
The RoboCup Soccer Server and CMUnited Clients:

Implemented Infrastructure for MAS Research

Itsuki Noda
Electrotechnical Laboratory
1-1-4 Umezono
Tsukuba, Ibaraki 305-8568, JAPAN
noda@etl.go.jp

Peter Stone
AT&T Labs { Research
180 Park Ave., room A273
Florham Park, NJ 07932
pstone@research.att.com

c 2001 Kluwer Academic Publishers. Printed in the Netherlands.

draft.tex; 28/10/2001; 2:41; p.1



2

1. Introduction

The �eld of multiagent systems (MAS) covers a wide variety of re-
search foci and applications, ranging from software-based information
processing (e.g. (Sycara et al., 1996)) to robotic control of multiple
agents (e.g. (Mataric, 1997)). One common characteristic of multia-
gent research is that it relies on signi�cant software and/or hardware
infrastructure: domains that support the simultaneous operation of tens
to thousands of agents are needed.

As Gasser (Gasser, 2000) points out, infrastructure both enables
domain-speci�c progress and serves as a \leveling device: it uni�es local
practices with global ones." He classi�es the infrastructure needs of four
MAS focus areas: science, education, application, and use. Since each
focus area has a wide range of di�erent needs, each has room for several
infrastructures. Certainly no single infrastructure can meet the needs
of all four focus areas.

One MAS infrastructure that is designed to meet many of the needs
of the science and education focus areas is the RoboCup Soccer Server
(Noda et al., 1998; Noda and Frank, 1998) and associated client code.
The Robot Soccer World Cup, or RoboCup, is an international research
initiative that uses the game of soccer as a domain for arti�cial intelli-
gence and robotics research. Annual international RoboCup events in-
volve technical workshops as well as software and robotic competitions.
Soccer Server is used as the substrate for the RoboCup software compe-
titions. Originally released in 1995, Soccer Server has an international
user community of over 1000 people.

Soccer Server is a multiagent environment that supports 22 indepen-
dent agents interacting in a dynamic, real-time environment. The server
embodies many real-world complexities, such as noisy, limited sensing;
noisy action and object movement; limited agent stamina; and limited
inter-agent communication bandwidth. AI researchers have been using
the Soccer Server to pursue research in a wide variety of areas, including
real-time multiagent planning, real-time communication methods, col-
laborative sensing, agent/opponent modeling, and multiagent learning
(Asada and Kitano, 1999).

In addition to the server itself being publicly available in an open-
source paradigm, users have contributed several clients that can be used
as starting points for newcomers to the domain. One example is the
CMUnited simulated soccer team, champion of the RoboCup-98 and
RoboCup-99 robotic soccer competitions. After winning the competi-
tions, much of the CMUnited source code became publicly available,
and several groups used it as a resource to help them create new clients
for research and as entries in the RoboCup-99 and RoboCup-2000

draft.tex; 28/10/2001; 2:41; p.2



3

competitions. As a unit, Soccer Server and the client code comprise a
complete infrastructure, allowing researchers to easily focus on a wide
variety of issues.

Based on the success of Soccer Server and its associated client code,
we are now in the process of creating a new exible utility for simulation
systems (FUSS) that will be designed to support simulations of multiple
domains. For example, we plan to use the same underlying simulation
for an improved simulator of the game of soccer as well as a disaster
rescue simulator for use in the RoboCup Rescue initiative (Kitano et

al., 1999). FUSS will also be available as infrastructure for the MAS
research community.

The remainder of the paper is organized as follows. Section 2 out-
lines the science and education needs that are met by this infras-
tructure. Section 3 gives an overview of the RoboCup Soccer Server.
Section 4 presents the CMUnited simulated soccer clients for use with
Soccer Server. Section 5 motivates and presents the current state of the
development of FUSS and Section 6 concludes.

2. Infrastructure Characteristics

Soccer Server and the CMUnited client code are widely and freely avail-
able over the internet using an open source paradigm. The software is
packaged for easy installation, supported both by the developers and by
the large community of current users.

This infrastructure is a comprehensive, implemented MAS designed
for simulation experiments. It consists of several independent compo-

nents, including visualization, sample client, and coach modules. The
coach module is often used as a tool for experiment construction. The
most natural and compelling form of measurement is game results
in tournaments with multiple teams, but the infrastructure also in-
cludes data collection and analysis tools for more rigorous scienti�c
measurement.

Judging by the large user community, this infrastructure is very
usable; the fact that it has been successfully used for multiple interna-
tional competitions is a testament to its robustness. New users can take
advantage of its progressive complexity by starting with a single agent
and gradually increasing the size of teams and their communicative
and organizational capabilities. A recent addition to the infrastructure
is the ability to induce intentional failures by disabling selected players.

The italicized words above are all characteristics identi�ed by Gasser
(Gasser, 2000) as essential or desirable for MAS infrastructures that
support science and education.

draft.tex; 28/10/2001; 2:41; p.3



4

In addition to meeting these abstract, general needs, Soccer Server
has been used to study many concrete research issues and as a basis
for several undergraduate and graduate courses (e.g. (Coradeschi and
Malec, 1999; Takahashi and Itoh, 2001)).

An IJCAI-97 challenge paper (Kitano et al., 1997) identi�ed three
general research challenges that can be addressed within Soccer Server
as being

� Multiagent learning;

� Teamwork structures; and

� Agent/Opponent modeling.

