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Abstract In reinforcement learning, importance sampling is a widely used
method for evaluating an expectation under the distribution of data of one
policy when the data has in fact been generated by a different policy. Impor-
tance sampling requires computing the likelihood ratio between the action
probabilities of a target policy and those of the data-producing behavior policy.
In this article, we study importance sampling where the behavior policy ac-
tion probabilities are replaced by their maximum likelihood estimate of these
probabilities under the observed data. We show this general technique reduces
variance due to sampling error in Monte Carlo style estimators. We introduce
two novel estimators that use this technique to estimate expected values that
arise in the RL literature. We find that these general estimators reduce the
variance of Monte Carlo sampling methods, leading to faster learning for policy
gradient algorithms and more accurate off-policy policy evaluation. We also
provide theoretical analysis showing that our new estimators are consistent
and have asymptotically lower variance than Monte Carlo estimators.1
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1 Introduction

The field of reinforcement learning (RL) seeks to model an autonomous agent
interacting with a task while learning through trial-and-error interaction. RL
algorithms result in policies that tell the agent how to act in all possible world
states in order to complete a particular task. Despite much recent empirical
success [Mnih et al., 2015, Silver et al., 2016], many RL algorithms remain
prohibitively sample inefficient – the amount of task interactions they require
before a high-performing policy is found may be beyond what is possible on
many real world problems found in fields such as medicine or robotics. If these
RL algorithms are to be broadly applied, it is imperative to address this data
inefficiency.

A fundamental problem in the reinforcement learning literature is estimating
the expected value of a function under the distribution of data induced by
a policy. For example, in policy gradient RL, algorithms must estimate the
expected value of the policy gradient under the distribution of states and
actions that the current policy induces [Sutton and Barto, 1998]. In batch
policy evaluation [Li et al., 2015, Thomas and Brunskill, 2016a], algorithms
must estimate the expected return of a policy π under the distribution of
state-action trajectories that π induces. We call this problem the expectation
evaluation problem. Data efficient solutions to this problem are an important
step towards data efficient RL. In this work, we introduce methods that increase
the data efficiency of expectation evaluation methods in reinforcement learning.

One widely used approach for the expectation evaluation problem is to use
a sample-average or Monte Carlo estimate of the desired expectation. This
approach is straightforward: the policy is run to sample data and then the
function values under the resulting data are averaged. In the limit, as the
amount of sampled data increases, the estimate probabilistically converges to
the true expected value. However, for a finite amount of data, it may exhibit
high variance that causes error in the estimate. Variance in a Monte Carlo
estimate arises when the observed samples occur at different frequencies than
they would in expectation. For example, if a policy selects between two actions
with equal probability in a given state, the resulting data may show that one
action occurred 60% of the time while the other action occurred only 40% of
the time. With this observed data, the Monte Carlo estimate will place too
much emphasis on the first action and not enough emphasis on the second.
We term this source of variance sampling error and provide an illustration
in Figure 1; reducing sampling error is the main benefit of the methods we
introduce.

In this work, we frame the sampling error problem as an off-policy policy
evaluation problem. In the off-policy policy evaluation problem, we are inter-
ested in observing data under one policy, π, but instead observe data from a
different, behavior policy. We observe that though we are interested in observ-
ing data under a policy π, sampling error may result in our data appearing
to have been generated by a different, empirical policy, π̂. This observation
motivates correcting sampling error with the well-known off-policy technique
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Action π Observed proportion, π̂ Monte Carlo weight SEC weight (ours)
Up 0.1 0.15 0.15 0.1

Right 0.3 0.35 0.35 0.3
Down 0.4 0.3 0.3 0.4
Left 0.2 0.2 0.2 0.2

Fig. 1: Sampling error in a fixed state s of a Grid World environment. Each
action a is sampled with probability π(a|s) and is observed in the proportion
given by π̂(a|s). Monte Carlo weighting gives each action the weight π̂(a|s)
while our novel sampling error corrected (SEC) weighting gives each action

the weight π̂(a|s)π(a|s)π̂(a|s) = π(a|s). In other words, the SEC estimator weights

each action by the expected frequency for each a in s while the Monte Carlo
estimator will have error unless the empirical frequency of sampled actions, π̂,
is equal to the expected frequency, π for all actions.

of importance sampling [Precup et al., 2000]. In this article, we propose first
estimating the empirical policy from observed state-action pairs and then using
this policy as the behavior policy in an importance sampling estimate. Figure 1
illustrates how this approach corrects sampling error in Monte Carlo sampling.
The combination of importance sampling with an estimated behavior policy to
correct sampling error is the central contribution of this work.

It may be natural to assume that importance sampling with an estimated
behavior policy will perform worse than with the true behavior policy proba-
bilities because it is using an estimate in place of the “correct” behavior policy
probability. Furthermore, it may appear that importance sampling is unneces-
sary in the on-policy case. However, in this work, we show that importance
sampling with an estimated behavior policy lowers the variance of expectation
evaluation in both on- and off-policy settings. Our work complements existing
approaches in the causal inference [Rosenbaum, 1987, Hirano et al., 2003] and
bandit [Li et al., 2015, Narita et al., 2019] literatures that has used importance
sampling with an estimated behavior policy as a variance reduction strategy.
We extend this general approach to sequential decision making tasks.

We first consider expectation evaluation for expectations of the form:

E

[
φ(S,A)

∣∣∣∣ S ∼ dπ, A ∼ π],
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where φ is a vector or scalar-valued function of state-action pairs and dπ is the
distribution of states that policy π will encounter. This form of expected value
arises in policy gradient reinforcement learning [Peters and Schaal, 2008, Schul-
man et al., 2015] as well as average reward reinforcement learning [Puterman,
2014, Schwartz, 1993, Mahadevan, 1996]. We introduce a novel expectation
evaluation estimator called the sampling error corrected (SEC) estimator that
reduces sampling error in Monte Carlo estimates by importance sampling with
an estimated behavior policy. We prove (under a limiting set of assumptions)
that the SEC estimator has variance at most that of the Monte Carlo estimator
and (under lighter assumptions) that this approach has asymptotic variance at
most that of the Monte Carlo estimator. We then instantiate the SEC estimator
for the problem of estimating the policy gradient when running a batch policy
gradient algorithm. We introduce the sampling error corrected policy gradient
estimator and present an empirical study in which our new estimator leads to
faster convergence of batch policy gradient algorithms for the REINFORCE
algorithm [Williams, 1992] and trust-region policy optimization [Schulman
et al., 2015] compared to the these algorithms using the Monte Carlo estimator.

