
RESEARCH ARTICLE

THE RIGHT MUSIC AT THE RIGHT TIME:
ADAPTIVE PERSONALIZED PLAYLISTS BASED

ON SEQUENCE MODELING1

Elad Liebman
SparkCognition, Inc., 4030 West Braker Lane #500, Austin, TX 78759 U.S.A. {eladlieb@gmail.com}

Maytal Saar-Tsechansky
McCombs School of Business, The University of Texas at Austin, 2110 Speedway, Stop B6500,

Austin, TX 78712-1277 U.S.A. {maytal@mail.utexas.edu}

Peter Stone
Department of Computer Science, The University of Texas at Austin, 2317 Speedway, Stop D9500,

Austin, TX 78712-1277 U.S.A. {pstone@cs.utexas.edu}

Recent years have seen a growing focus on automated personalized services, with music recommendations a
particularly prominent domain for such contributions. However, while most prior work on music recommender
systems has focused on preferences for songs and artists, a fundamental aspect of human music perception is
that music is experienced in a temporal context and in sequence. Hence, listeners’ preferences also may be
affected by the sequence in which songs are being played and the corresponding song transitions. Moreover,
a listener’s sequential preferences may vary across circumstances, such as in response to different emotional
or functional needs, so that different song sequences may be more satisfying at different times. It is therefore
useful to develop methods that can learn and adapt to individuals’ sequential preferences in real time, so as
to adapt to a listener’s contextual preferences during a listening session. Prior work on personalized playlists
either considered batch learning from large historical data sets, attempted to learn preferences for songs or
artists irrespective of the sequence in which they are played, or assumed that adaptation occurs over extended
periods of time. Hence, this prior work did not aim to adapt to a listener’s current song and sequential prefer-
ences in real time, during a listening session. This paper develops and evaluates a novel framework for online
learning of and adaptation to a listener’s current song and sequence preferences exclusively by interacting with
the listener, during a listening session. We evaluate the framework using both real playlist datasets and an
experiment with human listeners. The results establish that the framework effectively learns and adapts to a
listeners’ transition preferences during a listening session, and that it yields a significantly better listener
experience. Our research also establishes that future advances of online adaptation to listener’s temporal
preferences is a valuable avenue for research, and suggests that similar benefits may be possible from
exploring online learning of temporal preferences for other personalized services.

1

Keywords: Online preference learning, personalized adaptation, user preferences, music playlist preference,
reinforcement learning, data science

1Sumit Sarkar was the accepting senior editor for this paper. Paul Hu served as the associate editor.

The appendices for this paper are located in the “Online Supplements” section of MIS Quarterly’s website (https://misq.org).

DOI: 10.25300/MISQ/2019/14750 MIS Quarterly Vol. 43 No. 3 pp. 765-786/September 2019 765

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Introduction

Music is one of the most prevalent expressions of human
culture, with implications for individuals’ decision making
and overall well-being. Research on music recommendations
has focused almost exclusively on learning preferences for
songs or artists. However, as an activity, music is also inher-
ently temporal: sounds occur in a sequence, and at a higher
level, listening sessions span over a sequence of songs
(Davies 1978; Kahnx et al. 1997). Indeed, the pleasure from
music is also affected by the particular sequence in which
songs are being played (Palmer 2005): listeners indicate clear
sequential preferences while interacting with a playlist gener-
ator (Kaji et al. 2005), and the song sequence and resulting
transitions in a given playlist are at the core of how DJs
produce a desired listener experience (Cliff 2000). Thus, in
contrast with the view of a playlist as a collection of desirable
songs played in some order, in this paper we consider a
playlist as a particular sequence of songs. We first posit that
preferences for such sequences affect the listeners’ experi-
ence, and that if these preferences can be learned, they can be
used to plan personalized playlists and improve the listener’s
experience.

Because a listener’s sequential preferences may vary across
circumstances, such as in response to different emotional or
functional needs, different sequences may be more satisfying
in different contexts: one’s preferences at the end of a
working day may differ on different days, and a listener may
enjoy an eclectic sequence with dramatic transitions between
songs or smoother transitions between songs at different
contexts. Hence, in this paper we aim to learn and adapt to
such preferences online, in a given context.

Prior research on learning sequential preferences either con-
sidered settings in which a listener’s preferences are learned
in a batch fashion from historical data (e.g., Chen et al. 2012;
Harir et al. 2012; Maillet et al. 2009; McFee and Lanckriet,
2011; Natarajan et al. 2013; Zheleva et al. 2010), which may
capture a listener’s preferences across multiple contexts, or
considered online (real time) learning of and adaptation to
preferences based on the Q-learning framework (Sutton and
Barto 1998) that requires a large number of interactions with
listeners (e.g., over multiple days) before yielding benefits
(e.g., Chi et al. 2010; King and Imbrasait 2015). In this
paper, we address a fundamentally different task: learning
and adapting online to a listener’s song and sequential prefer-
ences during a listening session that may only last a few
hours, so as to tailor a playlist to the listener’s songs and
sequence preferences in the current context. As such, the
framework we develop aims to augment existing recommen-
dation technologies whose goal is to learn a listener’s prefer-
ences from historical data and across multiple contexts.

Henceforth, we use the term online to refer to learning and
adaptation to the listener through interactions in real time,
during a listening session (not from historical data). We use
the term batch learning to refer to learning from historical
data, acquired prior to the listening session.

Our contributions are as follows. First, we develop a novel
framework for a personalized DJ, DJ-MONTE CARLO (hence-
forth, DJ-MC), that learns and adapts the songs and sequence
in which they are played to the listeners’ preferences in real
time, by interacting with the listener during a listening ses-
sion. To the best of our knowledge, prior research on playlist
learning and generation has either focused exclusively on
batch learning from historical data, considered listeners’
preferences for individual songs or artists irrespective of the
sequence in which songs are being played, or considered
online adaptation over long periods of time and thus did not
aim to suit a listener’s preferences in a given context. Conse-
quently, prior research has not explored the design challenges
of real-time learning and adaptation to sequential preferences
by interacting with the listener during a listening session, nor
whether such an adaptation can yield a better listening experi-
ence for the listener. In this work, we aim to bridge these
gaps. Second, our real-time learning task requires that
learning from limited interactions with the listener be highly
efficient. We thus identify key design properties for
achieving this goal, and we empirically study their contri-
butions to our framework’s performance. Importantly, these
design choices are generic, and are directly applicable to
domains other than music. Third, we propose two extensions
of our framework that account for song costs when producing
a playlist. We empirically evaluate the benefit of each ap-
proach and highlight their distinct properties.

We evaluate the performance of our framework over simu-
lated data derived from real playlists, and we draw insights on
its relative performance as compared to alternatives under a
controlled environment. We complement this study with
another study involving human listeners, and we find that our
framework yields significantly more enjoyable sequences to
human listeners. This study confirmed the benefits of our
approach while it adapts to human listeners, whose music
preferences can be heterogeneous and arbitrarily complex.

The challenge we address here generalizes to other settings,
where both learning preferences and adapting to them in real
time is desirable. These settings include, for example, pro-
ducing sequential recommendations for news items, videos
(e.g., YouTube videos), or even workout exercises. In all of
these cases, the items one enjoys and the sequence that would
be more pleasing can vary in different contexts. Broadly, this
research also contributes to the growing body of work on
contextual recommendations, which aims to extend existing

766 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

recommendation methods by adapting the recommendations
to suit a user’s current context (e.g., Adomavicius and
Tuzhilin 2005; Natarajan et al. 2013).

Finally, the framework we develop builds on the reinforce-
ment learning paradigm for simultaneously learning from
interactions and acting in real time to achieve a goal. Rein-
forcement learning is a natural progression from batch
machine learning from historical data, and a part of a con-
tinuing progression toward artificial intelligence techniques
that learn and act on their own, through interactions with
their environment. Because there has been little research in
Information Systems (IS) considering these settings, we pro-
vide an introduction to the reinforcement learning problem,
and hope that this research will contribute to an IS research
stream, addressing business, organizational, or societal chal-
lenges that can benefit from systems that independently learn
and act in their environment.

Reinforcement Learning Preliminaries:
Learning Through Interactions

We consider an interactive setting, illustrated in Figure 1, in
which a recommender agent plays a sequence of songs to a
listener. After each song, the listener provides feedback on
the song, such as a numeric score or a like/dislike signal,
reflecting the benefits the listener derives from each song;
once the feedback is received, the agent’s representation of
the listener’s preferences are updated to reflect the feedback,
and the agent then adapts to the listener’s preferences by
recommending the next song that suits the listener’s prefer-
ences at the current time. The agent’s overall goal is to pro-
duce the most pleasing playlist for the listener. Note that each
song played may also have long-term consequences on the
listener’s enjoyment from the remainder of the playlist.

We begin with a brief introduction to reinforcement learning,
followed by a definition of our problem within this domain.
The problem, described above, is one of reinforcement
learning (RL): learning what actions to take in different
situations so as to gain maximum reward over a sequence of
actions, by trying out different actions and discovering what
rewards they produce (Sutton and Barto 1998). The reward,
which is typically a real number scalar, reflects the benefits
from the agent’s recent action. In our music playlist adap-
tation problem, the reward is a real number, capturing the
listener’s feedback (reflecting enjoyment from the playlist).
The goal of an RL agent is to maximize the cumulative
reward over the listening session. RL is thus defined not by
the characteristics of how the learning methods solve the

problem, but by the problem itself. A reinforcement learning
method is thus any method that learns and acts simultaneously
via interactive trial and error with delayed rewards so as to
achieve a goal. By contrast, the kind of machine learning
studied most often is batch learning from historical data, such
as supervised learning. However, supervised learning is
inadequate for learning from interactions, as entailed in our
setting.

The key elements of the RL problem are as follows. A
decision-making agent (e.g., DJ-MC) makes a sequence of
decisions (song selections): at each step, it observes the state
of the environment, decides and takes an action (plays the
next song), receives an immediate reward, representing the
immediate benefit from the action, and observes the new state
of the environment. Importantly, rather than learn from
historical data, the only way the agent can learn which actions
are good in different situations is to sequentially try them out
and receive a reward. The agent’s goal is typically that the
cumulative reward over the entire sequence is maximized
(e.g., maximize the listener’s enjoyment from the entire
playlist).

Note that in our interactive setting, the agent’s action of
selecting the next song to play produces an immediate reward
that counts toward the agent’s cumulative reward. However,
an RL agent has two motivations not to play the song that
yields the best immediate reward. First, similar to active
learning methods (e.g., Saar-Tsechansky et al. 2009; Saar-
Tsechansky and Provost 2007), it ought to acquire informative
experiences so as to quickly improve its ability to correctly
predict the outcome of its actions. In addition, each song
played may also have long-term consequences: it may affect
how the listener enjoys the next song as well as future songs
in the playlist. Hence, it may be beneficial not to play the
most enjoyable song next, so as to improve learning and
produce a more enjoyable playlist overall.

Finally, to effectively infer the consequences of its actions,
such as the future reward from an action, a reinforcement
agent must have useful information to make those inferences.
Ideally, it is desirable that the agent can represent the history
of its interactions in a compact manner, which also retains all
relevant information for inferring future states and rewards.
As we will see below, in our setting it is possible to retain a
representation of the playlist history to yield informative
representation of the agent’s interaction history. Note that
having such complete information merely ensures that the
agent has the best possible information from which to select
actions, yet inferring the future consequences of the agent’s
actions for any given situation can still be difficult (Sutton
and Barton 1998).