As laid out in (Stone, 2000a), other relevant research issues include
inter-agent communication in single-channel, low-bandwidth environ-
ments; coordination with limited communication, collaboration in a
dynamic real-time environment; organizational structures; distributed
sensing/sensor fusion; resource management; agent monitoring; and
multiagent planning. These research topics are all addressed by var-
ious researchers in the continuing series of RoboCup books (Kitano,
1998; Asada and Kitano, 1999; Veloso et al., 2000; Stone et al., 2001).

It also is important to emphasize that Soccer Server is not simply
for domain-speci�c research. It shares characteristics with many other
domains, increasing the likelihood that advances will span applications.
Speci�cally, algorithms that have been developed and/or studied in
Soccer Server have also been applied to:

Helicopter combat: A generic model of teamwork and opponent mod-
eling has been applied to both robotic soccer and a helicopter
combat domain. STEAM, a large number of domain-independent
teamwork rules, were de�ned in a SOAR architecture, reducing the
number of domain-speci�c rules required in each application (Tambe,
1997).

Network routing: Team-Partitioned, Opaque-Transition Reinforce-
ment Learning is an algorithm that enables multiple independent
agents to learn to cooperate despite limited communication capa-
bilities. It was originally implemented and tested within Soccer
Server, but then generalized and successfully applied to a network
packet routing domain (Stone, 2000b).

Disaster rescue: The RoboCup rescue disaster rescue domain, using
earthquake rescue as its motivating scenario, has been designed
speci�cally to transfer RoboCup research to a related domain.

draft.tex; 28/10/2001; 2:41; p.4



5

Similar to soccer, non-centralized, eÆcient control mechanism to
assign roles and to share information dynamically among agents
are necessary for this domain. Challenges also include scaling up
to hundreds of heterogeneous agents (Kitano et al., 1999).

Other potential applications for transferring RoboCup-related tech-
nological advances include: intelligent traÆc systems; oÆce robots;
NASA domains such as multirover or interferometry missions; robotic
surveillance; agent communication research; real-time systems research;
and market trading. Prokopenko summarizes these applications at http:
//www.cmis.csiro.au/iit/Projects/RoboCup/applications.htm.

Another aspect to show the generality will be the list of new research
problems that these infrastructures make clear for researchers. Andou
(Andou, 1999) pointed out the importance how rewards are assigned to
each agent under reinforcement learning of multiagent systems. They
focused especially on autonomous learning by agents who do not play
the ball directly when their team get a goal. They also pointed out the
issue of ratio of exploitation and exploration in multiagent reinforce-
ment learning. In a multiagent learning, exploration of an agent may
disturbs others' exploitation. Therefore exploration is used more care-
fully in multiagent learning. (Nakashima and Noda, 1998) mentioned
an issue of combination of behavior-oriented control and goal-oriented
planning, and propose a concept of dynamic subsumption architec-
ture. These issues are motivated by Soccer Server, but include general
problems found in various multiagent systems.

With all of these past successes and unrealized potentials, Soccer
Server is one of the leading examples of MAS infrastructures appropri-
ate for the science and education communities. The following sections
detail the current state and future plans for this infrastructure.

3. The RoboCup Soccer Server

3.1. Soccer Server

Soccer Server enables a soccer match to be played between two teams
of player-programs (possibly implemented in di�erent programming
systems). A match using Soccer Server is controlled using a form of
client-server communication. Soccer Server provides a virtual soccer
�eld such as the one shown in Fig. 1 and simulates the movements of
players and a ball. A client program can provide the `brain' of a player
by connecting to the Soccer Server via a computer network (using a
UDP/IP socket) and specifying actions for that player to carry out. In
return, the client receives information from the player's sensors.

draft.tex; 28/10/2001; 2:41; p.5



6

Figure 1. Window image of Soccer Server

Message
Board

Field
Simulator

Referee

X window

Soccer Server

Client

Client

Client Socket

Socket

Socket

Client

Client

ClientSocket

Socket

Socket

Network
(UDP/IP)

Network
(UDP/IP)

Figure 2. Overview of Soccer Server

The three main modules in the Soccer Server itself are:

1. A �eld simulator module. This creates the basic virtual world of
the soccer �eld, and calculates the movements of objects, checking
for collisions.

draft.tex; 28/10/2001; 2:41; p.6



7

2. A referee module. This ensures that the rules of the game are
followed.

3. A message-board module. This manages the communication
between the client programs.

Fig. 2 gives an overview of the relation of these modules and of how
the Soccer Server communicates with clients. A client controls only
one player. It receives visual and verbal sensor information (`see' and
`hear' respectively) from the server and sends control commands (`turn',
`dash', `kick' and `say') to the server. Visual information gives only par-
tial information about the �eld from the player's viewpoint, so that the
player program must make decisions based on incomplete knowledge.
Limited verbal communication is also available, by which the players
can communicate with each other to decide team strategy.

All communication between the server and each client is in the form
of ASCII strings. Therefore, clients can be realized in any programming
environment on any architecture that has the facilities of UDP/IP
sockets and string manipulation. The communication protocol consists
of:

� Control commands: messages sent from a client to the server
to control actions of the client's player. The basic commands are
turn, dash and kick. Communication is conducted through the
say command, and a privileged goalie client can also attempt to
catch the ball.

� Sensor information: messages sent from the server to a client
describing the current state of the game from the viewpoint of the
client's player. There are three types of information, visual (see),
auditory (hear) and bodily (sense body).

Soccer Server is a discrete simulation of continuous time. Thus, both
the control commands and the sensor information are processed within
a framework of `simulator steps'. The length of the cycle between the
processing steps for the control commands is 100msec, whereas the
length of the step cycle for the sensor information ranges from 37{
300msec and is controlled actively by the individual clients (frequency
is traded o� against visible angle and information quality). Note that
all players have identical abilities (strength and accuracy of kicking,
stamina, sensing) so that the entire di�erence in performance of teams
derives from the e�ective use of the control commands and sensor

draft.tex; 28/10/2001; 2:41; p.7



8

information, and especially from the ability to produce collaborative
behavior among multiple clients 1.