We next consider expectation evaluation when the target expectation takes
the form:

E

[
χ(H)

∣∣∣∣ H ∼ π],
where χ is a vector or scalar-valued function of trajectories, H, generated
by following π. This form of expected value arises in the problem of policy
evaluation where we wish to estimate the expected return when running a
particular policy π [Jiang and Li, 2016, Thomas and Brunskill, 2016a]. When
expectations take this form, it is not always straightforward to recast the
expectation as an expectation under state-action pairs, e.g., in finite-horizon
off-policy evaluation. Thus our new SEC estimator is inapplicable. We show
that sampling error can be viewed as an off-policy expectation evaluation
problem where the behavior policy is a non-Markovian policy that conditions
its action selection on the entire history of past states and actions. We introduce
a family of regression importance sampling (RIS) estimators that estimate a
possibly non-Markovian policy as the behavior policy for importance sampling.
Under similar assumptions to those made for the SEC estimator, we prove
that all RIS estimators are consistent and have asymptotic variance at most
that of the Monte Carlo estimator. Finally, we instantiate RIS methods for the
problem of off-policy batch policy evaluation and present an empirical study
showing that regression importance sampling leads to lower mean squared error
off-policy policy evaluation than standard importance sampling baselines.

This article proceeds as follows. In Section 2, we introduce necessary back-
ground: reinforcement learning notation, two common forms of expectation
evaluation in RL, the on- and off-policy Monte Carlo estimator, and the concept
of sampling error in the Monte Carlo estimator. In Section 3 we introduce
the SEC estimator that uses importance sampling with an estimated behavior
policy to correct sampling error in state-action expectations and establish
theoretical properties of this novel estimator. Then, in Section 4, we apply the
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SEC estimator to estimating the policy gradient in a batch policy gradient
algorithm and empirically show faster convergence rates on several RL tasks.
In Section 5 we turn to trajectory expectations and introduce a family of
regression importance sampling estimators that use importance sampling with
an estimated behavior policy to reduce sampling error. We provide theoretical
analysis of this family of estimators, establishing consistency and asymptotic
variance analysis. Then, in Section 6, we apply RIS estimators to the problem
of off-policy policy evaluation and show our new estimators yield lower mean
squared error estimates than off-policy Monte Carlo methods. In Section 7, we
discuss prior literature on importance sampling with an estimated behavior
policy, addressing sampling error, and reducing variance in reinforcement learn-
ing. Finally, we discuss the strengths and limitations of our new methods and
results, discuss avenues for future research, and conclude.

2 Background

In this section we first introduce the notation used throughout this work. We
then discuss the expectation evaluation problem in the reinforcement learning
literature. Finally, we discuss Monte Carlo sampling as a solution method for
expectation evaluation problems.

2.1 Notation

We assume the environment is an episodic Markov decision process with state
set S, action set A, transition function, P : S ×A×S → [0, 1], reward function
r : S ×A → R, discount factor γ, and initial state distribution d0 [Puterman,
2014]. For simplicity, we assume that S and A are finite, though all methods
and theoretical results discussed in this paper are applicable to both finite
and infinite S and A, unless otherwise noted. We assume that the transition
and reward functions are unknown. A policy, π : S ×A → [0, 1], is a function
mapping states and actions to probabilities. We use π(a|s) := π(s, a) to denote
the conditional probability of action a given state s and P (s′|s, a) := P (s, a, s′)
to denote the conditional probability of state s′ given state s and action a.

The agent interacts with the environment MDP as follows: The agent begins
in initial state S0 ∼ d0. At discrete time-step t the agents takes action At ∼
π(·|St). The environment responds with Rt := r(St, At) and St+1 ∼ P (·|St, At)
according to the reward function and transition function. After interacting with
the environment for at most l steps the agent returns to a new initial state and
the process repeats. For notational convenience, we assume that all interactions
last for at most l steps. In the MDP definition, we also include a terminal state,
s∞, that allows the possibility of episodes ending before time-step l. If at any
time-step, t, St = s∞, then for all t′ ≥ t, St′ = s∞ and Rt′ = 0.

Let h := (s0, a0, r0, s1, . . . , sl−1, al−1, rl−1) be a trajectory and g(h) :=∑l−1
t=0 γ

trt be the discounted return of h. For trajectory h, we will use ht:t′
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to denote the partial trajectory, st, at, rt, ..., st′ , at′ , rt′ . If t < 0, ht:t′ denotes
the beginning of the trajectory until step t′. Any policy induces a distribution
over trajectories, Pr(H = h|π), where H is a random variable representing
a trajectory. The distribution over trajectories induces a distribution over
sets of m trajectories, Pr(D = {h1, ...hm}|π), where D is a random variable
representing a set of trajectories. We will write H ∼ π to denote sampling a
trajectory by following π and D ∼ π to denote sampling a set of trajectories by
following π. We use B for the random variable representing all k state-action
pairs observed in D.2 A policy also induces a distribution over state visitation
frequencies, dπ : S → [0, 1].

We define the value of a policy, v(π) := E[g(H)|H ∼ π], as the expected
discounted return when sampling a trajectory with policy π.

2.2 Expectation Evaluation in Reinforcement Learning

An important problem that arises across the reinforcement learning literature
is the problem of evaluating expectations of functions under the distribution
of data induced by a policy. In this section we introduce this problem as the
expectation evaluation problem. We describe two general forms of expected
value that occur in the reinforcement learning literature and give examples of
their occurrence. In the following subsection we will discuss how both forms of
expected values can be approximated with Monte Carlo sampling.

2.2.1 State-Action Expectations

The first form of expected value we consider is the expectation of a function
of state-action pairs under the distribution of states and actions that a policy
induces.

Definition 1 (state-action expectation) Let φ : S × A → Rd be any
function mapping trajectories to d-dimensional vectors and let π be a policy.
The state-action expectation takes the form:

φ̄ := E

[
φ(S,A)

∣∣∣∣ S ∼ dπ, A ∼ π(·|S)

]
(1)

Example 1 Policy Gradient Learning
An example state-action expectation from the reinforcement learning liter-

ature is the policy gradient. Let πθ be a policy parameterized by the vector
θ. Policy gradient algorithms attempt to find θ that maximize v(πθ) with
gradient ascent on v(πθ) with respect to θ.

∂

∂θ
v(πθ) ∝ E

[
qπθ (S,A)

∂

∂θ
log πθ(A|S)

∣∣∣∣ S ∼ dπθ
, A ∼ πθ(·|S)

]
(2)

2 Because we allow early termination, k equals at most ml but may be smaller. We do not
include (S,A) pairs in B if S = s∞.
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where qπθ (s, a) is an estimate of the sum of rewards following action a in state s.
Taking φ(s, a) := qπθ (s, a) ∂

∂θ log πθ(a|s), we obtain a state-action expectation
form.

2.2.2 Trajectory Expectations

The second form of expectation we consider is an expectation of a function
under the distribution of trajectories the policy will generate.

Definition 2 (trajectory expectation) Let H be the set of all possible tra-
jectories, let χ : H → Rd be any function mapping trajectories to d dimensional
vectors and let π be a policy. The trajectory expectation takes the form:

χ̄ := E

[
χ(H)

∣∣∣∣ H ∼ π] (3)

Example 2 Policy Evaluation
An example from the reinforcement learning literature where evaluating a

trajectory expectation is necessary is the problem of batch policy evaluation
[Thomas and Brunskill, 2016a, Jiang and Li, 2016]. In this problem, we are
given a fixed, evaluation policy, πe, and tasked with estimating v(πe). Taking
χ(h) := g(h), we obtain a trajectory expectation.