MIS Quarterly Vol. 43 No. 3/September 2019 767

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Figure 1. DI-C’s Model-Based Architecture

Related Work

Data science research on recommender systems in IS and
other related fields has focused almost exclusively on induc-
tion (learning) of users’ preferences from historical data (e.g.,
Adomavicius and Kwon, 2014; Adomavicius et al. 2011;
Adomavicius and Zhang, 2012; Ghoshal and Sarkar 2014;
Prawesh and Padmanabhan 2014). Most prior work on
modeling preferences for playlist generation in particular
focused on listeners’ preferences for individual songs or
artists, irrespective of the order in which they are played;
consequently, this work focused on identifying songs or
artists that are similar to those to which the listener previously
indicated a preference (e.g., Aizenberg et al. 2012; Platt 2003;
Wang et al. 2013; Weston et al. 2011). Importantly, the
research outlined above is distinguished from our work in that
it uses historical data to induce users’ preference patterns; in
particular, these papers did not attempt to perform both online
learning of individuals’ sequential preferences from data
acquired online (in real time) and to adapt online to these
preferences.

Prior research on music perception has established that
humans perceive music sequentially (Palmer 2005), and that
the pleasure from music is also affected by the sequence of
songs (Kaji et al. 2005). Most research on producing playlist
recommendations has either considered learning of listeners’
preferences for sequences from large historical data, or did
not learn preferences over transitions at all, but rather as-
sumed what sequences are desirable for all listeners in all
contexts. For example, several works on learning of prefer-

ences addressed playlist prediction from large historical data
sets (e.g., Chen et al. 2012; Harir et al. 2012; Maillet et al.
2009; McFee and Lanckriet 2011; Natarajan et al. 2013;
Zheleva et al. 2010). Other works, including Zheleva et al.
(2010), did not attempt to learn sequences from listeners’
playlists at all, but made assumptions about what makes
sequences enjoyable across contexts. Zheleva et al., for
example, place a bound on the distance between two subse-
quent songs. Natarajan et al. (2013) generalize this approach
to explicitly model one-step transitions.

Several recent works considered online adaptation to lis-
teners’ music preferences, but addressed meaningfully
different problems and settings than those we address here.
For example, Chi et al. (2010) assume that all songs in the
corpus are pre-labeled as belonging to one of four “valence
quadrants” by human annotators who were trained for this
task. However, this approach is inapplicable for streaming
services more broadly. Chi et al. and King and Imbrasait
(2015) use the Q-learning framework (Sutton and Barto 1998)
for online adaptation that requires a large number of inter-
actions with listeners before yielding benefits. Thus, for
example, King and Imbrasait require multiple days of usage
to achieve similar benefits to a random selection of songs. In
addition, note that King and Imbrasait also consider settings
with a fixed set of songs from a listener’s own collection of
preferred songs. Hence, it is inapplicable to a setting where
the listeners’ preferences for songs ought to be discovered
simultaneously with transition preferences. Similarly, Shiva-
swamy and Joachims (2011) recommend articles to readers,
but do not aim to learn sequential preferences.

768 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

To the best of our knowledge, prior works have not attempted
to learn and adapt online to an individual’s songs and transi-
tion preferences in a given context, during a single listening
session. Thus, in this paper we extend our prior work (Lieb-
man, Saar-Tsechansky, and Stone 2015) to study the key
design properties that contribute to fast and effective real-time
adaptation to listeners’ transition preferences from limited
feedback, acquired during a single session. Specifically, we
study the benefits of the listener reward model we propose
toward the ability to aggressively generalize in real time the
listener’s preferences from a smaller number of interactions
with the listener; further, we evaluate the effectiveness of our
approach’s planning in trading off the immediate and long-
term rewards from selecting the next song. In addition, we
develop and evaluate two extensions of DJ-MC that account for
song costs (royalty fees) when producing a playlist. Finally,
we evaluate the sensitivity of the DJ-MC framework to dif-
ferent parameter settings. Overall, prior work has not con-
sidered adaptation through interactions in a single session,
hence it did not explore the design properties that are bene-
ficial to do so effectively, or whether adaptation to listeners’
preferences for song sequences yields any better listening ex-
periences for listeners. This paper aims to bridge these gaps.

Defining Our Playlist
Adaptation Problem

We consider a finite set of musical tracks (songs) M = {a1, a2,
…, an} from which playlists can be constructed, and assume
that playlists include an arbitrary number of songs K. As dis-
cussed above, for a reinforcement learning agent to perform
well, it ought to effectively predict the consequences of its
actions, such as the immediate utility from its action. At any
given time, the ordered sequence of songs played thus far, s
0 S is known, where S is the set of all possible sequences S =
{(a1, a2, …, ai)|1 # i # k; œ j # i, aj 0 M}. At each step k the
recommender agent selects the next song to play, ak 0 M.
After each song is played, the listener provides feedback,
which captures the immediate utility or enjoyment the listener
derives from listening to song a after listening to sequence s.
As we will see below, DJ-MC can accommodate different types
of feedback by the listener, but requires that the feedback be
transformed into a real number reward. If the listener’s
feedback is a real number, such as a score, DJ-MC uses the
score itself as the reward. Otherwise, when the listener’s
feedback is like/dislike signals, it is represented by DJ-MC as
a +1 and 0 rewards, respectively. Henceforth, we use feed-
back to refer to the signal provided by the listener, and reward
to refer to DJ-MC’s numeric representation of the listener’s
feedback.

Table 1 outlines the notations used throughout the paper.

DJ-MC Architecture: Reinforcement-Based
Adaptation to a Listener’s Preferences

Our agent’s goal is to find and improve over time a policy that
specifies the selection of the next song to play, so as to
produce the sequence of songs that would be most pleasing to
the listener. Because reinforcement learning considers a
sequence of actions at any given time, a policy aims to select
an action that may not yield the highest immediate reward, but
the highest long-term value. Different from the immediate
reward received from an (s, a) pair—taking action a after
listening to sequence s—the value of an (s, a) pair is an esti-
mate of the long-term benefits, that is, the expected cumu-
lative future rewards following a (s, a) pair, when following
the same policy π thereafter. Nevertheless, note that our
ability to predict the immediate reward is fundamental to
accurately estimating the value of an (s, a) pair.

Our first design choice pertains to our agent’s architecture
suitable for our setting, where adaptation of the playlist to the
listener’s preferences ought to rely on limited experiences
with the listener acquired during a single session. There are
two classes of reinforcement learning methods which differ in
how they assess the value of state-action pairs to produce a
policy (i.e., decide what actions to select). Model-free
methods learn the value of taking an action a when at state s
directly, by collecting actual experiences of taking action a at
state s, and updating the values of actions only when taking
them in the real task. Consequently, model-free methods
require significant experiential data and visit the same states
many times to converge on good estimates of the value of
state–action pairs. However, experiential data in our setting
(i.e., playing songs and obtaining the listener’s feedback) is
particularly scarce and therefore model-free methods are not
suitable for our setting. The alternative, model-based
methods, involve modeling the environment, that is, model a
mapping between any given state and action pair (a, s) onto
the reward v, in our setting. In this paper, we refer to this
mapping as the listener’s reward model. The listener’s reward
model allows the agent to estimate the value of alternative
courses of action via simulating experiential data, rather than
by relying on actual experiences. The use of models to simu-
late and assess the value of alternative courses of action is
referred to as planning. Because experiential data is scarce in
our online adaptation setting, in order to allow visiting the
same state frequently, our framework adopts model-based
learning and planning.

As discussed above, key to DJ-MC’s ability to perform model-
based planning is to have an internal, listener’s reward model
so as to allow predict the observed reward after a song is
played in any given context. The reward model maps infor-
mation from the current state and the next song selected onto

MIS Quarterly Vol. 43 No. 3/September 2019 769

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Table 1. Key Notations and Terminology
Notation Description

M Song corpus: set containing all songs
K Number of songs in the playlist

k Counter index of the song number along a playlist: k = 1, 2, …, K
ak The kth song in a sequence of songs, k is the step/song number in the sequence: k = 1, 2, …, K
u listener

S, s S: Set of all states, s: a state
P Transition function
R Listener reward model
T Set of terminal states (playlist of K songs)
Rs Song reward component of reward model R
Rt Transition reward component of reward model R

Feature Properties used to describe songs (e.g., loudness to describe a song).
Fs Set of all song features

Song
descriptor

Song features are quantized into nbins-percentile binary descriptors (nbins = 10 for the main results reported
here), such that the value of a given song features (e.g., loudness) for a given song is captured by a vector of
nbins-binary descriptors with the value 1 in a single entry that corresponds to the song percentile descriptor’s
value, and 0 in all other entries (see Figure 3 for illustration)

Transition
descriptor

A transition descriptor is a binary indicator corresponding to a transition from one percentile song descriptor to
another percentile song descriptor for the same feature (e.g., from 10th percentile to 5th percentile for
loudness) (see Figure 3 for illustration)

θs Vector of song descriptors
Ns Vector of song descriptor weights
θt Vector of transition descriptors
Nt Vector of transition descriptor weights

nbinss Number of percentile bins per song feature (song descriptor dimensions)
φd

s
,1 Weight in Ns corresponding to the lth 10-percentile bin descriptor of song feature d: ,,1 ,2, , , sd nbinsd d

s s sϕ ϕ ϕ!

φd
t
,1,g Weight in corresponding to a transition descriptor for a transition from the lth binary song descriptor to the gth

binary song descriptor of song feature d
zs Number of favorite songs polled during initialization
zt Number of favorite transitions polled during initialization

Feedback Listener’s feedback provided by the listener and reflects the listener’s benefit/enjoyment from the recent song
played

vk Reward after playing song ak; reward is a real number representation of the listener’s feedback
v̄k Mean of rewards for songs a1, …, ak

vk
incr Value increment used for reward model update after playing song ak

ws Update fraction for song descriptor weights
wt Update fraction for transition descriptor weights
q Planning horizon: Number of songs in the playlist used for planning

M* A subset of B percent of songs in the corpus M, with the highest song rewards Rs

B Percent of songs (used to select subset M*)
D Total number of basic features
H H d M*, representative sample of songs drawn from M* via the δ-medoids algorithm
Cs Song cost

770 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

the subsequent reward. As such, the listener’s reward model
aims to capture the individual listener’s preferences. Figure
1 illustrates the architecture of our model-based RL: at each
step, DJ-MC observes the listener’s feedback, transforms it into
a reward v, updates its listener’s reward model based on the
new reward signal v and observed state s, performs planning
using the updated model, and selects the next song (i.e.,
selects an action).

DJ-MC Modeling of Listener Reward

As noted above and illustrated in Figure 1, the listener’s
reward model is learned from real experiences with the
listener. Hence, a fundamental challenge is for the reward
model to capture effective patterns of preference that give rise
to different rewards in different contexts, but also to ensure
that learning these patterns is possible when relying on
limited experiences with the listener acquired during a lis-
tening session. These considerations are central to the design
choices we discuss here.

Toward that end, we propose to model the reward in such a
way that generalizes the experiences with the listener aggres-
sively, thereby allowing DJ-MC to use a small number of
experiences with the listener to predict the reward from songs
played in different contexts that are similar to experiences the
listener actually encountered earlier. To appreciate why ag-
gressive generalization from limited experiences is essential
in our setting, note that for a modest music corpus of 103

songs and playlist horizons of only 10 songs, the size of the
state space (of possible song sequences) is 1030. It is therefore
infeasible to actually try out any meaningful portion of the
space, let alone learn the listener’s utility for each possible
song and transition. Consequently, our goal is to generalize
preferences across similar songs and states that have been
encountered earlier in the listening session.

To achieve particularly aggressive generalization from limited
experiences, our framework includes two complementary
elements. The first is a factored and compact data represen-
tation of both songs and song transitions. The second element
is to use a linear model to capture listeners’ preferences over
the representation of songs and transitions.