As a �nal feature, when invoked with the -coach option, the server
provides an extra socket for a privileged client (called a coach client)
that has the ability to direct all aspects of the game. The coach client
can move all objects, direct the referee module to make decisions, and
announce messages to all clients. This facility is extremely useful for
tuning and debugging client programs, which usually involves repeated
testing of the behaviors of the clients in many situations. In addition to
the -coach option, \online coach" feature is implemented to the recent
Soccer Server, which allows teams to include a twelfth client that has a
global view of the game and can conduct sideline coaching during play
by shouting strategic or tactical advice to players.

3.2. As a Research Tool

Soccer Server has been used by researchers to examine MAS. Here we
investigate Soccer Server's features as a research tool.

The biggest reason that it is used widely is that it simulates soc-

cer, which is very popular world-wide. Similar to chess, popularity
is an important factor for research applications, because researchers
can share an understanding and intuition about the domain. While
individual plays in soccer are relatively simple (this is important in
simulations), the variation of team play is very wide. Therefore, we can
�nd many open issues in it, such as opponent modeling, multiagent
learning, cooperative actions, multiagent planning, and so on. Thus,
researchers in various �elds can share a common domain.

The second reason is that it uses a middle-level abstraction for
representing the client commands and the sensor information. One
possibility was a low-level physical description, for example allowing
power values for drive motors to be speci�ed. However it was felt that
such a representation would concentrate users' attention too much on
the actual control of a player's actions, relegating true investigation
of the multiagent nature of team-play to the level of a secondary ob-
jective. Further, it is diÆcult to design a low-level description that is
not implicitly based on a speci�c notion of robot hardware; for ex-
ample, control of speed by drive motors is biased towards a physical
implementation that uses wheels. On the other hand, a more abstract
representation, using tactical commands such as pass-ball-to and
block-shot, would produce a game in which the real-world nature
of soccer becomes obscured, and in which the development of soccer

1 Recent Soccer Server versions (starting with version 7.0) include the option of
using heterogeneous players, though players are still all homogeneous by default.

draft.tex; 28/10/2001; 2:41; p.8



9

techniques not yet realized by human players becomes problematic.
Thus, our representation| using basic control commands such as turn,
dash, and kick | is a compromise. To make good use of the available
commands, clients need to tackle both the problem of control in an
incomplete information, dynamic environment and also the challenge of
combining the e�orts of multiple players. Thus, we believe that Soccer
Server achieves our goal of providing a simple test-bed with signi�cant
real-world properties.

Several technical issues are also important for Soccer Server's wide-
spread use. Soccer Server has the following technical features that help
researchers to use it:

� Soccer Server is lightweight. It requires few computing resources
so that it can run on entry-level PCs. This enables researchers to
start their research with limited resources. Additionally, in order
to use it for educational purpose, it is necessary to run on PCs
students can use in computer labs in schools.

� Soccer Server runs on various platforms. It supports SunOS 4,
Solaris 2.x, Linux, IRIX, OSF/1, and Windows 2. It also requires
quite common tools and libraries like Gnu or ANSI C++ compiler,
standard C++ libraries, and X window. They are distributed freely
and used widely.

� Soccer Server uses ASCII string on UDP/IP for protocol between
clients and the server. This feature enables researchers/students
to use any kind of programming language. Indeed, participants
in past RoboCup competitions used C, C++, Java, Lisp, Prolog
and various research oriented AI programming systems such as
SOAR (Tambe et al., 1995). Version control of protocol is also an
important feature. It enables us to use old clients to run in newer
servers.

As well as supporting research pertaining to player control, Soc-
cer Server also supports several auxiliary research activities. Soccer
Server consists of two modules, soccerserver, a simulation kernel, and
soccermonitor, a viewer of simulated soccer �eld. They are connected
via UDP/IP. While this separated structure was introduced only for
displaying the �eld window on multiple monitors, it led to unexpected

2 Windows versions were contributed by Sebastien Doncker and Dominique
Duhaut (compatible to version 2), and now by Mario Pac (compatible to version 4)
independently. Information about Mario's versions is available from:

http://users.informatik.fh-hamburg.de/~pac m/

draft.tex; 28/10/2001; 2:41; p.9



10

activities in di�erent research �elds. Many researchers have made and
have been trying to build 3D monitors to display scenes of matches
dynamically (Shinjoh and Yoshida, 1998). In addition, some groups
are building commentary systems that describe matches dynamically
in natural language (Andr�e et al., 1998; Tanaka-Ishii et al., 1998). Both
kinds of systems are connected with the server as secondary moni-
tors. They get information regarding the state of matches, analyze the
situations, and generate appropriate scenes and sentences.

4. The CMUnited Client

As described in Section 3, Soccer Server clients interact with the Soccer
Server via an ASCII string protocol. The server supports low-level
sensing and acting primitives. However, there are several basic tasks
left up to the clients, including

� Managing socket communication with the server;
� Parsing the sensory commands;
� Handling asynchronous sensation and action cycles;
� Maintaining a model of the world; and
� Combining the low-level action primitives into useful skills.

Depending on one's research focus, a newcomer to the domain may
not be interested in solving each of these tasks from �rst principles.
Instead, one can look to the growing body of publicly available client
code available at http://medialab.di.unipi.it/Project/Robocup/
pub/.