2.3 The Monte Carlo Estimator

Directly evaluating expected values in reinforcement learning is difficult due to
the unknown distribution over trajectories or states. Even if these distributions
were known, the number of possible states and actions might make analytic
computation, as used in dynamic programming [Bellman, 1966], intractable.
As an alternative to analytic computation, one of the most straightforward
and widely used methods for evaluating expectations in reinforcement learning
is the sample average or Monte Carlo approach.

Given a set, B, of k state-action pairs, collected by repeatedly sampling
S ∼ dπ and A ∼ π(·|S), the Monte Carlo estimate for a state-action expectation
is:

MC(B) :=
1

k

k∑
j=1

φ(Sj , Aj) (4)

Similarly, given a set, D, of m trajectories collected by repeatedly sampling
H ∼ π, the Monte Carlo approximation for a trajectory expectation is:

MC(D) :=
1

m

m∑
j=1

χ(Hj) (5)

These Monte Carlo estimators are on-policy approaches to expectation
evaluation; they must use data collected from π to evaluate an expected value
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under distributions induced by π. We can generalize the Monte Carlo estimator
to use data collected from a different behavior policy, πb, by importance
sampling. We call the off-policy Monte Carlo estimator the ordinary importance
sampling (OIS) estimator. The OIS estimate for a state-action expectation is:

OIS(B) :=
1

k

k∑
j=1

dπ(Sj)π(Aj |Sj)
dπb(Sj)πb(Aj |Sj)

φ(Sj , Aj). (6)

The OIS estimate for a trajectory expectation is:

OIS(D) :=
1

m

m∑
j=1

χ(Hj)

l−1∏
t=0

π(Ajt |S
j
t )

πb(A
j
t |S

j
t )
. (7)

Note that dπ is typically unknown and so (6) is not directly computable while
the OIS estimate for a trajectory expectation is computable. Thus, when we
consider state-action expectation evaluation, we will only consider the on-policy

case. A recent line of work has explored estimation of the ratio dπ(s)
dπb (s)

[Liu et al.,

2018, Gelada and Bellemare, 2019, Hallak and Mannor, 2017]; this work offers
one path towards extending our consideration of state-action expectations to
the off-policy setting. When we consider trajectory expectation evaluation, we
will also consider the more general off-policy case.

We make the following standard assumptions on the behavior policy.

Assumption 1 (Full Support) ∀s, a π(a|s) > 0⇒ πb(a|s) > 0.

Assumption 2 (Strong Ignorability) There are no hidden confounders that
influence the choice of actions other than the current observed state.

Assumption 1 is only an assumption on the data generating policy and not
an assumption on the observed data. For a particular finite sample, there may
be actions where π(a|s) > 0 but (s, a) was never seen.

To address a point of potential confusion, the Monte Carlo return in RL has
become synonymous with using the sum of discounted rewards to approximate
the return. This approach is typically contrasted with bootstrapping methods
that truncate the sum of discounted rewards after a number of steps and
then add an estimate of the expected reward after truncation to estimate the
full return. These bootstrapping methods remain, at least partially, Monte
Carlo methods. Thus, the methods we introduce later are of potential value for
improving bootstrapping methods, though, we do not study this combination
in this work.

2.4 Sampling Error in the Monte Carlo Estimator

In this section we describe how Monte Carlo estimators can have error for finite
sample sizes. We present this discussion in a unified setting that captures both
state-action and trajectory expectations.
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Let X be a finite set, p : X → [0, 1] be a probability distribution over
elements of X , and define f : X → R. We assume p is known and f can
be evaluated at any x ∈ X . Suppose that we sample a set of m samples
X = {X1, ..., Xm}. The expectation, f̄ , of f(X) with X ∼ p is defined as:

f̄ = E

[
f(X)

∣∣∣∣ X ∼ p] =
∑
x∈X

p(x)f(x), (8)

and its Monte Carlo approximation is defined as:

MC(X) :=
1

m

m∑
i=1

f(Xi). (9)

The Monte Carlo approximation weights each f(x) by the frequency at
which x occurs in the data. However, this weighting is sub-optimal in that
the weights are inaccurate unless we happen to observe each x according to
its true probability, p(x). When the frequency of any element of X in X is

Fig. 2: Sampling error when sampling from a set with three possible samples.
Samples are sampled i.i.d. with the given probabilities and are observed in the
given proportion. A Monte Carlo estimate will place too much weight on A
and C and too little weight on B.

unequal to its expected frequency under p, the Monte Carlo estimator puts
either too much or too little weight on that element. We refer to error due to
some elements being either over- or under-represented in the observed data as
sampling error. Figure 2 illustrates sampling error for |X | = 3.

Sampling error in the Monte Carlo estimator can be viewed as a distribution
shift problem; we want to observe samples weighted by p but instead they are
weighted by the empirical distribution at which they occur. Let pX : X → [0, 1]

be the proportion of times that x occurs in X. Formally, we define pX(x) := c(x)
m

where c(s) is the number of times that we observe x in X. We call pX the
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empirical distribution of X. Given these definitions, the Monte Carlo estimator
can be re-written as:

MC(X) =
1

m

m∑
j=1

f(Xj)

=
1

m

∑
x∈X

c(x)f(x)

=
∑
x∈X

pX(x)f(x)

= E

[
f(X)

∣∣∣∣ X ∼ pX] (10)

Notably, the sample average in (9) has been replaced with an exact expectation
as in (8). However, the expectation is taken under the empirical distribution
pX and not p.

The Monte Carlo estimator is an unbiased estimator of the true value of
the expectation [Hammersley and Handscomb, 1964, Chapter 2]. That is, if
we were to repeatedly sample batches of data and compute the estimate, the
estimates would be correct in expectation. However, once a single batch of
data has been collected, we might ask, “can we correct for the sampling error
observed in this fixed sample?”

In fact, (10) suggests a simple solution to correcting sampling error. If the
Monte Carlo weights samples according to the empirical distribution, we need
only apply importance sampling to correct from the empirical distribution,
pX , to the distribution of interest, p. Previous work in the causal inference
[Rosenbaum, 1987, Hirano et al., 2003] and Monte Carlo integration literature
[Henmi et al., 2007] has shown such an approach to be effective at improving
Monte Carlo estimators. However in RL, p is unknown for both state-action
expectations and trajectory expectations and thus we cannot compute the
numerator of the importance weight. Thus a direct application of previous
research is impossible. In the following sections we show that, as long as we
know the policy, we can still use importance sampling to partially correct
sampling error.

3 Correcting Sampling Error in State-Action Expectations

We now introduce the first contribution of this work: a new estimator for
on-policy, state-action expectations that corrects sampling error by importance
sampling with an estimated behavior policy. The inspiration for this method
comes from the view, presented in the previous section, that sampling error in
a Monte Carlo estimate can be viewed as distribution shift – we are interested
in an expectation weighting samples by their true distribution but instead have
an expectation weighting samples by their empirical distribution. We call this
new estimator the sampling error corrected (SEC) estimator. In this section
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and the following section, we only consider state-action expectations and the
on-policy case; in Section 5 we will again consider trajectory expectations and
discuss the off-policy case.