Representation of Songs and
Song Transitions

The first element by which we propose to facilitate generali-
zation of preferences from limited feedback acquired during
a listening session is a factored and compact representation of
songs and song transitions. In particular, we propose to repre-

sent a song by a simple vector of song features. Conse-
quently, our approach will perform learning of preferences
over song features, rather than over individual songs.
Because songs can share similar features, this facilitates fast
generalization from actual interactions with the listener. In
the empirical evaluations that follow, songs are represented
by 34 song features corresponding to common spectral audi-
tory properties of a song, such as its rhythmic characteristics,
overall loudness, and how these characteristics change over
time.2

To further expedite generalization from limited experiences
with the listener, we also employ a sparse representation of
each song feature. The representations of songs aims to be
informative while facilitating aggressive generalization from
songs encountered in actual experiences onto similar ones.
Specifically, as illustrated in Figure 2(a), rather than represent
the point-value of a given feature for a given song, song
features are quantized into nbinss-percentile bin descriptors,
based on statistics collected over the complete music data-
base. (Given our data contains 34 features, each represented
by a 10-percentile binary descriptors, this results in 340 song
descriptors.) Toward the main results reported in this paper,
we used nbinss = 10. Thus, the value of a given song feature
(e.g., loudness) for a given song is captured by a vector of 10
binary descriptors with the value 1 in a single descriptor that
corresponds to the song 10-percentile feature value, and 0 in
all other entries. The binned representation of features allows
aggressively generalizing from experiences across songs with
similar (not identical) feature values. Below we will revisit
how this representation of song features is operationalized to
represent song transitions.

DJ-MC’s Internal Model of a
Listener’s Preferences

DJ-MC’s internal listener reward model aims to predict a
listener’s preferences and is thus a mapping between any song
played at any given time onto the reward DJ-MC is likely to
receive. Perhaps the most critical design choice we propose
to support fast generalization of this model from actual
experiences is the kind of mappings we consider for this
model.

2Note that while the particular features ought to be informative to enable
learning, they are independent of the framework we develop to learn and
adapt to the listener’s preferences. Consequently, our DJ-MC framework can
apply with different and potentially more informative features.

MIS Quarterly Vol. 43 No. 3/September 2019 771

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

(a) Song feature representation: Each song feature is represented
by nbinss descriptors, each of which is a binary percentile bin, indi-
cating whether or not the feature value maps to the corresponding
percentile

(b) Song transition representation. Matrix of transition descriptors
corresponding to a transition from one percentile bin descriptor to
another for a given feature l.

Figure 2. Illustration of Song Percentile Bin Descriptions (a) and Transition Descriptors (b)

Despite a rich literature on the psychology of human musical
perception (Tan et al. 2010), there is no canonical model of
the human listening experience to be used for our listener
reward model. We thus lean and update a listener preference
model from the data acquired during a listening session. In
particular, we propose to represent listeners’ preferences by
a simple, linear model such that fewer parameters must be
learned, thereby reducing the risk of over-fitting. The rela-
tionship between model complexity and the amount of
training data required for producing accurate predictions is
explained by bias–variance tradeoff in data-driven learning
(Hastie et al. 2009). In particular, when induced from small
amounts of training data, complex models tend to exhibit high
estimation variance and thereby larger estimation (prediction)
error; this is because a limited training data set is unlikely to
be representative of the rich set of patterns that can be cap-
tured by the (complex) model, and thus a highly expressive,
complex model tends to overfit the atypical patterns in the
data (Hastie et al. 2009). By contrast, simpler models tend to
generalize better from small training sets because of their
limited ability to fit the training data well. We revisit and em-
pirically validate this design choice in the evaluation section.

To yield a simple representation of listeners’ preferences we
model a listener’s reward R(s, a) as the sum of two compo-
nents: (1) the listener’s preference over songs, Rs: A ÷ ú,
and (2) the listener’s preference over transitions from the
sequence of songs thus far onto the new (next) song, Rt: S ×
A ÷ ú. Thus: R(s, a) = Rs(a) + Rt(s, a).

We define the rewards from playing the current song, Rs, as
a linear function of the song’s percentile bin descriptors: each
song descriptor contributes independently to the listener’s

utility from the song. In this linear representation, each song
descriptor is associated with a corresponding weight, re-
flecting the pleasure the listener derives from songs with that
descriptor active, giving rise to a weight vector for listener u
denoted by Ns(u). The reward from playing an individual
song a for listener u is thus given by Rs(a) = Ns(u) @ θs(a),
where θs(a) denotes the vector capturing all the descriptors for
song a. Thus, the weight vector Ns(u), is learned separately
for each individual listener u, and captures the listener’s song
preferences (i.e., how different descriptors contribute to the
listener’s reward).

A main premise of this work is that a listener’s pleasure also
depends on the sequence in which songs are played, and we
will later explore whether listeners’ experiences can be
improved if these preferences are learned and adapted to.
Following the discussion above, we represent a listener’s
preferences for song transitions via a simple linear mapping
so as to render generalization effective, given limited experi-
ences with listeners during a listening session.

We capture a listener’s pleasure from a sequence by repre-
senting preferences as depending on the transition from the
complete sequence listened to so far, onto the current song.
In particular, at a given state s, representing the sequence of
songs played thus far (a1, …, ak-1), the reward derived by the
listener from transitioning to a new song ak is represented by
the sum of utilities derived from the transition between each
of the songs played thus far in the sequence and the current
song, ak : Rt(s, ak) = Rt ((a1, …, ak-1), ak) = ,()2

11
1 ,k

t k i ki i r a a−
−=Σ

where rt (ai. aj) denotes the listener’s utility from listening to
song aj sometime after having listened to song ai. Impor-

772 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

tantly, in the expression above, a song ak-1 (played i songs
earlier in the sequence) has a probability of of affecting1

i

the transition reward (i.e., being “remembered”); in addition,
a song’s impact on the reward from playing the next song
decays over time, and is reflected by a second factor of 1

i

(thereby yielding the term). Having a decaying effect on2
1
i

the reward by songs played earlier in the sequence is inspired
by known properties of human perception (i.e., by the
stochastic dependence on remembering earlier events, and
evidence of working memory having greater emphasis on the
present) (Berz 1995; Davies 1978; Tan et al. 2010).

To facilitate generalization of transition preferences from
limited training experiences, we use a simple linear form to
represent the utility from a transition, rt (ai. aj). In particular,
for each individual listener, the utility from a transition, rt (ai.
aj), is modeled as a linear function: rt (ai. aj) = Nt (u) @ θt (ai.
aj), where θt is a binary vector of the transition descriptors,
and Nt(u) is a listener-specific weight vector reflecting prefer-
ences over the transition descriptors. The transition prefer-
ences parameters of Nt (u) are learned afresh when adapting to
an individual listener in a given context.

Similar to our representation of songs discussed above, to
further facilitate generalization, the descriptors used to repre-
sent transitions follow the same compact representation used
to represent song descriptors. Specifically, as illustrated in
Figure 2(b), for each auditory song feature (e.g., loudness),
the corresponding transition descriptor matrix θt captures a
transition between one 10-percentile bin descriptor for this
auditory feature to another. Thus, given nbinss descriptors
used to represent each song feature, there are nbinss² transition
descriptors representing the transition for each song feature.
In the empirical evaluations that follow, for each feature, there
are 100 (10 × 10) transition descriptors, each reflecting the
possible transition between one 10-bin song descriptor to
another of the same feature, and where only one has value 1.
As in the case of songs, our use of binary values over bins
instead of real-values allows DJ-MC to more aggressively
generalize preferences across similar transitions.

Finally, recall that our representation of transitions is linear
with few parameters, hence it does not capture other possible
dependencies, such as the joint dependence of a listener’s
pleasure from transitions between different song descriptors
(such as transitions between a certain percentile of loudness
and a percentile of pitch dominance). Yet, such dependencies
are likely to be informative. As discussed earlier and ex-
plored empirically later on, a complex reward model, even if
it can better approximate the true complexities underlying
listeners’ preferences, is unlikely to be learned effectively

from a limited number of actual experiences with the
listeners. We will later examine this question empirically.

Reinforcement Learning of a
Playlist Generation Policy

In this section, we discuss DJ-MC’s reinforcement learning so
as to adaptively personalize a listener’s playlist while inter-
acting with the listener. The DJ-MC design includes two major
elements: online learning of the listener reward model
parameters (Ns and Nt) and then planning a sequence of songs
to play based on the learned preferences.

DJ-MC begins with an initialization of the listener reward
parameters before learned preferences are available for
playlist planning and production. Initialization occurs only
once, at the beginning of the session. As we will see below,
in simulation we let users specify an initial list of songs they
enjoy. We later show that this initialization step also can be
replaced by random exploration by DJ-MC to yield effective
adaptation to listeners. The next phase, learning on the fly,
enables DJ-MC to sequentially update and improve its listener
reward model parameters after each interaction with the
listener. Planning of the playlist based on the learned prefer-
ences corresponds to the selection of the next song to play in
the sequence at each step. Below we describe DJ-MC’s
initialization, learning on-the-fly algorithm, and the planning
for playlist generation. The complete learning pseudocode is
outlined in Algorithm 5.

Initialization for Song and
Transitions Preferences

Recall that the weight vectors for song and transition descrip-
tors, Ns(u) and Nt(u), aim to capture the listener u’s song and
transition preferences, and it is used to guide DJ-MC’s inter-
actions with the listener. As is the case in any online learning
framework, it is necessary to determine how the agent inter-
acts initially with its environment; in our setting, we initialize
the model to determine what songs DJ-MC initially plays and
on which it receives the listener’s feedback during its initial
interactions with the listener. In this section, we describe how
the listener’s reward model is initialized in the simulation
studies; in the empirical evaluations we describe a simpler
form of initialization that was used in the experiments with
human listeners.

The reward model’s song weights are first initialized such that
the weights corresponding to all descriptors (percentile bins)
for the same feature (e.g., loudness) are uniform and sum to

MIS Quarterly Vol. 43 No. 3/September 2019 773

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Algorithm 1. Initialize Song Preferences Rs

Input M: Song corpus to play to listeners,
Mθ: All songs in M, each song ai represented via a vector of song descriptors θs(ai)
zs: Number of preferred songs to be provided by listener
nbinss: Number of percentile bins per song feature

1. Initialize all song weights in Ns to
s s

i
z nbins+

2. preferredSet = (preferred songs chosen by the listener from M){ }1, ,
sza a!

3. for i =1 to zs do:
4. () ()1

s s
s s s iz nbins

aφ φ θ
+

= + <

5. end for
6. Return: Ns

1: each element of Ns(u) is initialized to 1/(zs + nbinss). The
listener is then asked to select zs favorite songs from the
corpus M. For each favorite song, a, the weight in Ns(u)
associated with each relevant descriptor bin corresponding to
song a is incremented by 1/(zs + nbinss). Once the initiali-
zation is complete, the sum of weights corresponding to all
descriptors of song feature d is 1:

,1
1: 1s ss

s s

z nbinsnbins d
s sl z nbinsd F ϕ +

= +∀ ∈ Σ = =

where Fs is the set of all song features, and is the weight,1d
sϕ

in Ns corresponding to the lth binary descriptor of song feature
d. The pseudocode for DJ-MC’s initialization is shown in
Algorithm 1.

DJ-MC’s initialization for song transition preferences,
described in Algorithm 2, also begins with a uniform weight
for all transition descriptors. Specifically, for each song
feature, the weight corresponding to each transition from
descriptor (bin) i to descriptor j of the same song feature,

denoted by is first initialized to 1/(zt + (nbinss)²),
, ,d i j

tϕ
where zt is the number of transitions queried and (nbinss)² is
the number of transition descriptors corresponding to each
song feature.