While there are many possible solutions to each of these tasks, it
is often diÆcult to evaluate them independently. The CMUnited client
code (Stone et al., 1999) o�ers robust solutions to these tasks that
have been successfully tested in competitive environments: CMUnited
won both the RoboCup-98 and RoboCup-99 simulator competitions.
It has already been successfully used by others. For example, the 3rd
place �nisher in the RoboCup-99 competition, was partially adapted
from the CMUnited-98 simulator team code, and the 1st, 2nd, and
3rd place �nishers in the RoboCup-2000 competition were all based on
CMUnited-99 source code.

We present the client code as a part of the infrastructure, as opposed
to as an application. Without this code, creating a substrate team of
agents for research purposes is a daunting task, and is likely to yield
sub-par agents. The freely available client code enables researchers to
immediately focus on any of a wide variety of areas of interest. The
remainder of this section gives an overview of the CMUnited client
code.

draft.tex; 28/10/2001; 2:41; p.10



11

4.1. Agent Architecture Overview

CMUnited agents are capable of perception, cognition, and action. By
perceiving the world, they build a model of its current state. Then,
based on a set of behaviors, they choose an action appropriate for the
current world state.

At the core of CMUnited agents is what we call the locker-room
agreement (Stone, 2000a). Based on the premise that agents can period-
ically meet in safe, full-communication environments, the locker-room
agreement speci�es how they should act when in low-communication,
time-critical, adversarial environments.

Individual agents can capture locker-room agreements and respond
to the environment, while acting autonomously. Based on a standard
agent paradigm, our team member agent architecture allows agents to
sense the environment, to reason about and select their actions, and to
act in the real world. At team synchronization opportunities, the team
also makes a locker-room agreement for use by all agents during periods
of limited communication. Fig. 3 shows the functional input/output
model of the architecture.

ARCHITECTURE

World
State

Internal 
State

Real
World

Internal
Behaviors

Predictor

External
Behaviors

Sensor Information

Interpreter

Action Primitives

TEAM MEMBER
Agreement
Locker-Room

AGENT

Figure 3. A functional input/output model of CMUnited's team member agent
architecture.

The agent keeps track of three di�erent types of state: the world

state, the locker-room agreement, and the internal state. The agent also
has two di�erent types of behaviors: internal behaviors and external

behaviors.

The world state reects the agent's conception of the real world,
both via its sensors and via the predicted e�ects of its actions.
It is updated as a result of interpreted sensory information. It may
also be updated according to the predicted e�ects of the exter-
nal behavior module's chosen actions. The world state is directly
accessible to both internal and external behaviors.

draft.tex; 28/10/2001; 2:41; p.11



12

The locker-room agreement is set by the team when it is able to
privately synchronize. It de�nes the exible teamwork structure
and the inter-agent communication protocols, if any. The locker-
room agreement is accessible only to internal behaviors.

The internal state stores the agent's internal variables. It may re-
ect previous and current world states, possibly as speci�ed by
the locker-room agreement. For example, the agent's role within
a team behavior could be stored as part of the internal state. A
window or distribution of past world states could also be stored as
a part of the internal state. The agent updates its internal state
via its internal behaviors.

The internal behaviors update the agent's internal state based on
its current internal state, the world state, and the team's locker-
room agreement.

The external behaviors reference the world and internal states, and
select the actions to send to the actuators. The actions a�ect the
real world, thus altering the agent's future percepts. External be-
haviors consider only the world and internal states, without direct
access to the locker-room agreement.

4.2. Asynchronous Sensing and Acting

A driving factor in the design of the agent architecture is the fact
that the simulator operates in �xed cycles of length 100 msec, while
sensations are sent at di�erent intervals (typically every 150 msec). The
simulator accepts commands from clients throughout a cycle and then
updates the world state all at once at the end of the cycle. Only one
action command (dash, kick, turn, or catch) is executed for a given
client during a given cycle.

Therefore, agents (simulator clients) should send exactly one action
command to the simulator in every simulator cycle. If more than one
command is sent in the same cycle, a random one is executed, possibly
leading to undesired behavior. If no command is sent during a simulator
cycle, an action opportunity has been lost: opponent agents who have
acted during that cycle may gain an advantage.

In addition, since the simulator updates the world at the end of every
cycle, it is advantageous to try to determine the state of the world at
the end of the previous cycle when choosing an action for the current
cycle. As such, the basic agent loop during a given cycle t is as follows:

draft.tex; 28/10/2001; 2:41; p.12



13

� Assume the agent has consistent information about the state of
the world at the end of cycle t � 2 and has sent an action during
cycle t � 1.

� While the server is still in cycle t� 1, upon receipt of a sensation
(see, hear, or sense body), store the new information in temporary
structures. Do not update the current state.

� When the server enters cycle t (determined either by a running
clock or by the receipt of a sensation with time stamp t), use all of
the information available (temporary information from sensations
and predicted e�ects of past actions) to update the world model
to match the server's world state (the \real world state") at the
end of cycle t�1. Then choose and send an action to the server
for cycle t.

� Repeat for cycle t+ 1.

While the above algorithm de�nes the overall agent loop, much of
the challenge is involved in updating the world model e�ectively and
choosing an appropriate action. The remainder of this section goes into
these processes in detail.

4.3. World Modeling

When acting based on a world model, it is important to have as accurate
and precise a model of the world as possible at the time that an action
is taken. In order to achieve this goal, CMUnited agents gather sensory
information over time, and process the information by incorporating it
into the world model immediately prior to acting.

4.3.1. Object Representation

There are several objects in the world, such as the goals and the �eld
markers which remain stationary and can be used for self-localization.
Mobile objects are the agent itself, the ball, and 21 other players (10
teammates and 11 opponents). These objects are represented in a type
hierarchy as illustrated in Fig. 4.

