insignificant
(p > 0.4 in a two-tailed t-test). These tests demonstrate that the attention-
based method sped up the robot’s vision processing by a factor of 50, without
any significant effect on the success rate of object detection.

7 Conclusion and Future Work

This paper presents a technique for a legged robot equipped with a camera to
use visual selective attention to efficiently recognize objects in its environment.
Given the inapplicability to this domain of previous techniques, a novel approach
is presented based on taking into account the robot’s prior knowledge about its
camera’s pose. This approach presents three general challenges, which are par-
ticularly difficult in the context of a legged robot. The paper presents solutions
to each of those challenges in that context.

When these solutions are combined, the resulting technique enables a legged
robot to process its visual data stream very efficiently. We have fully implemented
and validated this technique on an Aibo ERS-7. This attention-based approach
effectively processes incoming images 50 times faster than a baseline approach,
with no significant difference in the efficacy of its object detection.

This work has a number of interesting possibilities for future extensions.
One enhancement would be to extend the method so that it could also find
mobile objects. Achieving this goal would require having the ability to predict
the objects’ locations in advance. Such an ability could derive from a predictive
model of the objects’ locations based on their velocities, communication with
other robots, or a combination thereof. Another possibility for future work would
be for the robot to draw cues from objects that have already been processed in
a given image to decide which regions of the same image will be most likely to



contain other objects. Furthermore, these methods could be extended so that
they influence gaze direction as well as the focus of attention within each image.
Finally, this technique is designed to be generally applicable and can therefore
be applied in different domains to ascertain the range of possible environments
and types of objects with which it can be effective.

Using the camera’s pose to speed up vision is an example of enhancing vision
processing by incorporating high-level information. This general idea is promis-
ing, based on the notion that in order to effectively perceive its environment, an
agent should take advantage of as much prior knowledge as possible about that
environment. This work represents progress towards the long-term goal of en-
abling autonomous agents to make effective use of their knowledge of the world
in their perceptual processing.

Acknowledgements

This research was supported in part by NSF CAREER award IIS-0237699, ONR
YIP award N00014-04-1-0545, and DARPA grant HR0011-04-1-0035. The au-
thors thank Mohan Sridharan and Aniket Murarka for helpful suggestions.

References

1. A. L. Yarbus, “Eye movements during perception of complex objects,” in Eye
movements and vision, L. A. Riggs, Ed. New York: Plenum Press, 1967, ch. VII,
pp. 171–196.

2. N. Sprague, D. Ballard, and A. Robinson, “Modeling attention with embodied vi-
sual behaviors,” 2005, http://www.cs.rochester.edu/∼dana/WalterTheory25.pdf.

3. N. Mitsunaga and M. Asada, “Sensor space segmentation for visual attention con-
trol of a mobile robot based on information criterion,” in Proceedings of the IEEE
International Conference on Intellegent Robots and Systems, 2001.

4. C. Kwok and D. Fox, “Reinforcement learning for sensing strategies,” in Proceed-
ings of the IEEE International Conference on Intelligent Robots and Systems, 2004.

5. J. Najemnik and W. Geisler, “Optimal eye movement strategies in visual search,”
Nature, vol. 434, pp. 387 – 391, 2005.

6. L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for
rapid scene analysis,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 20, no. 11, pp. 1254–1259, Nov 1998.

7. A. A. Salah, E. Alpaydin, and L. Akarun, “A selective attention-based method for
visual pattern recognition with application to handwritten digit recognition and
face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 3, March 2002.

8. D. Walther, U. Rutishauser, C. Koch, and P. Perona, “On the usefulness of atten-
tion for object recognition,” in The 2nd Workshop on Attention and Performance
in Computer Vision, 2004.

9. J. Shi and C. Tomasi, “Good features to track,” in IEEE Conference on Computer
Vision and Pattern Recognition, June 1994.

10. S. Baluja and D. Pomerleau, “Expectation-based selective attention for visual mon-
itoring and control of a robot vehicle,” Robotics and Autonomous Systems, vol. 22,
no. 3-4, 1997.



11. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for
mobile robots,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 1999.

12. M. Sridharan, G. Kuhlmann, and P. Stone, “Practical vision-based monte carlo
localization on a legged robot,” in IEEE International Conference on Robotics and
Automation, April 2005.

13. R. Schilling, Fundamentals of Robotics: Analysis and Control. Prentice Hall, 2000.
14. P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann, M. Srid-

haran, and D. Stronger, “The UT Austin Villa 2004 RoboCup four-legged team:
Coming of age,” The University of Texas at Austin, Department of Computer
Sciences, AI Laboratory, Tech. Rep. UT-AI-TR-04-313, October 2004.

15. J. Bunting, S. Chalup, M. Freeston, W. McMahan, R. Middleton, C. Murch,
M. Quinlan, C. Seysener, and G. Shanks, “Return of the NUbots! the
2003 NUbots team report,” 2003, http://robots.newcastle.edu.au/publications/
NUbotFinalReport2003.pdf.

16. N. Mitsunaga, H. Toichi, T. Izumi, and M. Asada, “Babytigers 2003: Osaka legged
robot team,” 2003, http://www.er.ams.eng.osaka-u.ac.jp/robocup/BabyTigers/
BabyTigers-TechR%eport-2003.pdf.

17. T. Roefer et al., “German team: Robocup 2004,” 2004, http://www.germanteam.
org/GT2004.pdf.