The listener is then polled for transition preferences. Given
the large space of possible transitions, to make the choice
simpler for the listener, DJ-MC first draws a subset H of songs
that represents the variety of the transition space efficiently.
Specifically, DJ-MC considers 50% of the songs M* in corpus
M with the highest song rewards Rs based on its reward
model, and then draws a representative sample H from M* via
the δ-medoids sampling algorithm (Liebman, Chor, and Stone

2015). The δ-medoids algorithm, designed specifically for
music domains, draws a representative sample of songs, such
that no song in the corpus is more than a parameter δ away
from a sampled song. In any specific setting in which DJ-MC
will be applied, the sample size for H can be controlled by the
parameter δ. In our simulation experiments, δ was set to be
the 10th percentile of the distance histogram between all pairs
of songs in M*. To initialize the listener’s transition weights
in the reward model, DJ-MC first selects a song uniformly at
random from H (line 5), and then sequentially queries the
listener zt times about which song ai 0 H she would like to
listen to next, so as to produce a sequence of zt transitions
(lines 6–7). In the simulation studies we identify the song the
listener chooses next by simulating the listening experience,
including the nondeterministic history-dependent transition
reward, and choosing the one with the largest reward. DJ-MC
then updates the weight for the selected transition by in-
creasing the corresponding transition weight by 1/(zt +
(nbinss)²),. Once the initialization is complete, the sum of
weights of all transitions from one song percentile (bin)
descriptor to another for a given song feature d is 1. Note that
this form of initialization is suitable when the listener has
some familiarity with the song in H.

Online Learning of Sequential Preferences:
Learning-By-Doing

To learn while interacting with the listener during a listening
session, DJ-MC plays songs and iteratively updates the cor-
responding songs and transition parameters Ns and Nt
according to the listener’s feedback. The pseudocode for DJ-
MC’s online learning algorithm is presented in Algorithm 3.
Specifically, at each step k, song ak is played, after which DJ-
MC observes the listener’s feedback. As we note earlier, the
listener’s feedback, which reflects the listener’s enjoyment,

774 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Algorithm 2. Initialize Transition Preferences
Input M: Song corpus

zs: Number of transitions to poll the listener
(nbinss)²: Number of transition weights per feature
Rs: Initial song preference weights (obtained by Algorithm 1)

1. Initialize all transition weights in Nt to 1/(zt + (nbinss)²)
2. Select upper median of M, M*, based on Rs
3. δ = 10th percentile of all pairwise distances between songs in M
4. Representative set of songs H = δ-medoids (M*)
5. song0 ² draw a song uniformly at random from H
6. for i = 1 to zt do (query the listener which song she likes to listen to next)
7. song0 ² chosen by the listener from H
8. () ()2

1
1,

t s
t t t i iz nbins

song songφ φ θ −+
= + <

9. end for
10. Return: Ns

can take different forms, such as a real number score or a
like/dislike signal, which is later mapped to a real number,
reward. In the evaluations below, when the listener feedback
is a real number, it is also used as the corresponding reward
v. Otherwise, in settings where the listener provides feedback
in the form of like/dislike signal, this feedback is mapped to
a numeric reward of value +1 or 0, respectively.

After each song ak is played, two elements determine the
magnitude and direction of change in the reward model
parameters corresponding to the ak’s song and transition
descriptors. First, we aim to use listener feedback to revise
the weights of the model in the direction of the feedback
signal. Such an update aims to increase weights corre-
sponding to song and transition descriptors that the user
marked as favorable (positive feedback), and decrease
weights corresponding to song and transition descriptors of
songs and transitions that the user did not find favorable
(negative feedback). Further, because we aim to generalize
from feedback quickly, it is desirable for the update to be
more aggressive the more unusual the reward is (i.e., the
farther the signal is from the reward expectation). Assuming

the average of rewards thus far is the maxi-()
1

1
1 1

k
iv

k k
v

−Σ
− −=

mum likelihood estimate for the reward expectation, and the

reward for the recently played song is vk, the ratio cap-
1

k

k

v
v −

tures how different the recent reward is relative to the
maximum likelihood reward expectation. Formally, we
define the reward increment after receiving reward vk as

, thereby capturing both the direction and()1
log kvk

inc v k
v

−
=

magnitude of the recent reward relative to expectation. Thus,
the incremental reward is negative if andk

incv 1k kv v −<
positive otherwise; similarly, the reward increment magnitude
is greater the farther the reward vk is from the average reward
v̄k-1. Consequently, a song is less likely to be played if the
song and resulting transition are similar to songs and
transitions played previously and which received (larger)
negative rewards.

The second element determining how parameters of the
reward model are updated is the proportion of the listener
reward attributed to either songs or transitions. Specifically,
it is possible that a listener provides a single feedback
reflecting her overall enjoyment from the recent song and
transition together; thus, DJ-MC will aim to attribute a propor-
tion of this reward to the song being played and the remaining
proportion to the enjoyment from the transition from the
sequence thus far onto the current song. The proportion of
reward DJ-MC attributes to the song and transition is propor-
tional to the ratio between song and transition reward to the
total reward, as predicted by DJ-MC’s internal listener reward
model, as in a maximum likelihood estimate. Concretely, let
Rs(ak) and Rt(ak-1, ak) be the expected song and transition
rewards yielded by DJ-MC’s reward model, respectively.
Thus, the update of weights capturing the proportion of
reward attributed to the song and transition is given by

 and ,()
() ()1,

s k

s k t k k

R a
s R a R a a

w
−+

= ()
() ()

1

1

,
,

t k k

s k t k k

R a a
t R a R a a

w −

−+
=

respectively.

Finally, the model updates (lines 5 and 6 in Algorithm 3)
employ the common practice of updating the model with an

MIS Quarterly Vol. 43 No. 3/September 2019 775

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Algorithm 3. Model Update
Input Song ak

k: step/song number in the sequence
vk: reward received after playing ak
v̄k = average({v1, …, vk-1})
Current reward model R (with parameters Ns, Nt)

1. ()log /k
k kincv v v=

Reward model update:

2.
()

() ()1,
s k

s k t k k

R a
s R a R a a

w
−+

=

3.
()

() ()
1

1

,
,

t k k

s k t k k

R a a
t R a R a a

w −

−+
=

4. 1
1 1,k k

s s s s inck k w vφ φ θ+ += + < < <

5. 1
1 1,k k

t t t t inck k w vφ φ θ+ += + < < <

6. For each song and transition feature, normalize the descriptor weights corresponding to each song feature and
each feature transition, such that they add up to 1, as follows:

, ,,1

, ,,
1 1 1

, ,,: . : , , 1,2, , :
d l gd

s t
nbins nbins nbinss s s d i jd i

s si i j

d l gd l
s s s s s td F d F d F l g nbinsϕ ϕ

ϕ ϕ
ϕ ϕ

= = =

∀ ∈ = ∀ ∈ ∀ ∈ ∀ = =
¦ ¦ ¦

!

7. Return: updated reward model parameters: Ns, Nτ

attenuating learning rate proportional to the number of songs
played thus far. This procedure guarantees convergence over
time (i.e., as k ÷ 4: 1/(k + 1) ÷ 0 and . However, more
importantly, for short playlists considered in this paper, this
update step simply yields a continuous change in balance
between updating the model based on new and potentially
noisy individual feedback (the listener’s feedback to the last
song played), and how much we trust the current reward
model, which already reflects all past experiences with the
listener (prior songs played and corresponding feedback). In
particular, after each song, the current model weights are
reweighted by a factor of , whereas the update step based1

k
k+

on the new feedback is weighted by a factor of . As a1
k

k+
result, in the early learning stages the model update is more
heavily affected by new experiences than later on, when more
experiences with the listener have been captured by the
model. Finally, after each update, the weights for all features
are normalized so they sum up to 1.

Planning: Exploring and Assessing the Long-
Term Value of Different Songs to Play Next

Because DJ-MC simultaneously learns and acts, it has two
goals for selecting the next song: the first is to explore,

namely, try out different songs to explore the listener’s prefer-
ences; a second goal is to exploit its current knowledge of the
listener’s preferences, so as to select a song that will yield a
higher cumulative reward.

To explore the listener’s preferences, DJ-MC simulates dif-
ferent random sequences, and it exploits its knowledge by
using its listener reward model to select the song that yields
the highest long-term value. Toward both goals, a variant of
Monte Carlo tree search (MCTS) proposed by Urieli and
Stone (2013) serves as a particularly suitable heuristic frame-
work for the problem in our setting. Importantly, MCTS is a
general framework that allows us to explore the space of
actions to take, and which does not require an explicit, evalua-
tion function to assess their values; namely, in our context, it
does not require a function that computes in closed-form the
(long-term) value of playing a given song next. Thus, to
quickly explore alternative courses of action, MCTS is used
to execute simulations that yield plausible song sequences,
multiple times. These sequences are referred to as Monte
Carlo rollouts. DJ-MC then selects the next song that is fol-
lowed by advantageous sequences in expectation (i.e., rollouts
that yield higher cumulative reward as estimated by the
current listener reward model).

DJ-MC’s playlist planning algorithm is shown in Algorithm 4.
For planning, DJ-MC considers a subset of B percent of the

776 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Algorithm 4. DJ-MC Planning via Tree Search
Input Song corpus, M

planning horizon q
Current preference model R (with parameters Ns, Nτ)
Currently played song song0 Z ak
B: percent of songs from corpus M to use in planning

1. Select a set of B percent of songs from M, M*, with the highest song reward Rs
2. BestTrajectory = null
3. HighestExpectedPayoff = –4
4. While computational power not exhausted do:
5. trajectory - []
6. for i = 1 to q do:
7. songi ² selected randomly from M* (avoiding repetitions)
8. add song to trajectory
9. end for

10. expectedPayoffForTrajectory = =() ()() ()()1 1
2

, , ,
q

s i t i i s i
i

R song R song song song R song−
=

+ +¦ !

11. if expectedPayoffForTrajectory > HighestExpectedPayoff then
12. HighestExpectedPayoff = ExpectedPayoffForTrajectory
13. BestTrajectory = trajectory
14. end if
15. end while
16. Return: First song in BestTrajectory

songs corpus with the highest song rewards, based on Rs (line
1 in Algorithm 4). This reduction in the song space increases
the likelihood of selecting an enjoyable song (although it
might not improve the likelihood of identifying an enjoyable
sequence and transitions). To identify the next song likely to
produce enjoyable sequence thereafter, DJ-MC follows the
MCTS framework and simulates possible song sequences. At
each step, DJ-MC simulates a trajectory of q songs selected at
random from the top B percent of songs with the highest song
rewards (lines 6–9) and computes the expected reward (line
10) for the resulting trajectory based on the current listener
reward model. Following the general MCTS framework, DJ-
MC repeats this process until it is either interrupted by a
request for the next song to play, or otherwise has exhausted
its computational budget of how many sequences to explore.
DJ-MC then identifies the song followed by the trajectory that
yields the highest expected reward of those explored thus far
(lines 11–14). Importantly, because the listener’s preferences
as reflected by the reward model continuously improves with
more experience with the listener, DJ-MC selects only the first
song of the most promising trajectory to be the next song
played, rather than using the entire trajectory as the complete
playlist. After each step, DJ-MC re-plans the playlist, using an
increasingly better listener reward model to produce the
remaining playlist. Toward the main results in this paper, the
planning horizon (number of songs in the sequence) for the

simulated sequences during planning is q = 10. In addition,
B = 50% for the main results reported below. We later
explore DJ-MC’s performance with different values for q and
B. Algorithm 5 presents the complete pseudocode for DJ-
MC‘s architecture.

DJ-MC Evaluation

We evaluate DJ-MC’s performance both in simulation and in
an experiment with human listeners. The evaluations aim to
first establish whether DJ-MC’s design, particularly its internal
listener model, song and song transition representations, and
learning and adaptation algorithms, facilitates DJ-MC’s adapta-
tion to listeners’ transition preferences exclusively based on
online experiences. We will also explore whether DJ-MC’s
simple internal listener model benefits online adaptation rela-
tive to an alternative, more complex model that reflects
listeners’ true preference patterns.