Mobile
Object

Stationary
Object

Ball Player

Object

Figure 4. The agent's object type hierarchy.

draft.tex; 28/10/2001; 2:41; p.13



14

Each agent's world model stores an instantiation of a stationary
object for each goal, sideline, and �eld marker; a ball object for the
ball; and 21 player objects. Since players can be seen without their
associated team and/or uniform number, the player objects are not
identi�ed with particular individual players. Instead, the variables for
team and uniform number can be �lled in as they become known.

Mobile objects are stored with con�dence values within [0,1] indicat-
ing the con�dence with which their locations are known. The con�dence
values are needed because of the large amount of hidden state in the
world: no object is seen consistently.

The variables associated with each object type are as follows:

Object :

� Global (x; y) position coordinates
� Con�dence within [0,1] of the coordinates' accuracy

Stationary Object : nothing additional

Mobile Object :

� Global (dx; dy) velocity coordinates
� Con�dence within [0,1] of the coordinates' accuracy

Ball : nothing additional

Player :
� Team
� Uniform number
� Global � facing angle
� Con�dence within [0,1] of the angle's accuracy

4.3.2. Updating the World Model

Information about the world can come from
� Visual information;
� Audial information;
� Sense body information; and
� Predicted e�ects of previous actions.

Visual information arrives as relative distances and angles to objects in
the player's view cone. Audial information could include information
about global object locations from teammates. Sense body information
pertains to the client's own status including stamina, view mode, and
speed.

Whenever new information arrives, it is stored in temporary struc-
tures with time stamps and con�dences (1 for visual information, possi-
bly less for audial information). Visual information is stored as relative
coordinates until the agent's exact location is determined.

draft.tex; 28/10/2001; 2:41; p.14



15

When it is time to act during cycle t, all of the available information
is used to best determine the server's world state at the end of cycle
t � 1. If no new information arrived pertaining to a given object, the
velocity and actions taken are used by the predictor to predict the new
position of the object and the con�dence in that object's position and
velocity are both decayed.

When the agent's world model is updated to match the end of simu-
lator cycle t� 1, �rst the agent's own position is updated to match the
time of the last sight; then those of the ball and players are updated.

4.4. Agent Skills

Once the agent has determined the server's world state for cycle t as
accurately as possible, it can choose and send an action to be executed
at the end of the cycle. In so doing, it must choose its local goal within
the team's overall strategy. It can then choose from among several low-
level skills which provide it with basic capabilities. The output of the
skills are primitive movement commands.

The skills available to CMUnited players include
� kicking,
� dribbling,
� ball interception,
� goaltending,
� defending, and
� clearing.
The common thread among these skills is that they are all predic-

tive, locally optimal skills (PLOS). They take into account predicted
world models as well as predicted e�ects of future actions in order to
determine the optimal primitive action from a local perspective, both
in time and in space.

One simple example of PLOS is each individual agent's stamina
management. The server models stamina as having a replenishable and
a non-replenishable component. Each is only decremented when the
current stamina goes below a �xed threshold. Each player monitors its
own stamina level to make sure that it never uses up any of the non-
replenishable component of its stamina. No matter how fast it should
move according to the behavior the player is executing, it slows down
its movement to keep itself from getting too tired. While such behavior
might not be optimal in the context of the team's goal, it is locally
optimal considering the agent's current tired state.

Even though the skills are predictive, the agent commits to only
one action during each cycle. When the time comes to act again, the
situation is completely reevaluated. If the world is close to the an-

draft.tex; 28/10/2001; 2:41; p.15



16

ticipated con�guration, then the agent will act similarly to the way
it predicted on previous cycles. However, if the world is signi�cantly
di�erent, the agent will arrive at a new sequence of actions rather than
being committed to a previous plan. Again, it will only execute the �rst
step in the new sequence.

4.5. Layered Disclosure

A perennial challenge in creating and using complex autonomous agents
is following their choices of actions as the world changes dynamically,
and understanding why they act as they do. To this end, we intro-
duce the concept of layered disclosure (Riley et al., 2000) by which
autonomous agents include in their architecture the foundations nec-
essary to allow them to disclose to a person upon request the speci�c
reasons for their actions. The person may request information at any
level of detail, and either retroactively or while the agent is acting.

A key component of layered disclosure is that the relevant agent
information is organized in layers. In general, there is far too much
information available to display all of it at all times. The imposed
hierarchy allows the user to select at which level of detail he or she
would like to probe into the agent in question.

The CMUnited layered disclosure module is publicly available and
has been successfully used by other researchers to help them in their
code development.

4.6. Summary

In Summary, the CMUnited code hadles several challenges presented by
Soccer Server, including managing asynchronous sensing and acting via
socket communication with the server; parsing the sensory information;
maintaining a world model; and supporting basic skills that can be used
to build up a fully functional team. Since it facilitates MAS research
in the domain, it forms an important part of this infrastructure.

5. Next Generation Infrastructure

5.1. Problems of Soccer Server

As described above, Soccer Server is a useful infrastructure for research
on MAS.While it is used widely for research, several problems of Soccer
Server have become clear.

� Generality: From 5 years experience of RoboCup activity, we
have recognized that many researchers want simulators like Soccer

draft.tex; 28/10/2001; 2:41; p.16



17

Server for other domains. For example, some researchers want
to modify Soccer Server for hockey or basket-ball. In addition
to these ball games, there is growing interest in simulations of
rescue from huge natural disasters. Because, Soccer Server itself
was designed only for soccer, however, it is diÆcult to modify it
for such purposes.