We assume that, in addition to the observed data B, we are given a set of
policies, Π where each π′ ∈ Π is a Markovian policy, π′ : S ×A → [0, 1]. The
SEC estimator first estimates π̂ so that π̂ is the maximum likelihood policy
under the observed data:

π̂ := argmax
π′∈Π

k∑
j=1

log π′(Aj |Sj). (11)

For many RL problems, (11) can be formulated as a supervised learning
problem.

After estimating π̂, the SEC estimator computes the estimate:

SEC(B) :=
1

k

k∑
j=1

π(Aj |Sj)
π̂(Aj |Sj)

φ(Sj , Aj). (12)

This estimate is similar to the Monte Carlo estimate (4) except each φ(Si, Ai)
is re-weighted by the ratio of the true likelihood π(Ai|Si) to the estimated
empirical likelihood π̂(Ai|Si). Intuitively, when an action is sampled more often
than its expected frequency, SEC decreases the weight on that action. When
an action is sampled less often than its expected frequency, SEC increases the
weight on that action. Importantly, SEC estimates π̂ with the same k samples
that will be used to compute the estimate. If π̂ is estimated with a different
set of samples then π̂ will contain no information for correcting sampling error
in B.

Recall from the previous section that when the domain of samples is finite,
the batch Monte Carlo estimator can be written as an exact expectation taken
under the empirical distribution of samples. The same is true for the Monte

Carlo estimator when estimating state-action expectations. Let dB(s) := c(s)
k

and πB(a|s) = c(s,a)
c(s) where c(s) is the number of times that state s appears

in B and c(s, a) is the number of times that action a occurred in state s in B.
The Monte Carlo estimator can be written as:

MC(B) =
1

k

k∑
j=1

φ(Sj , Aj) = E

[
φ(S,A)

∣∣∣∣ S ∼ dB , A ∼ πB(·|S)

]
. (13)

Suppose we learn π̂ such that π̂(a|s) = πB(a|s) for all s, a occurring in the
realization of B. In this case,

SEC(B) =
1

k

k∑
j=1

π(Aj |Sj)
πB(Aj |Sj)

φ(Sj , Aj) = E

[
φ(S,A)

∣∣∣∣ S ∼ dB , A ∼ π(·|S)

]
. (14)

Equation (14) shows that the SEC estimator can also be written as an exact
expectation but the action weighting is now under π instead of πB . The state
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weighting is still that of dB; since dπ is unknown we are only able to correct
sampling error due to sampling from the policy. Equation 14 demonstrates an
equivalence between SEC and analytic expectation methods (e.g., all-action
policy gradients Sutton et al. [2000]) in discrete action spaces. In the following
subsection we discuss a different intuition for SEC in continuous action spaces
where analytic expectation methods are more challenging to apply.

Despite the use of importance sampling, we introduce SEC as an on-policy
only estimator. In the off-policy setting, importance sampling corrects from
the distribution that actions were sampled from to the distribution of actions
under the policy of interest. SEC uses importance sampling to correct from
the empirical distribution of actions to the distribution of actions under the
policy of interest. SEC could possibly be extended to the off-policy setting by

combining it with a method that estimates the state density ratio dπ(s)
dπb (s)

[Liu

et al., 2018]. However, this combination is outside the scope of this article.

3.1 Correcting Sampling Error with Continuous Actions

In the previous subsection, we discussed how SEC corrects for sampling error
in finite MDPs. Here, we discuss how SEC corrects for sampling error in MDPs
with continuous-valued action sets. The primary purpose of this discussion
is to build intuition and we limit discussion to a setting that can be easily
visualized. Specifically, we consider a multi-armed bandit problem with scalar,
real-valued actions. We wish to estimate the expectation of function φ : A → R
under policy π which we assume to have bounded support in [0, 1]:

φ̄ = E[φ(A)|A ∼ π] =

∫ 1

0

φ(a)π(a)da. (15)

The Monte Carlo estimate of this expectation with k samples from π is:

MC(B) =
1

k

k∑
i=1

φ(Ai). (16)

Even though the Monte Carlo estimate is a sum over a finite number of
samples, we show it is exactly equal to an integral over a particular piece-
wise function. We assume (w.l.o.g) that the Ai’s are in non-decreasing order
(A0 <= Ai <= Am). Imagine that we divide the range [0, 1] into k equal bins.
We now define piece-wise constant function φ̃MC where φ̃MC(a) = φ(Ai) if a
is in the ith bin. The Monte Carlo estimate is exactly equal to the integral∫ 1

0
φ̃MC(a)da.

It would be reasonable to assume that φ̃MC(a) is approximating φ(a)π(a)
since the Monte Carlo estimate (16) is approximating (15), i.e., lim

m→∞
φ̃MC(a) =

φ(a)φ(a). In reality, φ̃MC approaches a stretched version of φ where areas with
high density under π are stretched and areas with low density are contracted.
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(a) Policy and φ (b) 10 Sample Approx. (c) 200 Sample Approx.

Fig. 3: Expectation evaluation in a continuous armed bandit task. Figure 3a
shows a reward function, φ(a) := a, and the probability density function of a
policy, π, with support on the range [0, 1]. With probability 0.25, π selects an
action less than 0.5 with uniform probability; otherwise π selects an action
greater than 0.5 with uniform probability. All figures show φ̃?: a version of
φ that is stretched according to the density of π; since the range [0.5, 1] has
probability 0.75, φ on this interval is stretched over [0.25, 1]. Figure 3b and 3c
show φ̃? and the piece-wise φ̃MC and φ̃SEC approximations to φ̃? after 10 and
200 samples respectively. SEC counts the frequency that action fall into the
bins a ≤ 0.5 or a > 0.5 to form its empirical estimate of π.

We call this stretched version of φ, φ̃?. The integral of
∫ 1

0
φ̃?(a)da is exactly

the true expected value, φ̄.

Figure 3a gives a visualization of an example φ̃? using on-policy Monte
Carlo sampling from an example π and linear φ. In contrast to the true φ̃?,
the Monte Carlo approximation to φ̃, φ̃MC stretches ranges of φ according to
the number of samples in that range: ranges with many samples are stretched
and ranges without many samples are contracted. As the sample size grows,
any range of φ will be stretched in proportion to the probability of getting a
sample in that range. For example, if the probability of drawing a sample from
[a, b] is 0.5 then φ̃? stretches φ on [a, b] to cover half the range [0, 1]. Figure
3 visualizes φ̃MC the Monte Carlo approximation to φ̃? for sample sizes of 10
and 200.

In this analysis, sampling error corresponds to over-stretching or under-
stretching φ in any given range. The limitation of Monte Carlo sampling can
then be expressed as follows: given π, we know the correct amount of stretching
for any range and yet the Monte Carlo estimator ignores this information and
stretches based on the empirical proportion of samples in a particular range.
On the other hand, SEC first divides by the empirical probability density
function (pdf) (approximately undoing the stretching from sampling) and then
multiplies by the true pdf to more correctly stretch φ. Figure 3 also visualizes
the φ̃SEC approximation to φ̃? for sample sizes of 10 and 200. In this figure, we
can see that φ̃SEC is a closer approximation to φ̃? than φ̃MC for both sample
sizes. In both instances, the squared error of the SEC estimate is less than that
of the Monte Carlo estimate.