Second, note that the feasibility of learning and adapting to
listeners’ sequential preferences is also necessary in order to
establish whether the adaptation yields better experiences for
listeners. This result is important to inform the potential
benefit from future research efforts to improve online adapta-

MIS Quarterly Vol. 43 No. 3/September 2019 777

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Algorithm 5. The DJ-MC Framework
Input M = song corpus

q = planning horizon
zs = number of songs used for song preference initialization
zt = number of songs used for transition preference initialization
nbinss = number of percentile bin descriptors per song feature
nbinst = number of percentile bin descriptors per transition feature
B: percent of top songs to use during planning

1. Call Algorithm 1 (with M, zs, nbinss) to initialize song weights Ns
2. Call Algorithm 2 (with M, zt, nbinst, Ns) to initialize transition weights Nt
3. k = 0
4. While listener requesting another song (listening session continues) do:
5. k = k + 1
6. Select the next song: ak } Run Algorithm 4 (with M, q, R, current song playing song0 } ak, B)
7. Obtain listener feedback after listening to song ak, represent feedback as real number reward vk, and

compute average reward thus far v̄k
8. Update reward model R’;s parameters: Ns, Nt } Run Algorithm 3 (with ak, k, vk, v̄k, Ns, Nτ)
9. End while

tion of listener’s temporal preferences, and from similar
efforts to improve the personalization of other digital services.

Data on songs were derived from the Million Song Dataset—
a publicly available collection of audio features and metadata
for a million contemporary music tracks. The dataset includes
songs by 44,745 different artists and 106 different tracks.
Recall that our design includes a compact song representation,
such that songs are factored as a vector of descriptors,
reflecting the spectral fingerprint of the song, its rhythmic
characteristics, its overall loudness, and their change over
time. In this study, we used common acoustic features
available in the Million Song Dataset (Bertin-Mahieux et al.
2011) to extract 12 meta-features, out of which two features
are 12-dimensional, resulting in 34 features. The complete set
of features is summarized in Table 2. Specifically, the first
feature is the 10th percentile of beat durations in the song.
Loudness was obtained directly from amplitude. Pitch domin-
ance weights each of the 12 possible pitch classes based on
their average presence in a song over time. Timbre weights
correspond to the average weights of the 12 basis functions
used by the Echo Nest analysis tool to capture the spectro-
temporal landscape of the song.

Evaluations in Simulation

We begin with an empirical evaluation of DJ-MC in simula-
tion. To produce simulated listeners, we extracted song
transition data from a real playlist archive, collected by
Berenzweig et al (2004) that reflects playlists produced by
real listeners “in the wild.” Berenzweig et al. gathered 29,000

playlists from The Art of the Mix (www.artofthemix.org), a
repository for playlist hobbyists. This corpus is appealing for
listener modeling because the playlists were generated by
individual users, rather than a commercial radio DJ or a
recommendation system.

We used the above playlist sources to generate listener
models for the simulation studies.3 To produce listener
models, we first produce different listener types by generating
10 playlist clusters via k-means clustering over the playlists,
where each playlist is represented as an artist-frequency
vector. A listener is generated by first drawing at random the
cluster to which the listener belongs, followed by sampling
70% of the song transition pairs in that cluster to represent the
listener’s songs and transitions preferences. Algorithms 1 and
2 are then applied to the sampled songs and transitions to fit
the listener’s reward model. This process yields simulated
listeners with linear preference patterns as those used
internally by DJ-MC to model listeners.

The feedback provided to DJ-MC by a simulated listener is a
(real number) score, produced by the simulated listener’s
reward model.

Because prior work had not proposed a general framework for
adaptation of playlist transition preferences during a listening
session to fit a listeners’ preference in a given current context,

3Recall, that the representation of songs (e.g., the spectral properties, etc.) is
available from the Million Songs dataset. Thus, for the construction of simu-
lated listeners, we used a playlist only if the Million Songs dataset includes
a representation for at least one pair of consecutive songs in the playlist.

778 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Table 2. Features Used for Song Representation
(Tempo Data is based on beat durations)

Features Features Indices
10th and 90th percentiles of tempo 1, 2
Average and variance of tempo 3, 4
10th and 90th percentiles of loudness 5, 6
Average and variance of loudness 7, 8
Pitch dominance 9–20
Variance of pitch dominance 21
Average timbre weights 22–33
Variance in timbre 34

in the empirical evaluations that follow we aim to establish
DJ-MC’s ability to learn listeners’ playlist preferences from
online experiences, and we evaluate DJ-MC’s robustness when
listeners have different and more complex preference patterns
than those assumed internally by DJ-MC. We also aim to
assess whether DJ-MC’s account for sequential preferences can
improve listeners’ experience relative to an approach that
learns and adapts the playlist to include songs the listener
enjoys the most, irrespective of their order. We will then
explore the robustness of DJ-MC’s simple listener reward
model by evaluating whether it yields better playlists than an
alternative design that brings to bear complex patterns of
preferences.

To establish whether adapting to a listener’s sequential prefer-
ences is beneficial we compare DJ-MC with two alternative
baselines: a GREEDY, adaptive approach that learns the lis-
tener’s preferences online as well, but that chooses to play the
song with the highest song reward, and a RANDOM approach.
Consequently, because it does not account for transition
preferences, the GREEDY alternative may not play a song that
is less desirable to a listener in order to produce a more
desirable sequence. We compare both approaches to a bench-
mark that simply chooses songs uniformly at random.

As noted in the introduction, because songs are the primary
factor that affect listeners’ experiences and their enjoyment,
GREEDY is expected to yield high song rewards for listeners.
We will therefore aim to evaluate whether DJ-MC is able to
capture listeners’ sequential preferences in addition to song
preferences, and whether these differential preferences yield
a statistically significant improvement in the listener’s experi-
ence over the GREEDY approach.

Finally, in each experiment, a 1000-song corpus was drawn
at random from the Million Song Dataset to serve as the song
corpus. For initializing song and transition rewards we use
Algorithms 1 and 2, and poll listeners for 10 songs (zs = 10)

and 10 transitions (zt = 10). For Algorithm 4, we set a
planning horizon of q = 10, and a computational budget of
10,000 rollouts. In the experiments with human listeners, dis-
cussed below, the time between songs was used to produce
and evaluate rollouts.

Results

Figure 3 presents the reward histogram obtained by the DJ-MC,
GREEDY, and RANDOM approaches after 10 and 30 iterative
steps, where a step refers to one pass in the loop beginning in
line 5 of Algorithm 5 (i.e., selecting and playing a song,
receiving the listener’s feedback, and updating the listener
model). As shown, DJ-MC achieves significantly better
rewards for users than both the GREEDY and the RANDOM
playlists and the differences are statistically significant at p
<< 0.01. Specifically, DJ-MC yields higher rewards after 10
steps, demonstrating that it is able to learn early on differ-
ential preference patterns than those exploited by GREEDY,
which does not capture sequential preferences; these results
also establish that DJ-MC effectively plans desirable song
sequences based on these differential preferences.

A Feature-Dependent DJ-MC

In this section, we aim to establish whether having a simple
linear reward model is indeed more beneficial toward
generalization from limited experiences than a more complex
model. The question we aim to answer next is whether DJ-
MC’s performance is undermined relative to its performance
with a listener reward model that reflects the true complex
patterns underlying listeners’ preferences, and, if so, how
much is lost.

In the next experiment, simulated listeners are such that their
reward is derived from the joint distributions of pairs of fea-

MIS Quarterly Vol. 43 No. 3/September 2019 779

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Figure 3. Cumulative Reward Histogram after Playing 10 (a) and 30 (b) Steps, with Listeners Based on
Real Playlist Data (DJ-MC outperforms the RANDOM and greedy approaches p << 0.01))

tures. As before, we let a listener’s reward model R be given
by R(s, a) = Rs(a) + Rt(s, a). However, a listener’s enjoyment
is mapped from the joint distribution of each feature-pair, in
a 10 × 10 grid partitioned by the 10th percentiles of each
feature. Enjoyment from the transitions is similarly repre-
sented by the transitions between feature-pair bins. Thus, the
indicator and weight vectors Nt, θt are defined over feature
pairs rather than over independent features. Formally, Rs(a)
= Ns(u) @ θs(a) and Rt(s, an) = Rt((a1, …, an-i), an) =

 with rt(ai, aj) = Nt(u) @ θs(ai, aj) as()2
11

21 ,n
n i ni j r a a−

−=Σ
before. Simulated, feature-dependent listeners were generated
by drawing 30 pairs of features at random, while ensuring that
each of the original 34 features are selected at least once.
Subsequently, (30 × 10 × 10) song weights are assigned to the
100 bins per feature pair, reflecting a random draw of a
listener’s preferences for songs. Similarly, 30 × 10² × 10²
transition weights are assigned to the 10,000 bins per feature-
pair transition, reflecting the corresponding listener’s prefer-
ences for song transitions.

We now compare DJ-MC’s performance to that of a DJ-MC
variant, DJ-MC-DEPENDENCY, with a listener reward model
structure that matches the preferences of the more complex,
simulated listeners. Specifically, DJ-MC-DEPENDENCY’s
reward model matches the pairwise feature dependencies used
to represent the reward of the simulated listeners: DJ-MC-
DEPENDENCY thus learns 10 × 10 weights per feature pair and
10² × 10² weights per feature pair transition. Because it is
unknown which k feature pairs are active for a given listener,
DJ-MC-DEPENDENCY learns the complete set of (561) feature

pairs. The reward histograms are presented in Figure 4.4 As
shown, DJ-MC outperforms DJ-MC-DEPENDENCY and both DJ-
MC variants outperform the GREEDY and the RANDOM alter-
natives. These results establish that DJ-MC’s simple, linear
reward model contributes to its robust performance and to its
ability to generalize from limited experiences with the
listener. DJ-MC-DEPENDENCY’s attempt to learn a complex
model from very limited number of experiences leads to over-
fitting of its interaction with the listener, thereby undermining
DJ-MC-DEPENDENCY’s planning of song sequences. Because
DJ-MC generalizes simple predictive patterns of listeners’
sequential preferences, it is able to achieve better prediction
of rewards sooner, within 10 learning experiences. A simple
representation of listeners’ preferences is thus instrumental to
effective learning of and adaptation to a listener’s contextual
preferences in real time.

Evaluation with Human Listeners

We now evaluate DJ-MC’s performance with human listeners
whose preferences are unknown, potentially heterogeneous,
and can be arbitrarily complex. In this experiment, we ex-
plore two questions. First, we aim to establish whether the
listener’s experience is affected at all by sequences: if human
listeners’ experiences are unaffected by the sequence in which

4Note that the feature-dependent reward values are smaller than the rewards
of the simpler model reported earlier. This is an artifact of scaling the model
weights so that they sum up to 1.

780 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

(a) Reward Histogram After 10 Steps (b) Reward Histogram After 30 Steps

Figure 4. Cumulative Reward Histograms After 10 and 30 Steps, with Feature-Dependent Listeners (DJ-
MC yields higher rewards (p << 0.01))

songs are played, we expect listeners to attribute random
rewards o different transitions, and it would not be possible to
induce predictive patterns for transition preferences. By
contrast, if sequences do matter and if DJ-MC is able to learn
these preference and use them effectively to plan playlists,
then DJ-MC will exhibit better listener rewards. Should DJ-
MC’s design enable adaptation to a human’s unknown and
arbitrarily complex sequential preferences, this will also offer
further evidence of the robustness of DJ-MC’s design. Second,
the experiment with human listeners also aims to explore the
transition and song rewards to understand whether DJ-MC
trades off between playing songs a listener enjoys and
choosing songs that yield enjoyable transitions.