� Huge Network TraÆc: Soccer Server communicates with vari-
ous types of clients (player clients, monitor clients, o�ine-/online-
coach clients) directly. This often makes the server a bottle-neck
of network-traÆc. In order to avoid such trouble, the server should
be re-designed to enable distributed processing easily.

� Legacy: In order to keep backward compatibility as much as
possible, Soccer Server uses version control for the client-server
protocol. Because the current server is a single module, the server
must include all protocol versions. In order to solve this problem,
the server should have a mechanism that enables it to connect with
a kind of �lter or proxy that converts internal representations for
each version of the protocol.

A possible strategy to overcome these problems is \modular struc-
ture over network." In Soccer Server, the monitor module is separated
from the simulation kernel. As mentioned before, this modularity brings
the following merits:

� It enables the development of systems to show plays in 3D, to
describe games in natural language, and to analyze performance
of teams from various point of view. These systems are possible
because the modules are connected via networks and loosely cou-
pled by a simple protocol. Therefore, each developer can develop
their systems independently.

� It enables researchers to develop such monitors on various plat-
forms. This is possible because communication between modules
use open and standard protocol (character strings via UDP/IP).

We are now applying a similar technique to other parts of the simulator.
In the following sections, we describe the general framework, called
FUSS, for distributed simulation based on this strategy, and show the
implementation of the soccer simulator as an example.

draft.tex; 28/10/2001; 2:41; p.17



18

5.2. Overview

FUSS (Framework for Universal Simulation System) is a collection
of programs and libraries to develop distributed simulation systems.
It is designed to aid development of systems that simulate complex
environments like MAS.

A simulation system in FUSS consists of a few modules, each of
which simulates an individual function or phenomenon. For example,
we can develop a soccer simulator in FUSS that consists of a �eld
(physical) simulation module, a referee module, and multiple player
simulation modules. The modules are combined into a system by a
kernel (fskernel) and libraries. Fig. 5 shows the high-level structure of
a simulation system built on top of FUSS.

simulation
module 3

fskernel

simulation
module 1

simulation
module 2

FUSS

CORBA

network

FUSS library
(libfuss)

Figure 5. A Simulation System Built on FUSS

FUSS itself consists of the following items:

� fskernel: A kernel for a simulation system. It provides services of
module database, shared memory management, and synchroniza-
tion control.

� FUSS library (libfuss): A library to develop modules of the sim-
ulation system. The library consists of FsModule, ShrdMem and
PhaseRef libraries, which provide a framework of simulation mod-
ules, an interface to access shared memories, and facilities to syn-
chronize executions of modules respectively.

� utility library and programs: A collection of utilities.

In order to guarantee open-ness in communication among modules
and the kernel, FUSS uses CORBA for the communication layer. This

draft.tex; 28/10/2001; 2:41; p.18



19

makes users free to select any platform and programming language
to develop simulation modules. While the current implementation of
FUSS uses C++, we can develop libraries in other languages that have
a CORBA interface.

In addition, FUSS uses the POSIX multi-thread facility (pthread) to
realize exible interactions between modules and fskernel. Using this
facility, users need not manage control of execution of the simulation
and the communication.

5.3. Shared Memory and Time Management

In development of distributed systems, there are two major issues,
shared data management and time management. As an infrastructure
for distributed simulation systems, FUSS provides two frameworks,
shared memory and phase control, to realize this management.

All shared data in a FUSS simulation system must be de�ned by
IDL of CORBA. The de�nitions are converted into C++ classes and
included by all related modules. The shared data is de�ned as a sub-
class of ShrdMem, the shared memory class, in each module. A module
calls the download method before using the shared memory, and calls
the uploadmethod after modifying the memory. Then the FUSS library
maintains the consistency of the memory among modules.

In order to make an explicit order of execution of multiple simulation
components, FUSS modules are synchronized by phase control. In the
case of soccer simulation, each cycle of the physical (�eld) simulation
may consist of the following steps:

1. collect players' actions to execute in the cycle,

2. calculate movements of players and a ball,

3. check conditions of the game according to the rules, and

4. reect changes of movements to a shared memory.

These steps are represented by phases in a FUSS simulation system.
A phase is a kind of an event that has joined modules. When a mod-

ule is plugged into the simulation system, the module sends joinPhase
messages to fskernel to join phases in which it executes a part of the
simulation. When a phase starts, the kernel noti�es the beginning of
the phase by sending an achievePhase message to all joined modules.
Then, the cyclemethod of the phase, which should be de�ned by users,
is called in each module. The kernel waits until all joined modules �nish
the cycle operations of the phase, and moves to the next phase. In

draft.tex; 28/10/2001; 2:41; p.19



20

other words, executions of simulation modules are serialized according
to sequential order of phases.3

The kernel can handle two types of phases: timer phase and adjunct

phase. A timer phase has its own interval. The kernel tries to start
the phase for every interval. For example, a �eld simulation phase
in soccer simulation may occur every 100msec. This phase has the
�eld simulator as a joined module. So, the �eld simulator receives an
achievePhase message for every 100msec. Then the simulator module
calls cycle method of �eld simulation phase, in which it calculates
movement of objects.

An adjunct phase is invoked before or after another phase adjunc-
tively. For the example of soccer simulation, a referee phase will
be registered as an adjunct phase after a �eld simulation phase.
Then the kernel starts the referee phase immediately after the �eld
simulation phase is achieved. For another example, a player phase,
in which player simulators/proxies upload players' commands, will be
registered as an adjunct phase before a �eld simulation phase. In
this case, the kernel starts the player phase �rst, and starts the �eld
simulation phase after it is achieved.