Since φ may be unknown until sampled, we will still have non-zero error.
However the Monte Carlo estimate has error due to both sampling error and
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unknown φ values. SEC has error only due to the unknown φ values for actions
that remain unsampled.

3.2 Theoretical Analysis

In this section we establish theoretical properties of the SEC estimator. Since
SEC is a biased estimator of φ̄, the most important properties to establish are
consistency and lower variance compared to the Monte Carlo estimator. In the
following subsections we establish consistency and asymptotically lower variance
under a set of general assumptions. Under a set of stronger assumptions, we
show that the variance of the SEC estimator will always be at most that
of the Monte Carlo estimator. To the best of our knowledge, the only prior
theoretical work on importance sampling with an estimated behavior policy for
state-action expectations is the variance and bias results of Dud́ık et al. [2011]
for contextual bandits. However, this prior work made the assumption that π̂
is estimated independently of the data used to compute the estimate of φ̄ and
is thus inapplicable to SEC.

3.2.1 Consistency

We prove that the SEC estimator is a consistent estimator of φ̄ under the
following assumption:

Assumption 3 (Consistent estimation of π̂)

argmax
π∈Π

k∑
j=1

log π(Aj |Sj)
a.s.−−→ π

where
a.s.−−→ denotes almost sure convergence.

This assumption is fairly easy to satisfy assuming that the true policy, π,
is included in Π and the log likelihood and estimated log likelihood satisfy
smoothness assumptions with respect to Π. We discuss these mild assumptions
further in Appendix A when we provide a full proof of Proposition 1.

Proposition 1 Under Assumption 3, the SEC estimator is a consistent esti-
mator of φ̄:

SEC(D)
a.s.−−→ φ̄.

Proof See Appendix A.

3.2.2 Asymptotic Variance

Consistency is an important property as it establishes the asymptotic correct-
ness of an estimator. We next establish an ordering between the variances
of the SEC and Monte Carlo estimators. In this section, we show that the
asymptotic variance of the SEC estimator is at most that of the Monte Carlo
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estimator when π and π̂ both belong to the same parametric family. This result
is a corollary to an existing result in the Monte Carlo integration literature
[Henmi et al., 2007] and is shown under the following assumptions:

Assumption 4 The policy set, Π is a set of policies parameterized by a vector
θ and all policies πθ ∈ Π are twice differentiable with respect to θ.

Assumption 5 Policy π is in the parameterized set of policies considered by
SEC. ∃θ̃ such that πθ̃ ∈ Π and πθ̃ = πb.

These assumptions cover widely used choices of policy approximation such
as neural networks and linear functions. Under these assumptions, we prove
Corollary 1:

Corollary 1 Let VarA(EST) denote the asymptotic variance of estimator EST.
Under assumptions 4 and 5,

VarA(SEC) ≤ VarA(MC).

Proof See Appendix C.

3.2.3 Variance

Corollary 1 is derived under a set of mild assumptions. With more restrictive
assumptions we can compare the variance of the two estimators in the non-
asymptotic case. This analysis is done under the following assumptions:

Assumption 6 The action space is discrete and if a state is observed then all
actions have also been observed in that state.

Assumption 7 For all observed states, the estimated policy π̂ is equal to πB,
i.e., if action a occurs k times in state s and s occurs n times in B then
π̂(a|s) = k

n .

These more restrictive assumptions are only made for the proof of Proposi-
tion 2.

Proposition 2 Let Var (EST) denote the variance of estimator EST. Under
Assumptions 6 and 7, for the Monte Carlo estimator, MC, and the SEC
estimator, SEC:

Var (SEC(B)) ≤ Var (MC(B))

Proof The full proof is provided in Appendix D.
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4 Empirical Study: State-Action Expectations

We have introduced the SEC estimator as a general estimator for state-action
expectations in reinforcement learning. In order to empirically evaluate the
SEC estimator, we apply the general estimator to the problem of estimating
the policy gradient for use in a policy gradient algorithm. Specifically, we focus
on batch policy gradient algorithms that repeatedly collect a batch of on-policy
trajectories, estimate the policy gradient, update the policy, and then discard
previously collected data to collect more trajectories for the next update. We
show that variants of trust-region policy optimization (TRPO) [Schulman et al.,
2015] and REINFORCE [Williams, 1992] that use the SEC estimator converge
faster than their counterparts that use the Monte Carlo estimator.

Recall from Section 2.2.1 that in policy gradient reinforcement learning, a
parameterized policy πθ is updated with stochastic gradient ascent, using the
gradient of its expected return:

∂

∂θ
v(πθ) ∝ E

[
qπθ (S,A)

∂

∂θ
log πθ(A|S)

∣∣∣∣ S ∼ dπθ
, A ∼ πθ

]
. (17)

The SEC estimator for the right-hand side of (17) is given as:

SEC(B) :=
1

k

k∑
j=1

πθ(Aj |Sj)
π̂(Aj |Sj)

q̂πθ (Sj , Aj)
∂

∂θ
log πθ(Aj |Sj). (18)

where q̂πθ is an estimate of qπθ . In Algorithm 1 we provide pseudocode for
a generic batch policy gradient algorithm using the SEC estimator. Having
instantiated the SEC estimator for batch policy gradient learning, we now
conduct an empirical study comparing the SEC policy gradient estimator to
the Monte Carlo policy gradient estimator. Our experiments are designed to
answer the questions:

1. Does the SEC policy gradient estimator lead to faster convergence for batch
policy gradient algorithms compared to the Monte Carlo estimator?

2. Does the SEC estimator reduce variance by correcting sampling error?

4.1 Empirical Set-up: State-Action Expectations

In each RL task that we consider we choose a policy gradient algorithm (either
REINFORCE or TRPO) and evaluate the number of policy update steps until
convergence for a variant that uses the SEC estimator as compared to a variant
that used the Monte Carlo estimator. For each task and each algorithm variant
we run a series of trials where a single trial consists of a fixed number of policy
updates. The policy gradient algorithms considered require an estimate of
qπθ (s, a) for any s, a that are observed in B. We use the sum of discounted
rewards following action a in state s as an estimate of qπθ (s, a). We also use a
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Algorithm 1 Sampling Error Corrected Batch Policy Gradient
Input: Initial policy parameters, θ0, batch size k, a step-size for each iteration,
αi, and number of iterations n.
Output: Optimized policy parameters θn.
1: for all i = 0 to n do
2: Sample k steps (S,A) ∼ πθi

3: π̂i ← argmax
π′

k∑
j=1

log π′(aj |sj)

4: gsec ← 1
k

k∑
j=1

πθ(aj |sj)
π̂i(aj |sj)

q̂πθ (sj , aj , ·)
∂

∂θ
log πθi (aj |sj)

5: θi+1 = θi + αigsec
6: end for
7: Return θn

state-dependent baseline, vπθ (s), as is common in the policy gradient literature
[Greensmith et al., 2004, Schulman et al., 2016, Williams, 1992].