We evaluated DJ-MC in a lab experiment with 47 graduate
students at the McCombs School of Business at the University
of Texas at Austin. The song corpus included songs from the
Million Song Dataset that also appeared in the Rolling Stone
Magazine’s list of 500 greatest albums of all time.5 Each
participant interacted with a playlist generator that was based
on either DJ-MC or GREEDY. The participants were randomly
assigned into one of two groups: 24 participants interacted
with the GREEDY approach and the remaining 23 interacted
with DJ-MC. Each session began with the RANDOM approach,
playing 25 songs drawn at random.

To keep the duration of the experiment reasonable, each song
was played for 60 seconds before transitioning (with a cross-
fade) to the next song.6 After each song, participants were
asked whether they liked or disliked the song as well as the

transition to it, and provided this feedback by clicking on a
like/dislike button, in a graphic user interface. Before the
experiment began, each participant received individual
guidance on how to use the interface and practiced using the
interface to provide feedback on several songs to ensure
correct usage of the interface. The listener’s feedback of a
“like” signal for either transition or song was represented by
DJ-MC as a reward, and “dislike” feedback was represented as
a 0 reward.

As noted above, listeners provide separate feedback signals
for song and song transition enjoyment in order to later
explore tradeoffs done by DJ-MC between satisfying listeners’
song and transition preferences. However, as before, DJ-MC
receives only a single, unified reward, representing the lis-
tener’s overall enjoyment. In the simulation studies, initiali-
zation was done following Algorithms 1 and 2, where the
listener is polled for 10 songs she enjoys; however, initiali-
zation can also be done by initially exploring the space of
songs and transitions uniformly at random. Indeed, to expe-
dite the experiments in the lab with human listeners, once the
listener’s reward model weights were set to a uniform value
(indicating all songs and transitions are equally enjoyable),
initialization of songs and transitions were done by playing a
sequence of 25 songs drawn uniformly at random, and up-
dating the listener model based on the listener’s feedback
after each song. Online learning and adaptation of the learned
model then followed for an additional 25 songs. Finally, the
Monte Carlo rollouts and their evaluations for selecting the
next song were done during the time the current song was
being played, without imposing the computational budget
used in the simulations.

To estimate the distribution for hypothesis testing we applied
bootstrap resampling and estimated the empirical bootstrap
distribution of the sample mean rewards produced by each ap-

5http://www.rollingstone.com/music/lists/500-greatest-albums-of-all-time-
20120531

6As described earlier, the song features were derived from the entire song.
In principle, it is possible that better results for DJ-MC can be produced if song
features are derived from only the first 60 seconds to which users listened.

MIS Quarterly Vol. 43 No. 3/September 2019 781

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Figure 5. Histogram of Cumulative Song Rewards for RANDOM, GREEDY, and DJ-MC (Rewards after 25
steps; 25 songs played)

proach (for details on the bootstrapping procedure, see Efron
1979; Good 2006). Following the bootstrap method, the
empirical bootstrap distribution of the aggregate reward is
constructed for each approach by resampling the participants
of the corresponding approach with replacement. Given a
bootstrap estimate’s accuracy increases with more bootstrap
samples, the process was repeated N = 10,000 to produce the
bootstrap distribution of the sample mean.

Figure 5 presents the histogram of human listener rewards
achieved by the DJ-MC, GREEDY, and RANDOM approaches.
When adapting to human listeners, DJ-MC produces a higher
average reward than either GREEDY or RANDOM, and this
improvement is statistically significant at p << 0.05. DJ-MC’s
performance demonstrates that DJ-MC’s architecture indeed
facilitates effective online adaptation to human listeners,
whose preferences are likely to be both heterogeneous as well
as arbitrarily complex relative to DJ-MC’s internal represen-
tation of listeners’ preferences. DJ-MC’s superior rewards also
suggest that human listeners’ experiences are affected by the
sequence in which songs are played. Recall that while
GREEDY plays songs that it predicts will produce the highest
reward, irrespective of the ensuing transitions, DJ-MC might
trade off a high song reward to offer a more enjoyable
sequence, or vice versa. We therefore examine whether DJ-
MC achieves its advantage at the possible expense of lower
song rewards, or whether it achieves higher song reward than
does GREEDY, implying that DJ-MC’s advantage cannot be
attributed to its adaptation to listeners’ sequential preferences.

We examined the transition rewards and song rewards
obtained by each approach, separately. Recall that during the
first 25 steps, both GREEDY and DJ-MC randomly explore the
song space, and hence will achieve comparable song and
transition rewards. Figures 6(a) and 6(b) confirm that the

song and transition reward histograms for the two approaches
yield comparable rewards at this phase. Figures 6(c) and 6(d)
present the cumulative song and transition reward distribution
during the learning and adaptation phase, when the ap-
proaches differ in the songs and sequences they choose to
play to listeners. As shown in Figure 6(c), DJ-MC and GREEDY
yield comparable song rewards; thus, the observed differences
in their overall performance can be attributed exclusively to
DJ-MC’s modeling of listeners’ transition preferences. Impor-
tantly, Figure 6(d) demonstrates that DJ-MC achieves higher
transition reward than GREEDY, and this difference is statis-
tically significant (p << 0.01).7 These differences in transition
rewards demonstrate that DJ-MC’s learning and adaptation to
human listeners’ transition preferences yields more enjoyable
sequences, and this advantage does not come at the expense
of lower song rewards.

Our results with human listeners simultaneously show that the
existence of patterns in transition preferences that DJ-MC
captures and subsequently exploits to generate playlists im-
plies that listeners indeed have preferences for transitions and
that learning these patterns of preferences yields an overall
better experience for listeners. Importantly, DJ-MC’s design
facilitates effective online learning and adaptation to human
listeners’ preferences, which are unknown, likely hetero-
geneous across listeners, and can be arbitrarily complex rela-
tive to DJ-MC’s representation of listeners. As demonstrated
in our simulation results as well, these benefits can be attri-
buted directly to DJ-MC’s simple representation of listeners
that facilitates learning from limited online experiences.

7Testing whether the difference in mean reward is greater than is statistically
significant.

782 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Figure 6. Histograms of Cumulative Rewards ((a) Histogram of cumulative song rewards during random
exploration. (b) Histogram of cumulative transition rewards during random exploration. (c) Histogram of
cumulative song rewards during learning and adaptation. (d) Histogram of cumulative transition rewards during
learning and adaptation. Offsets representative of learning effects are marked across figures.)

Extensions to and Additional Analyses of DJ-MC

In Appendix A we first consider two extensions of DJ-MC that
account for song costs (royalty fees) when producing a play-
list. Another variant incorporates the listener’s recent feed-
back explicitly in the information used by DJ-MC to infer the
best next song to play. A third DJ-MC variant uses the lis-
tener’s reward model to deterministically select the next song
that yields the highest immediate reward. We find that the
latter two variants do not benefit DJ-MC’s performance and
discuss the reasons for these results. In Appendix B we
describe six additional studies that explore DJ-MC’s perfor-
mance in different settings. These include different planning
horizons, different numbers of bins used to discretize song
features, a different proportion, B, of top songs considered
during planning, and a different number of songs to poll
listeners during initialization in the simulation studies. We
find that DJ-MC’s performance is not very sensitive to these
parameter settings.

Computational Complexity

DJ-MC’s online performance is designed to provide viable
recommendations in real time. Specifically, updating the
listener model is linear in the number of feature song and
feature transition bins, having a runtime complexity of

O(|Fs| @ nbins2
s). The second online component, planning, is an

anytime algorithm, which can be interrupted at any time and
produce a valid song recommendation. Generating q random
songs is done in constant time O(1), and evaluation of each
sequence requires computing the reward, with complexity of
O(|K²|Fs| @ nbins2

s), for K song playlist. On a standard laptop
with a 2.4 GHz Intel Core 17 processor and 8 GB RAM, DJ-
MC ran 10,000 sequence rollouts in less than a second. In
practice, a song may play for several minutes, during which
time it is possible to generate and evaluate a significantly
larger number of rollouts. Our evaluations demonstrate that
DJ-MC’s planning is both feasible in practice and that it yields
better listening experiences for listeners.

Conclusions and Future Work

In this paper, we consider the general problem of playlist
generation, we posit that transition preferences are integral to
a listener’s enjoyment from a playlist, and propose a frame-
work for online learning and adaptation to sequential prefer-
ences within a listening session, so as to tailor the playlist to
the listener’s current context. Because learning is done from
limited interactions with the listener, we propose that a simple
model for representing the listener song and sequential
preferences is advantageous to expedite generalization in our

MIS Quarterly Vol. 43 No. 3/September 2019 783

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

online setting; our data representation also employs factored
representation of songs and sparse, binary representation of
song features to facilitate fast generalizing. Experiments in
simulation, seeded by real playlists as well as with human
listeners, demonstrate that DJ-MC’s design yields robust
performance for listeners, whose preferences can be both
heterogeneous and arbitrarily complex relative to DJ-MC’s
own representation of the listeners’ preferences. In addition,
DJ-MC yields better listening experiences to human listeners.
Future work can also build on our contributions to consider
other temporal aspects of preferences for which real-time
adaption can be useful. In particular, DJ-MC’s framework can
be used to adaptively learn and recommend sequences of
news items, videos, or television shows.

Future work can build on our contributions to improve transi-
tion preferences learning and playlist adaptation. In par-
ticular, it will be fruitful to explore alternative means to
initiate the listener model. Active learning can be used early
on to acquire feedback on particularly informative transitions
for learning. Producing better sequences earlier may also
benefit from improvements in planning. Specifically, the
search space may be more efficiently explored by exploiting
the structure of the song space, such as by learning song
types, and then searching and planning a sequence of abstract
song-types. Concrete songs can then be drawn from each
song-type in the trajectory. Initialization may also be im-
proved by leveraging prior knowledge (e.g., Pardoe et al.
2010), such as by initializing the listener model via learning
from historical data the focal user’s or even similar users’
preferences across contexts.

Finally, reinforcement learning is a natural progression
toward artificial intelligence techniques that learn and act on
their own to achieve a goal exclusively by interacting with
their environment. Such capabilities can benefit challenges
arising in a variety of business environments. Financial
markets and smart electricity markets are prime examples of
environments where the fast-changing conditions can benefit
from intelligent agents, acting on behalf of users to indepen-
dently learn and adapt their strategies to benefit their users’
goal (Peters et al. 2014). We hope that this research will in-
spire future research in IS that will identify and address new
and important challenges in online, data-driven learning and
decision making arising in a variety of dynamic business
settings.

References

Adomavicius, G., and Kwon. Y. 2014. “Optimization-Based Ap-
proaches for Maximizing Aggregate Recommendation Diver-
sity,” INFORMS Journal on Computing (26:2), pp. 351-359.

Adomavicius, G., and Tuzhilin, A. 2005. “Toward the Next Gener-
ation of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions. Knowledge and Data Engineering,”
IEEE Transactions on Knowledge and Data Engineering (17:6),
pp. 734-749.

Adomavicius, G., Tuzhilin, A., and Zheng, R. 2011. “REQUEST:
A Query Language for Customizing Recommendations,” Infor-
mation Systems Research (22:1), pp. 99-117.

Adomavicius, G., and Zhang, J. 2012. “Stability of Recommen-
dation Algorithms,” ACM Transactions on Information Systems
(30:4), Article 23.

Aizenberg, N., Koren, Y., and Somekh, O. 2012. “Build Your Own
Music Recommender by Modeling Internet Radio Streams,” in
Proceedings of the 21st International Conference on World Wide
Web, New York: ACM.

Berenzweig, A., Logan, B., Ellis, D. P., andWhitman, B. 2004.
“A Large-Scale Evaluation of Acoustic and Subjective Music-
Similarity Measures,” Computer Music Journal (28:2), pp. 63-76.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P.
2011. “The Million Song Dataset,” in ISMIR 2011: Proceedings
of the 12th International Society for Music Information Retrieval
Conference, October 24-28, Miami, FL, pp. 591-596.