A phase can have multiple adjunct phases before or after it. To
arrange them in an order explicitly, each adjunct phase has its own
tightness factor. If the factor is larger, the phase occurs more tightly
adjoined to the mother phase. For example, a �eld simulation phase
will have two adjunct phases, a referee phase and a publish phase,
after it. Tightness factors of the referee and publish phases will be 100
and 50 respectively. So, the referee phase occurs just after the �eld
simulation phase, and the broadcast phase occurs later. Fig. 6 shows
phase-control and communication between the kernel and modules in
the soccer simulation described in Sec. 5.4.

The structure of the adjunct relationship among phases is an im-
portant feature of FUSS. It serializes executions of simulation of joined
modules4 according to the structure and the tightness. Therefore, users
can realize serialization of execution by specifying logical relations (ad-
junct relationships) between phases rather than an exact order of phases.
This feature is useful when users want to add new modules to an
existing simulation system.

3 Execution of modules that join to the same phase are processed in parallel.
4 Phase control serializes only operations de�ned as cycle methods. Users can

invoke other threads of execution, that are performed in parallel with the phase
execution, using the multi-thread facility.

draft.tex; 28/10/2001; 2:41; p.20



21

Player Module

Field Simulator

Referee Module

Monitor Proxy

Player Module

achievePhase
downloadData

uploadData
achievePhase

achievePhase

downloadData

uploadData

achievePhase

achievePhase

achievePhase

uploadData

achievePhase

achievePhase
downloadData

achievePhase

achievePhase
downloadData

Action Phase
adjunct before Field Phase

joined modules:

Player Module(s)

Field Phase
every 100ms

joined modules:

Field Simulator

Referee Phase
adjunct after Field Phase

joined modules:

Rerefee Module

Publish Phase
adjunct after Field Phase

joined modules:

Player Module(s)
Monitor Proxy

T
im

e

Figure 6. Phase Control and Communication with Joined Modules

5.4. Implementation of Soccer Simulator on FUSS

(proxy) proxyproxy

Monitor
Proxy

Player
 Simulator

Player
 Simulator

Field
Simulator

fskernel

Referee

pl
ay

er
cl

ie
nt

pl
ay

er
cl

ie
nt

pl
ay

er
cl

ie
nt

pl
ay

er
cl

ie
nt pl

ay
er

cl
ie

nt

pl
ay

er
cl

ie
nt

pl
ay

er
cl

ie
nt

pl
ay

er
cl

ie
nt

co
ac

h
cl

ie
nt

co
ac

h
cl

ie
nt

M
on

ito
r

C
om

m
en

ta
to

r

3D
 V

ie
w

er

L
og

ge
r

of
f-

lin
e 

co
ac

h 
cl

ie
nt

re
fe

re
e 

cl
ie

nt

FUSS

CORBA

UDP/IP

Figure 7. Design of the new soccer simulator

FUSS is designed to be a general tool for development of simulations
of arbitrary multiagent systems that run in a distributed way over a

draft.tex; 28/10/2001; 2:41; p.21



22

computer network. As a proof of concept and to ensure that it can
emulate previous successes, we implemented a soccer simulator using
FUSS. In the implementation, we divided the functions of the soccer
simulator into the following modules:

� Field Simulator is a module to simulate the physical events on
the �eld.

� Referee Simulator is a privileged module to control a match ac-
cording to rules. This module may override and modify the results
of the �eld simulator.

� Player Simulators/Proxies are modules to simulate events in-
side of a player's body, and communicate with the player and
on-line coach clients.

� Monitor Proxy provides a facility for multiple monitors and
commentators, as well as the ability to record a game.

The implementation of the referee module is the key of the simulator.
Compared with other modules, the referee module should have a special
position, because the referee module needs to a�ect behaviors of other
modules directly rather than via data. For example, the referee module
restricts movements of players and a ball, that are controlled by the �eld
simulator module, according to the rules of the game. Therefore, the
referee module is invoked just before and after the simulator module
and checks the data. In other words, the referee module works as a
`wrapper' of other modules. Phase control described in Sec. 5.3 enables
this style of implementation. As shown in Fig. 6, referee phase is an
adjunct phase to �eld phase with a large tightness. Therefore, the
referee module can a�ect the result of the �eld phase directly. This
means the referee module regulates execution of the �eld module by
modifying the result of the simulation.

The advantage of this feature becomes clear when we think of adding
a coach module, which will regulate the result of the �eld simulation
in a weaker manner than does the referee module. In this case, a user
de�nes a coach phase as an adjunct phase to the �eld phase, whose
tightness is intermediate between those of the referee phase and the
publish phase. As a result, the coach phase is invoked after the referee
phase and before the publish phase, where the coach module can modify
the result of simulation after the referee module.

draft.tex; 28/10/2001; 2:41; p.22



23

6. Conclusion

Soccer Server and CMUnited client code provide a robust infrastructure
for MAS research using the game of soccer as the underlying domain. A
large community has been successfully using it for several years, and it
meets many of the science and education needs of the MAS community.

Building on the lessons learned via the Soccer Server, FUSS will
provide a utility for creating simulations in a wide variety of multiagent
domains. Its modular facilities enable incremental and distributed de-
velopment of large simulation systems. By using FUSS, Soccer Server's
problems are solved as follows:

� Generality: FUSS provides facilities for distributed modular simu-
lation system. We can develop various kinds of simulation systems
like rescue simulators and virtual markets using FUSS.

� Huge TraÆc: As opposed to Soccer Server, communications with
clients are handled with three modules, a monitor proxy and two
player simulator/proxies, separately. Therefore, we can distribute
the network traÆc by invoking these modules on di�erent machines
in di�erent network segments.