We next describe four reinforcement learning tasks, the empirical set-up
for each task, and the motivation for evaluating SEC in these domains. Figure
4 displays images of these domains.

(a) Grid World
(b) Mountain Car

(c) LDS
(d) Cart Pole

Fig. 4: Illustrations of the domains used in our experiments. LDS is short for
Linear Dynamical System.

4.1.1 Grid World

Our first domain is a 4× 4 Grid World and we use REINFORCE [Williams,
1992] as the underlying batch policy gradient algorithm. The agent begins in
grid cell (0, 0) and trajectories terminate when it reaches (3, 3). The agent
receives a reward of 100 at termination, −10 at (1, 1) and −1 otherwise. The
agent’s policy is a state-dependent softmax distribution over actions:

πθ(a|s) =
eθs,a∑

a′∈A e
θs,a′

.

With this representation, the policy does not generalize across states or actions.
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The SEC estimator estimates the policy by counting how many times each
action is taken in each state. This domain closely matches the assumptions
made in our theoretical analysis. Specifically, the action set is finite and π̂ is
exactly equal to πB . While we do not explicitly enforce the assumption that all
actions are observed in all states, the small size of the state and action space
(|S| = 16 and |A| = 4) makes it likely that this assumption holds.

In our implementation of REINFORCE, we normalize the gradient estimates
by dividing by their magnitudes and use a step-size of 1. At each iteration,
each method collects a batch of 10 trajectories with the current policy.

4.1.2 Tabular Mountain Car

Our second domain is a discretized version of the classic Mountain Car domain
[Moore, 1990, Singh and Sutton, 1996], where an agent attempts to move an
under-powered car up a steep hill by accelerating to the left or right or not
accelerating. The original task has a state of the car’s position (a continuous
scalar in the range [−1.2, 0.6]) and velocity (a continuous scalar in the range
[−0.07, 0.07]). Following Jiang and Li [2016], we discretize position into 6 bins
and velocity into 8 bins for a total of 4292 states. We use the discretized version
of the task because the large number of discrete states makes it unlikely that
all actions are observed in all visited states (in violation of Assumption 6). The
domain does still match the assumptions in Section 3.2.3 in that the action set
is finite and the estimated behavior policy is exactly equal to πB .

We again use REINFORCE as the batch policy gradient algorithm. The
agent’s policy is a state-dependent softmax distribution over the three discrete
actions as is used in the Grid World domain. The SEC estimator estimates the
policy using the empirical proportion of times that each action is taken in each
state.

As in Grid World we normalize the gradient estimates by dividing by their
magnitudes and use a step-size of 1. We run each method with batch sizes of
100, 200, 600, and 800 trajectories.

4.1.3 Linear Dynamical System

Our third domain is a two-dimensional linear dynamical system in which we
evaluate SEC when actions are real-valued vectors. The reward is the agent’s
distance to the origin and trajectories last for 20 time-steps. In this domain
the learning agent observes horizontal and vertical position and velocity and
uses a linear Gaussian policy to select continuous valued accelerations in the
horizontal and vertical direction:

π(·|s) := N (µ(s),θσ) µ(s) := s · θw + θb,

where θσ, θw, and θb are the policy parameters, θ. We use the OpenAI Baselines
[Dhariwal et al., 2017] implementation of TRPO as the underlying batch policy
gradient algorithm. We set the generalized advantage estimation [Schulman
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et al., 2016] parameters (γ, λ) both to 1. We estimate π̂ with ordinary least
squares and estimate a state-independent variance parameter. In this domain,
none of our theoretical assumptions hold: the action and state sets are infinite
and π̂ 6= πB . We include it to evaluate SEC with simple function approximation.
At each iteration, we use a batch size of 1000 time-steps and set the TRPO
KL-divergence constraint, ε = 0.01.

4.1.4 Cart Pole

Our final domain is the Cart Pole domain from OpenAI Gym [Brockman
et al., 2016] and we again use TRPO as the underlying batch policy gradient
algorithm. At each iteration, we run the current policy for 200 steps and set
the KL-divergence constraint, ε = 0.001. The policy representation is a two
layer neural network with 32 hidden units in each layer where θ consists of the
weights and biases of the network. The input to the policy is the position and
velocity of the cart and the angle and angular velocity of the pole. The output
of the network is the parameters of a softmax distribution over the two actions.
Estimating π̂ is equivalent to learning a soft classifier that attempts to classify
what action πθ would take in a given state. We consider two parameterizations
of Π:

1. Each π ∈ Π is a neural network with the same architecture as πθ. We learn
π̂ with gradient descent, using all data in B to estimate the gradient. We
refer to this method as SEC Neural Network.

2. Each π ∈ Π is a linear function that receives the activations of the last
hidden layer of πθ as input. The dual π̂ and πθ architecture is shown in
Figure 5. We estimate the weights of π̂ with gradient descent, using all data
in B to estimate the gradient. This method is labeled SEC Linear.

Again, this domain violates all assumptions made in our theoretical analysis. We
include this domain to study SEC with more complex function approximation.
This setting allows us to study SEC with neural network policies but is simple
enough to avoid extensive tuning of hyper-parameters.

4.2 Empirical Results: State-Action Expectations

We now present our empirical results for estimating state-action expectations
with the SEC estimator.

4.2.1 Main Results

Results for the Linear Dynamical System (LDS), and Cart Pole environment
are given in Figure 6. In both domains, we see that the SEC methods lead to a
learning speed-up compared to the Monte Carlo based approaches. In the LDS
domain, SEC outperforms Monte Carlo in time to convergence to optimal. In
Cart Pole, both variants of SEC learn faster initially, however, Monte Carlo
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Fig. 5: A simplified version of the neural network architecture used in Cart
Pole. The true architecture has 32 hidden units in each layer. The current
policy πθ is given by a neural network that outputs the action probabilities as
a function of state (black nodes). The estimated policy, π̂, is a linear policy
that takes as input the activations of the final hidden layer of πθ. Only the
weights on the red, dashed connections are changed when estimating π̂.

(a) LDS (b) Cart Pole

Fig. 6: Learning results for the Linear Dynamical System (LDS) and Cart Pole
domains. The horizontal is the number of timesteps and the vertical axis is
the average return of a policy. We run 25 trials of each method using different
random seeds. The shaded region represents a 95% confidence interval. In both
domains we see that all variants of sampling error corrected policy gradient
outperform the batch Monte Carlo policy gradient in either time to optimal
convergence or final performance.

catches up to the neural network version of SEC. This result demonstrates that
we can leverage intermediate representations of πθ (in this case, the activations
of the final hidden layer) to learn π̂ with a simpler model class. In fact, results
suggest that fitting a simpler model improves performance.
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4.2.2 Tabular Mountain Car

We also compare SEC to Monte Carlo in the Mountain Car domain. We run
our experiments four times with a different batch size in each experiment. Each
experiment consists of 25 trials for each algorithm.