Berz, W. L. 1995. “Working Memory in Music: A Theoretical
Model,” Music Perception (12:3), pp. 353-364.

Chen, S., Moore, J. L., Turnbull, D., and Joachims, T. 2012.
“Playlist Prediction via Metric Embedding,” in Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York: ACM, pp. 714-722.

Chi, C. Y., Tsai, R. T., Lai, J., and Hsu, J. Y. 2010. “A Rein-
forcement Learning Approach to Emotion-Based Automatic
Playlist Generation,” International Conference on Technologies
and Applications of Artificial Intelligence, IEEE, pp. 60-65.

Cliff., D. 2000. “Hang the DJ: Automatic Sequencing and Seam-
less Mixing of Dance-Music Tracks,” Digital Media Systems
Department, Hewlett-Packard Laboratories.

Davies, J. B. 1978. The Psychology of Music, London: Hutchinson.
Efron, B. 1979. “Bootstrap Methods: Another Look at the Jack-

knife,” The Annals of Statistics (7), pp. 1-26.
Ghoshal, A., and Sarkar, S. 2014. “Association Rules for Recom-

mendations with Multiple Items,” INFORMS Journal on Com-
puting (26:3), pp. 433-448.

Good, P. I. 2006. Permutation, Parametric, and Bootstrap Tests of
Hypotheses, New York: Springer Science & Business Media.

Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction (2nd

ed.), Berlin: Springer-Verlag.
Harir, N., Mobasher, B., and Burke, R. 2012. “Context-Aware

Music Recommendation Based on Latenttopic Sequential Pat-
terns,” in Proceedings of the 6th ACM Conference on Recommen-
der Systems, New York: ACM, pp. 131-138.

Kahnx, B., Ratner, R., and Kahneman, D. 1997. “Patterns of
Hedonic Consumption Over Time,” Marketing Letters (8:1), pp.
85-96.

Kaji, K., Hirata, K., and Nagao, K. 2005. “A Music Recommen-
dation System Based on Annotations About Listeners’ Prefer-
ences and Situations,” in Proceedings of the 1st International
Conference on Automated Production of Cross Media Content
for Multi-Channel Distribution, IEEE.

784 MIS Quarterly Vol. 43 No. 3/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

King, J., and Imbrasaitė, V. 2015. “Generating Music Playlists with
Hierarchical Clustering and Q-Learning,” in Proceedings of the
European Conference on Information Retrieval: Advances in
Information Retrieval, A. Hanbury, G. Kazai, A. Raubner, and N.
Fuhr (eds.), New York: Springer, pp. 315-326.

Liebman, E., Chor, B., and Stone, P. 2015. “Representative
Selection in Nonmetric Datasets,” Applied Artificial Intelligence
(29:8), pp. 807-838.

Liebman, E., Saar-Tsechansky, M., and Stone, P. 2015. “DJ-MC:
A Reinforcement-Learning Agent for Music Playlist Recom-
mendation,” in Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems, E. Bordini and
Y. Weiss (eds.), Istanbul, Turkey, pp. 591-599.

Maillet, F., Eck, D., Desjardins, G., and Lamere, P. 2009. “Steer-
able Playlist Generation by Learning Song Similarity from Radio
Station Playlists,” in Proceedings of the 10th International
Conference on Music Information Retrieval, Kobe, Japan, pp.
345-350.

McFee, B., and Lanckriet, G. R. 2011. “The Natural Language of
Playlists,” in Proceedings of the 12th International Conference on
Music Information Retrieval, Miami, FL, pp. 537-542.

Natarajan, N., Shin, D., and Dhillon, I. S. 2013. “Which App Will
You Use Next? Collaborative Filtering with Interactional
Context,” in Proceedings of the 7th ACM Conference on Recom-
mender Systems, New York: ACM, pp. 201-208.

Palmer, C. 2005. “Sequence Memory in Music Performance,”
Current Directions in Psychological Science (14:5), pp. 247-250.

Pardoe, D., Stone, P., Saar-Tsechansky, M., Keskin, T., and
Tomak, K. 2010. “Data-Driven Auction Design and the Incor-
poration of Prior Knowledge,” INFORMS Journal on Computing
(22:3), pp. 353-370.

Prawesh, S., and Padmanabhan, B. 2014. “The ‘Most Popular
News’ Recommender: Count Amplification and Manipulation
Resistance,” Information Systems Research (25:3), pp. 569-589.

Peters, M., Ketter, W., Saar-Tsechansky, M., and Collins, J. 2013.
“A Reinforcement Learning Approach to Autonomous Decision-
Making in Smart Electricity Markets,” Machine Learning (92:1),
pp. 5-39.

Platt, J. C. 2003. “Fast Embedding of Sparse Similarity Graphs,”
in Proceedings of the Advances in Neural Information Processing
Systems Conference, Vancouver, BC, Canada.

Shivaswamy, P. K., and Thorsten, J. 2011. “Online Learning with
Preference Feedback,” paper presented at the NIPS Workshop on
Choice Models and Preference Learning.

Saar-Tsechansky, M., Melville, P., and Provost, F. 2009. “Active
Feature-Value Acquisition,” Management Science (55:4), pp.
664-684.

Saar-Tsechansky, M., and Provost, F. 2007. “Decision-Centric
Active Learning of Binary-Outcome Models,” Information
Systems Research (18:1), pp. 4-22.

Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforcement
Learning, Cambridge, MA: MIT Press.

Tan, S.-L., Pfordresher, P., and Harré, R. 2010. Psychology of
Music: From Sound to Significance, Hove, England: Psych-
ology Press.

Urieli, D., and Stone, P. 2013. “A Learning Agent for Heat-Pump
Thermostat Control,” in Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems, St.
Paul, MN.

Wang, X., Wang, Y., Hsu, D., and Wang, Y. 2013. “Exploration
in Interactive Personalized Music Recommendation: A
Reinforcement Learning Approach,” ACM Transactions on
Multimedia Computing, Communications and Applications (2:3),
Article 1.

Weston, J., Bengio, S., and Hamel, P. 2011. “Multi-Tasking with
Joint Semantic Spaces for Large-Scale Music Annotation and
Retrieval,” Journal of New Music Research (40:4), pp. 337-348.

Zheleva, E., Guiver, J., Mendes Rodrigues, E., and Milić-Frayling,
N. 2010. “Statistical Models of Music-Listening Sessions in
Social Media,” in Proceedings of the 19th International Con-
ference on World Wide Web, New York: ACM, pp. 1019-1028.

About the Authors

Elad Liebman completed his Ph.D. at the Department of Computer
Science, UT Austin, advised by Peter Stone. His research focuses
on sequential decision-making problems related to content recom-
mendation, and multiagent systems, with a special emphasis on
music recommendation, musical preference learning, and preference
elicitation in cultural settings in general. He is also interested in
modeling the effects of musical stimuli on human decision making,
and agents learning to interact with other agents (human or artificial)
in social settings. In his years in the field he has worked on a wide
range of problems, spanning the gamut from bioinformatics and
telecommunications to finance and robotics. He is currently a senior
data scientist at SparkCognition Inc.

Maytal Saar-Tsechansky is an associate professor of Information,
Risk and Operations Management at the McCombs School of Busi-
ness, University of Texas at Austin. Her research focuses on the
development of novel machine learning and artificial intelligence
methods with the goal of improving decision making and to benefit
people, organizations, and society. Her research integrates business,
machine learning, and artificial intelligence, and she has addressed
challenges in a variety of domains, including health care, smart elec-
tricity grid, fraud detection, finance, and emerging forms of work,
such as online labor markets. Maytal received her Ph.D. from New
York University’s Stern School of Business. Her research has been
published in business and computer science journals, including
Journal of Finance, Management Science, Information Systems
Research, Journal of Machine Learning Research, and Machine
Learning Journal. Her research has been supported by both govern-
ment and industry, including the National Science Foundation, SAP,
and the Israeli Science Ministry. Maytal co-founded Sweetch.com,
a start-up company focused on predicting the onset and prevention
of chronic diseases.

Peter Stone is the David Bruton, Jr. Centennial Professor and Asso-
ciate Chair of Computer Science, as well as Chair of the Robotics

MIS Quarterly Vol. 43 No. 3/September 2019 785

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Portfolio Program, at the University of Texas at Austin. In 2013 he
was awarded the University of Texas System Regents’ Outstanding
Teaching Award and in 2014 he was inducted into the UT Austin
Academy of Distinguished Teachers, earning him the title of
University Distinguished Teaching Professor. Peter’s research
interests in Artificial Intelligence include machine learning (espe-
cially reinforcement learning), multiagent systems, robotics, and e-
commerce. He received his Ph.D. in Computer Science in 1998
from Carnegie Mellon University. From 1999 to 2002 he was a
senior technical staff member in the Artificial Intelligence Principles
Research Department at AT&T Labs–Research. He is an Alfred P.

Sloan Research Fellow, Guggenheim Fellow, AAAI Fellow, IEEE
Fellow, AAAS Fellow, Fulbright Scholar, and 2004 ONR Young
Investigator. In 2003, he won an NSF CAREER award for his pro-
posed long term research on learning agents in dynamic, collabor-
ative, and adversarial multiagent environments, in 2007 he received
the prestigious IJCAI Computers and Thought Award, given
biannually to the top AI researcher under the age of 35, and in 2016
he was awarded the ACM/SIGAI Autonomous Agents Research
Award. Peter co-founded Cogitai, Inc., a start-up company focused
on continual learning, in 2015, and currently serves as President and
COO.

786 MIS Quarterly Vol. 43 No. 3/September 2019

RESEARCH ARTICLE

THE RIGHT MUSIC AT THE RIGHT TIME:
ADAPTIVE PERSONALIZED PLAYLISTS BASED

ON SEQUENCE MODELING

Elad Liebman
SparkCognition, Inc., 4030 West Braker Lane #500, Austin, TX 78759 U.S.A. {eladlieb@gmail.com}

Maytal Saar-Tsechansky
McCombs School of Business, The University of Texas at Austin, 2110 Speedway, Stop B6500,

Austin, TX 78712-1277 U.S.A. {maytal@mail.utexas.edu}

Peter Stone
Department of Computer Science, The University of Texas at Austin, 2317 Speedway, Stop D9500,

Austin, TX 78712-1277 U.S.A. {pstone@cs.utexas.edu}

Appendix A
Extending DJ-MC to Incorporate Song Costs or Royalty Fees

In this appendix, we explore extensions of DJ-MC to accommodate song costs, as well as to evaluate the performance of several variants of DJ-
MC.

An issue rarely explored in music recommendation is how to incorporate song costs in the content recommendation process. Not much is
known about the particular royalty cost of playing each song in existing streaming services. Studies indicate that streaming services often
negotiate with royalty agreements agencies,1 and the royalties are typically determined in bulk, involving a large number of artists and songs,
and are not assigned to each song individually. For example, Spotify, a leading streaming service, has recently revealed that it does not assign
a different royalty fee to each song, but rather the payment to owners (labels, publishers, distributors, etc.) is determined ex post by the
proportion of streams made relative to Spotify’s total revenue from the corresponding period.2 Nevertheless, given that the music industry is
experiencing a transformation, it may also be that future models incorporate differential, individual song fees. Hence, in this section we propose
how to incorporate individual song costs in the DJ-MC framework.

In principle, given a (mathematical) mapping between listener enjoyment and monetary value that the playlist service can expect, Monetary(R),
DJ-MC can incorporate song fees to optimize monetary returns directly and seamlessly. Once such mappings are established, song rewards
Rs and song costs Cs inhabit the same (monetary) space, and DJ-MC can then operate as before, using a cost-adjusted reward model R* =
Monetary(R) – C. However, in the absence of an established mapping, one can consider alternative approaches with goals other than maxi-
mizing profit for streaming services to aim for.