� Legacy: Communication with player clients is localized by player
proxies. This means that we can handle multiple protocols by pro-
viding di�erent player proxies for each protocol. This capability
makes it much easier to maintain legacy features.

Further information about FUSS is available from http://www.carc.

aist.go.jp/~noda/fuss.
The infrastructure presented in this paper has many of the charac-

teristics suitable for research in science and education as enumerated in
Section 2 (Gasser, 2000). However, there are of course many issues that
it does not address. For example, it is not at all intended as an MAS
application development tool or as an environment to be presented for
general use. In addition, not all MAS research and educational issues
can be addressed in this domain. In order to study, for example, web-
based multiagent information processing, another infrastructure will be
needed.

Nonetheless, Soccer Server and the CMUnited client code provide
robust and fun support for disparate research issues such as multiagent
learning, sensor fusion, multiagent planning, and agent communication.
With the release of FUSS, support for studying these issues across
multiple domains will also be introduced. We look forward to continuing
research progress in this dynamic multiagent infrastructure.

draft.tex; 28/10/2001; 2:41; p.23



24

References

Tomohito Andou. Andhill-98: A robocup team which reinforces positioning with
observation. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
Soccer World Cup II, pages 338{345. Springer, 1999.

E. Andr�e, G. Herzog, and T Rist. Generating multimedia presentations for RoboCup
soccer games. In H. Kitano, editor, RoboCup-97: Robot SoccerWorld Cup I, pages
200{215. Lecture Notes in Arti�cial Intelligence, Springer, 1998.

Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup
II. Lecture Notes in Arti�cial Intelligence 1604. Springer Verlag, Berlin, 1999.

Silvia Coradeschi and Jacek Malec. How to make a challenging AI course enjoyable
using the RoboCup soccer simulation system. In Minoru Asada and Hiroaki Ki-
tano, editors, RoboCup-98: Robot Soccer World Cup II. Springer Verlag, Berlin,
1999.

Les Gasser. Mas infrastructure de�nitions, needs, and prospects. In Proceedings
of the Autonomous Agnets 2000 Workshop on Infrastructure for Scalable Multi-
Agent Systems, Barcelona, Spain, June 2000.

Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi,
Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCup
synthetic agent challenge 97. In Proceedings of the Fifteenth International Joint
Conference on Arti�cial Intelligence, pages 24{29, San Francisco, CA, 1997.
Morgan Kaufmann.

Hiroaki Kitano, Satoshi Takokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi Taka-
hashi, Atsuhi Shinjou, and Susumu Shimada. RoboCup rescue: Search and rescue
in large-scale disasters as a domain for autonomous agents research. In Proceed-
ings of the IEEE International Conference on Man, System, and Cybernetics,
1999.

Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer Verlag,
Berlin, 1998.

Maja Mataric. Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(1):73{83, January 1997.

Hideyuki Nakashima and Itsuki Noda. Dynamic subsumption architecture for pro-
gramming intelligent agents. In Proc. of International Conf. on Multi-Agent
Systems 98, pages 190{197. AAAI Press, 1998.

Itsuki Noda and Ian Frank. Investigating the complex with virtual soccer. In J.-C.
Heudin, editor, Virtual Worlds, pages 241{253. Ppringer Verlag (LNAI-1434),
Sep. 1998.

Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccer server: A tool
for research on multiagent systems. Applied Arti�cial Intelligence, 12:233{250,
1998.

Patrick Riley, Peter Stone, and Manuela Veloso. Layered disclosure: Revealing
agents' internals. In Submitted to the Sixth Paci�c Rim International Conference
on Arti�cial Intelligence (PRICAI 2000), 2000.

A. Shinjoh and S. Yoshida. The intelligent three-dimensional viewer system for
robocup. In Proceedings of the Second International Workshop on RoboCup,
pages 37{46, July 1998.

Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-98 champion sim-
ulator team. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
Soccer World Cup II. Springer Verlag, Berlin, 1999.

Peter Stone, Tucker Balch, and Gerhard Kraetszchmar, editors. RoboCup-2000:
Robot Soccer World Cup IV. Springer Verlag, Berlin, 2001.

draft.tex; 28/10/2001; 2:41; p.24



25

Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to
Robotic Soccer. MIT Press, 2000.

Peter Stone. TPOT-RL applied to network routing. In Proceedings of the
Seventeenth International Conference on Machine Learning, 2000.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. IEEE Expert, 11(6), December 1996.

Tomoichi Takahashi and Nobuhiro Itoh. Agent Programming using RoboCup (in
Japanese). Kyoritsu Shuppan, Jul 2001.

Milind Tambe, W. Lewis Johnson, Randolph M. Jones, Frank Koss, John E. Laird,
Paul S. Rosenbloom, and Karl Schwamb. Intelligent agents for interactive
simulation environments. AI Magazine, 16(1), Spring 1995.

Milind Tambe. Towards exible teamwork. Journal of Arti�cial Intelligence
Research, 7:81{124, 1997.

Kumiko Tanaka-Ishii, Itsuki Noda, Ian Frank, Hideyuki Nakashima, Koiti Hasida,
and Hitoshi Matsubara. MIKE: An automatic commentary system for soccer. In
Yves Demazeau, editor, Proc. of Third International Conference on Multi-Agent
Systems, pages 285{292, July 1998.

Manuela Veloso, Enrico Pagello, and Hiroaki Kitano, editors. RoboCup-99: Robot
Soccer World Cup III. Springer Verlag, Berlin, 2000.

draft.tex; 28/10/2001; 2:41; p.25