Figure 7 shows results for each of the different tested batch sizes. For each
batch size, we can see that SEC improves upon the Monte Carlo approach. The
relative improvement does change across batches. With the largest batch size,
improvement is marginal as the large batch size means that the Monte Carlo
estimate will have low variance. For the smallest batch size, improvement is
again marginal – though the small batch size means Monte Carlo has higher
variance, it also means that SEC may have higher bias as some actions will
be unobserved in visited states. Intermediate batch sizes have the widest gap
between the two methods – the batch size is small enough that Monte Carlo
has high variance but that SEC has less bias.

4.2.3 Grid World Experiments

Figure 8 shows several results in the Grid World domain. First, Figure 8a shows
that SEC leads to faster convergence compared to Monte Carlo. This domain
most closely matches our theoretical assumptions where we showed SEC has
lower variance than Monte Carlo estimates. The lower variance translates into
faster learning.

We also use the Grid World domain to perform a quantitative evaluation
of sampling error. As a measure of sampling error we use the total variation
distance between the current policy πθ and the empirical frequency of actions,
πB. For any state s, the total variation distance between the two policies is
given by:

DTV(πθ(·|s), πB(·|s)) :=
∑
a∈A
|πθ(a|s)− πB(a|s)|.

We report the mean DTV value over states in B as a measure of sampling error.
We choose the total variation distance as opposed to the more commonly used
KL-divergence since πB and πθ may not share support. That is, there may be
an action, a, where πB(a|s) is 0 and πθ(a|s) > 0.

Figure 8b shows that sampling error increases and then decreases during
learning. Peak sampling error correlates with where the learning curve gap
between the two methods is greatest. Note that sampling error naturally
decreases as learning converges because the policy becomes more deterministic.
Figure 8c shows that the entropy of the current policy goes to zero, i.e., becomes
more deterministic. A more deterministic policy will have less sampling error
and so we expect to see less advantage from SEC as learning progresses.

We also perform a sensitivity analysis of SEC to the batch-size at each
iteration. We run 10 trials each of the SEC and Monte Carlo policy gradient
algorithms with batch-sizes from 1 to 1000 trajectories. For each method and
batch-size we compute the mean area-under-the-curve (AUC) for the average
return up to iteration 20 (close to where learning converges). We then compute
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(a) Batch Size = 100 (b) Batch Size = 200

(c) Batch Size = 600 (d) Batch Size = 800

Fig. 7: Learning results for the Mountain Car domain with different batch sizes.
The horizontal axis is the number of iterations (i.e., the number of times the
policy has been updated). The vertical axis is average return. We run 25 trials
of each method using different random seeds. The shaded region represents
a 95% confidence interval. For all batch sizes we see that the sampling error
corrected policy gradient outperforms the batch Monte Carlo policy gradient in
either time to optimal convergence or final performance after 1000 iterations.

the relative improvement of SEC compared to Monte Carlo for each batch-size
as:

PctImprove :=
AUCSEC − AUCMC

AUCMC
.

Figure 9a shows that the performance improvement is greatest when the batch-
size is small and decreases as the batch-size grows. When the batch-size is
small, the Monte Carlo policy gradient will have the highest sampling error
and thus SEC has the most room for improvement. As the batch-size grows,
sampling error decreases and the SEC improvement is more marginal.
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Finally, we verify the importance of using the same data to both estimate
π̂ and estimate the policy gradient. Figure 9b introduces two alternatives to
SEC:

– INDEPENDENT: Estimates π̂ with a separate set of k samples and then
compute the SEC estimate using this π̂.

– RANDOM: Instead of computing importance weights, we randomly sample
weights from a normal distribution and use them in place of the learned
SEC weights. The normal distribution has mean one and standard deviation
chosen to approximately match the range of weights seen when using the
SEC estimator.

Figure 8a shows that INDEPENDENT hurts performance compared to Monte
Carlo. RANDOM performs marginally worse than Monte Carlo. This result
demonstrates the need to use the same set of data to estimate π̂ and compute
the SEC estimate.

(a) Average Return (b) Sampling Error (c) Entropy

Fig. 8: Sampling error corrected policy gradient in the Grid World Domain.
Figure 8a shows the average return for SEC and MC. Figure 8b shows the
total variation distance between the current policy and estimated policy at
each iteration. Figure 8c shows policy entropy at each iteration. Results are
averaged over 25 trials and confidence bars are for a 95% confidence interval.

To conclude our empirical study of the SEC estimator for state-action
expectations, we have shown that correcting sampling error with the SEC
estimator can decrease the number of policy updates needed for a batch
policy gradient algorithm to converge. This empirical study focused on using
SEC to lower the variance of policy gradient estimates compared to a Monte
Carlo estimator. However, SEC is a general estimator for any reinforcement
learning problem that requires estimating a state-action expectation and is
thus potentially applicable to other problems, for example, policy evaluation
in average reward reinforcement learning. Unfortunately, not all expectations
in reinforcement learning can be easily written as state-action expectations. In
the next section, we describe how to correct sampling error when estimating
trajectory expectations.
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(a) Batch Size Sensitivity (b) Alternative Weightings

Fig. 9: Sampling error corrected policy gradient ablations in the Grid World
Domain. Figure 9a shows the percent improvement of SEC compared to Monte
Carlo for varying batch sizes. For each batch size, we compute area under
the average return curve (AUC) for each method during the first 20 learning
iterations. We compute the mean AUC over 10 trials and report the percent
improvement of the SEC mean over Monte Carlo. Figure 9b shows average
return for two alternative weight corrections. Results are averaged over 25
trials and confidence bars are for a 95% confidence interval.

5 Correcting Sampling Error in Trajectory Expectations

In this section we introduce the second contribution of this article: a family of
estimators called regression importance sampling (RIS) estimators that correct
for sampling error in the set of observed trajectories, D, by importance sampling
with an estimated behavior policy. In contrast to SEC that corrects sampling
error when estimating state-action expectations with on-policy data, RIS
estimators correct sampling error for estimating trajectory expectations with
either on-policy or off-policy data. Since we consider both the on- and off-policy
cases, we will discuss the RIS estimator relative to the ordinary importance
sampling (OIS) estimator that generalizes the Monte Carlo estimator to the
off-policy setting (see Section 2).

As with SEC, we assume that, in addition to D, we are given a set of policies.
Unlike SEC, we assume this set, Πn, (possibly) contains non-Markovian policies:
each π ∈ Πn is a distribution over actions conditioned on the immediate
preceding state and the last n states and actions preceding that state: π : Sn+1×
An → [0, 1]. The RIS(n) estimator first estimates the maximum likelihood
behavior policy in Πn under D:

π̂(n) := argmax
π∈Πn

m∑
i=1

l−1∑
t=0

log π(Ait|Hi
t−n:t). (19)
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When n = 0, RIS and SEC return the same π̂. The RIS(n) estimate is then an
OIS estimate with π̂(n) replacing πb.

RIS(n)(π,D) :=
1

m

m∑
i=1

χ(Hi)

l−1∏
t=0

π(Ait|Sit)
π̂(n)(Ait|Hi

t−n:t)
(20)

We refer to π(At|St)
π̂(n)(St|Ht−n:t)

as the RIS(n) weight for action At, state St, and

trajectory segment Ht−n:t. Though RIS(0) and SEC would return the same
π̂, RIS(0) corrects sampling error along the entire trajectory since it uses the
product of importance weights.