1http://journals.law.stanford.edu/sites/default/files/stanford-technology-law-review/online/licensinginshadow.pdf

2https://www.spotifyartists.com/spotify-explained/#how-we-pay-royalties-overview

MIS Quarterly Vol. 43 No. 3—Appendices/September 2019 A1

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

The first approach we consider selects the next song such that it aims to maximize the ratio between expected listener reward and song cost.
Thus, in Algorithm 4 we now aim to optimize the ratio between the reward and the cost:

 () () ()() ()() ()1 12 , ,q
s i s i t i i s i s iiR song C song R song song song R song C song−=+ Σ +!

This approach, henceforth referred to as DJ-MC-R (DJ-MC-RATIO), aims to promote the selection of songs that yield greater marginal enjoyment
per unit cost. While DJ-MC-R may seem intuitive for handling the tradeoff between listener reward and cost, note that, because listener
enjoyment is no longer the only criterion, to yield a high ratio, DJ-MC-R may also select sequences composed of songs (and transitions) that
incur very low costs, even if the listener may not particularly enjoy them.

A second alternative we propose avoids a direct tradeoff between enjoyment and costs altogether. Specifically, it aims to produce sequences
that yield the highest possible rewards within a budget, where a budget corresponds to the maximum cumulative fees one is willing to incur
for a single listener over a given period of time. Henceforth, we refer to this variant as DJ-MC-B (DJ-MC-BUDGET), and we adapt DJ-MC to this
framework by imposing a budget constraint on the exploration and planning process described in Algorithm 4. Specifically, in Algorithm 3,
DJ-MC-B selects each song in the trajectory in the same way, but subject to the condition that Cost(trajectory c {song}) # budget. We similarly
adapt the RANDOM and GREEDY baselines to create playlists that do not exceed the allocated budget. Specifically, the RANDOM baseline is
adapted to accept only RANDOM sequences complying with the budget constraint. Similarly, GREEDY selects songs as before; however, if the
next best song leads to a playlist that exceeds the budget, the song is skipped and the next highest-reward song is attempted. The budget-aware
variants of GREEDY and RANDOM are henceforth referred to as GREEDY-B and RANDOM-B, respectively.

In the experiments reported below, song fees per stream for a given song are drawn uniformly from [0,1]. In addition, we identified that a
budget of 15 imposes a meaningful constraint on the songs that can be played over the course of a session, such that methods that do not account
for the cost of songs exhaust the budget in a significant proportion of the sessions. We therefore used a budget of 15 to explore the listener
rewards produced by each approach. Finally, we examine separately the rewards and the remaining budget for each approach to draw
conclusions on the tradeoffs offered by each.

Figures A1(a) and A1(b) show the listener reward distribution produced by each approach after 10 and then 30 songs, given a budget of 15.
Together, Figures A1(a) and A1(b) show that both DJ-MC-B and DJ-MC-R yield higher remaining budgets in expectation as compared to the
RANDOM and GREEDY benchmarks. This can be attributed to the fact that both DJ-MC-B and DJ-MC-R plan ahead, given they consider sequences,
and are therefore less likely to exhaust their budget while generating the playlist. Because DJ-MC-R economizes on costs directly, it yields the
highest remaining budget (uses a smaller proportion of its budget) as compared to DJ-MC-B. As expected, because DJ-MC-R selects songs for
which the ratio between expected reward and cost is high, this also leads to the selection of songs that are inexpensive even if the listener may
not particularly enjoy them. Consequently, the cumulative listener reward produced by DJ-MC-R is lower as compared to DJ-MC-B and GREEDY-
B, whose primary criterion is to select songs that are likely to maximize listener reward.

(a) Listener Reward Distribution After 10 Steps (b) Listener Reward Distribution After 30 Steps

Figure A1. for the Simple Model (Uncorrelated LVs)

A2 MIS Quarterly Vol. 43 No. 3—Appendices/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

DJ-MC with Only Immediate Reward

Recall, because DJ-MC simultaneously learns and acts, its planning aims to manage a tradeoff between two goals: explore the listener’s
preferences, and exploit its current knowledge of the listener’s preferences, so as to select a song that will be likely followed by an enjoyable
sequence. To explore, DJ-MC simulates RANDOM sequences of songs. To assess the value of each simulated sequence, DJ-MC uses the reward
model to (1) compute the immediate reward from playing the first song in the sequence, and (2) to assess how the next song may affect the
enjoyment from the trajectory of future songs. Figure A2 shows results for a variant of DJ-MC, denoted DJ-MC-IMMEDIATE (DJ-MC-IM), in which
DJ-MC uses its listener reward model of song and transition preferences to deterministically select the single song that yields the highest imme-
diate reward. Hence, DJ-MC-im does not explore the listener’s preferences to improve its learning of these preferences, and it does not consider
how the choice of the next song may affect the listener’s enjoyment from future songs.

Performance after 10 steps Performance after 30 steps Performance after 50 steps

Figure A2. Evaluation of DJ-MC-IM

As shown, consistent with our prior results for DJ-MC, DJ-MC- im’s learning and accounting for transition preferences when selecting the next
song remains advantageous over the GREEDY approach, which selects the next song based on the song reward exclusively. The comparison
between DJ-MC and DJ-MC-IM also sheds light on the benefits of the standard DJ-MC’s exploration of the listener’s preferences via the RANDOM
rollouts, as well as DJ-MC’s considerations of not only the immediate song and transition reward (namely, the transition from songs played thus
far onto the next song), but how the choice of the next song may affect the enjoyment from future songs in the playlist. Specifically, via
exploration, DJ-MC aims to select songs that improve the listener reward model and the selection of future songs. By evaluating the rewards
from future trajectories of songs, the standard DJ-MC is also enabling the possibility of not selecting a song with the best immediate song and
transition reward, in order to select songs that will yield a more enjoyable sequence. As shown in Figure A2, DJ-MC yields better rewards
already after 10 steps relative to the myopic variant, DJ-MC-IM.

Notes on Incorporating User Feedback in the State Space

One may consider representing user feedback in the state explicitly so as to enable DJ-MC to learn different models of behavior in the context
of different listener feedback. This strategy can improve DJ-MC’s performance by, for example, being more conservative and avoiding
explorations of the listener’s preferences when the listener is indicating dissatisfaction. However, feedback is already being reflected implicitly
in DJ-MC‘s recommendations. For example, as reflected in Algorithm 3, the update weight extracted from the reward at step k, is given by
log(vk/v̄k), where v̄ is the running average of reward, reflecting recently observed feedback. Because after a sequence of negative rewards, the
average, v̄, decreases, a positive reward translates into a significant increase in the reward computed for songs the listener enjoys—more so
than it would have been in a less negative context. Consequently, after a “bad run,” the model is quicker to adapt to any evidence of more
favorable song preferences and, similarly, after a “good run,” it is slower to do so, requiring more favorable feedback in order to make positive
adjustments. Therefore, this property of DJ-MC results in a higher likelihood in such a context to recommend songs the listener is likely to enjoy
and, similarly, rendering DJ-MC less likely to explore a listener's taste by recommending less enjoyable songs.

MIS Quarterly Vol. 43 No. 3—Appendices/September 2019 A3

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Appendix B
Additional Analyses

In this appendix, we report additional studies we have conducted to assess its performance under different parameter settings.

Planning Horizons

Our DJ-MC implementation uses a planning horizon, q, of 10 songs, while in practice, the true playlist horizon at any time can be arbitrarily
longer. We therefore compared DJ-MC’s performance with a planning horizon of 10 songs, to its performance with planning horizons of 5 or
30 songs.

As shown in Figure B1, we find that planning horizons of 5, 10 (as before), and 30 songs yield comparable results. Note that all the variants
evaluated here perform stochastic exploration and an assessment of the likely effect of the next song on enjoyment from future songs in the
playlist. Our earlier results show that not performing explorations, and myopically selecting the next song that yields the best immediate song
and transition reward, yields worse rewards.

Reward histogram after 10 steps Reward histogram after 30 steps Reward histogram after 50 steps

Reward histogram after 10 steps Reward histogram after 30 steps Reward histogram after 50 steps

Figure B1. DJ-MC’s Performance Using Different Planning Horizons During Planning (First row:
Comparison of DJ-MC with planning horizons (q) of 10 and 5 songs. Second row: comparison of DJ-MC with
planning horizons (q) of 10 and 30 songs.)

A4 MIS Quarterly Vol. 43 No. 3—Appendices/September 2019

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Using Coarser Binning in the Song Representation

When considering the complexity of the listener reward model, we discuss the tradeoff between the model’s bias and variance given the amount
of experiential data, namely the amount of actual experiences with the listener. Fitting a reward model in our setting is constrained by the
number of actual experiences with the listener during a listening session, namely between 10 and 50 songs. In principle, given unlimited
training experiences, having a more complex (higher variance) reward model allows us to fit the listener’s preferences better; however, if the
number of training experiences is insufficient, this flexibility becomes a liability, and the reward model can over-fit the limited training
experiences. Our study of a feature-dependent reward model, with the ability to model how a very large number of interactions between all
possible pairs of song features maps onto preferences, shows that, given the number of experiences with the listener in our setting, such a model
over-fits these training experiences. Thus, we find in our experiments that using such a listener reward model undermines DJ-MC’s performance,
even when the model reflects the true patterns underlying listeners’ preferences.

The song representation adds another dimension by which we can control the reward model’s complexity. The first element is the binning itself,
so that we represent songs by the corresponding percentile bin value for each feature, rather than the corresponding feature’s precise value.
In addition, the choice of number of bins can vary as well. As shown in Figure B2, a comparison between DJ-MC with 5 bins and the standard
DJ-MC with 10 bins, shows that the latter does not over-fit relative to the former. Thus, we find that having fewer bins does not introduce quite
as dramatic a change to the variance of the model.

Reward histogram after 10 steps Reward histogram after 30 steps Reward histogram after 50 steps

Figure B2. DJ-MC’s Performance with Coarser Feature Value Binning

Using Smaller Subset, B, of Top Songs During Planning

During planning, DJ-MC produces rollouts, namely RANDOM sequences from the top B = 50% of the listener’s most favorable songs (as estimated
by DJ-MC) so as to assess the likely effect of the first song in the sequence on enjoyment from subsequent songs. We explored the sensitivity
of our results to using a smaller subset of the top 25% most enjoyable songs in M. This reduction in the song space primarily increases the
likelihood of selecting an enjoyable song; however, it might not improve the likelihood of identifying an enjoyable sequence and corresponding
transitions. As show in Figure B3, our results suggest that reducing the set to 25% yields comparable performance for DJ-MC.

MIS Quarterly Vol. 43 No. 3—Appendices/September 2019 A5

Liebman et al./Adaptive Personalized Playlists Based on Sequential Modeling

Reward histogram after 10 steps Reward histogram after 30 steps Reward histogram after 50 steps

Figure B3. DJ-MC’s Performance Using a Smaller Subset of Top Songs During Planning

Polling Listeners on Fewer Songs and Transitions During Initialization in Simulation Studies

In the simulation studies, a listener’s reward model is first initialized with uniform weights so as to reflect that all songs and transitions are
equally desirable. The initialization proceeds to poll the listener for songs she prefers and then asking the listener select a short sequence from
which transition preferences are initialized. In the experiments we report in the paper, the (simulated) listener is polled for 10 songs and
transitions. Figure B4 shows that when the number of songs and transitions the listener is polled for is five, the results are only slightly worse
initially, but not meaningfully different from the results we report in the body of the paper. In the conclusions section, we discuss future work
to explore the use of prior knowledge during initialization, so as to allow production of better playlists earlier.

Reward histogram after 10 steps Reward histogram after 30 steps Reward histogram after 50 steps

Figure B4. DJ-MC’s Performance When Listeners are Polled for 5 and 10 Songs and Transitions During
Initialization

A6 MIS Quarterly Vol. 43 No. 3—Appendices/September 2019