We have introduced RIS as a family of estimators where different RIS
methods estimate the empirical behavior policy conditioned on different history
lengths. Among these estimators, our primary method of study is RIS(0). For
larger n, RIS(n) may be less reliable for small sample sizes as the π̂(n) estimate
will be highly peaked (it will be 1 for most observed actions.) We verify this
claim empirically below. However, as we discuss in Section 6.2.2, larger n may
produce asymptotically more accurate sampling error corrections and thus
asymptotically more accurate estimates.

5.1 Correcting Sampling Error in Discrete Action Spaces

We now present an example illustrating how RIS corrects for sampling error
when used to estimate trajectory expectations. Our goal in this section is
to build intuition and we make several limiting assumptions to facilitate
presentation. These assumptions are removed for our more formal theoretical
and empirical analysis and should not be understood as limitations of RIS
methods. We make the following assumptions:

1. S and A are finite sets.
2. The distributions d0 and P are deterministic, that is, d0(s) = 1 for only

one s ∈ S and for all s, a, P (s′|s, a) = 1 for only one s′ ∈ S.
3. Let H be the (finite) set of possible trajectories under behavior policy, πb.

We assume that our observed data, D, contains at least one of each h ∈ H.

We define c(hi:j) as the number of times that trajectory segment hi:j appears
during any trajectory in D. Similarly, we define c(hi:j , a) as the number of
times that action a is observed following trajectory segment hi:j during any
trajectory in D. RIS(n) estimates the empirical behavior policy as:

π̂(a|hi−n:i) :=
c(hi−n:i, a)

c(hi−n:i)
.

Observe that both OIS and all variants of RIS can be written in one of two
forms:

1

m

m∑
i=1

wπ(Hi)

wπ′(Hi)
χ(Hi)︸ ︷︷ ︸

(i)

=
∑
h∈H

c(h)

m

wπ(h)

wπ′(h)
χ(h)︸ ︷︷ ︸

(ii)
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where wπ′(h) =
∏l−1
t=0 π

′(at|st) and for OIS, π′ := πb and for RIS(n), π′ := π̂(n)

as defined in Equation (19).
If we had sampled trajectories using π̂(l−1) instead of πb, in a deterministic

environment, the probability of each trajectory, h, would be Pr(H = h|H ∼
π̂(l−1)) = c(h)

m . Thus Form (ii) can be written as:

E

[
wπ(H)

wπ′(H)
χ(H)

∣∣∣∣H ∼ π̂(l−1)
]
.

To emphasize what we have shown so far: OIS and RIS are both sample-
average estimators whose estimates can be written as exact expectations.
However, this exact expectation is under the distribution that trajectories were
observed and not the distribution of trajectories under πb. Furthermore, the
distribution that trajectories were observed is the trajectory distribution of a
non-Markovian behavior policy.

Consider choosing wπ′ := w
(l−1)
πD as RIS(l − 1) does. This choice results

in (ii) being exactly equal to E[χ(H)|H ∼ π].3 On the other hand, choosing
wπ := wπb will not return E[χ(H)|H ∼ π] unless we happen to observe each
trajectory at its expected frequency (i.e., π̂(l−1) = πb).

Choosing wπ′ to be wπ̂(n) for n < l−1 also does not result in E[χ(H)|H ∼ π]
being returned in this example. This observation is surprising because even
though we know that the true Pr(H = h|πb) =

∏l−1
t=0 πb(at|st), it does not

follow that the estimated probability of a trajectory is equal to the product of

the estimated Markovian action probabilities, i.e., that c(h)
m =

∏l−1
t=0 π̂

(0)(at|st).
With a finite number of samples, the data may have higher likelihood under
a non-Markovian behavior policy – possibly even a policy that conditions on
all past states and actions. Thus, to fully correct for sampling error, we must
importance sample with an estimated non-Markovian behavior policy. However,
wπ̂(n) with n < l − 1 still provides a better sampling error correction than wπb
since any π̂(n) will reflect the realized statistics of D while πb only reflects
the expected statistics. This statement is supported by our empirical results
comparing RIS(0) to OIS and a theoretical result we present in the following
section that states that, for all n, RIS(n) has lower asymptotic variance than
the Monte Carlo estimator.

Before concluding this section, we discuss two limitations of the presented
example – these limitations are not present in our theoretical or empirical
results. First, the example lacks stochasticity in the rewards and transitions.
In stochastic environments, sampling error arises from sampling states, actions,
and rewards while in deterministic environments, sampling error only arises
from sampling actions. Like SEC, RIS is only able to correct for stochasticity
in the action selection since d0 and P are unknown. Second, we assumed that
D contains at least one of each trajectory possible under πb. If a trajectory is
absent from D then RIS(l − 1) has non-zero bias. Theoretical analysis of this

3 This statement follows from the importance sampling identity: E[
Pr(H|π)
Pr(H|π′)χ(H)|H ∼

π] = E[χ(H)|H ∼ π] and the fact that we have assumed a deterministic environment.
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bias for both RIS(l − 1) and other RIS variants is an open question for future
analysis.

5.2 Theoretical Analysis

In this section we present theoretical properties of RIS estimators. Like SEC,
we prove consistency and asymptotically lower variance than the Monte Carlo
estimator. To the best of our knowledge, the only prior theoretical work
on importance sampling with an estimated behavior policy for estimating
trajectory expectations is the work of Farajtabar et al. [2018]. This prior work
makes the assumption that π̂ is estimated with different data than the data
used for the estimate and thus the analysis is inapplicable to RIS estimators.

5.2.1 Consistency

Following a similar proof to that of Proposition 1, we show that all RIS
estimators are consistent estimators of χ̄. Like Proposition 1, we require the
assumption of consistent estimation of the behavior policy.

Proposition 3 Under Assumption 3, ∀n, RIS(n) is a consistent estimator of

χ̄: RIS(n)(π,D)
a.s.−−→ χ̄.

Proof See Appendix A for a full proof.

5.2.2 Asymptotic Variance

We also show that all RIS estimators have lower asymptotic variance compared
to the OIS estimator or Monte Carlo estimator. The proof also requires as-
sumptions 4 and 5 to hold for the set of policies, Πn, and behavior policy, πb.

Corollary 2 Under Assumptions 4 and 5,∀n,

VarA(RIS(n)(π,D)) ≤ VarA(OIS(π,D, πb))

where VarA denotes the asymptotic variance.

Proof See Appendix C for a full proof.

6 Empirical Study: Trajectory Expectations

In the previous section, we introduced the RIS estimator as a general estimator
for trajectory expectations in reinforcement learning. In order to empirically
evaluate RIS, we apply the general estimator to the problem of batch policy
evaluation. We show that using RIS and specifically the RIS(0) method leads
to lower mean squared error policy evaluation than OIS in both the on- and
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off-policy case. We also show that RIS weights can be used in conjunction with
other variants of importance sampling to obtain even lower mean squared error
policy evaluation.

Recall from Section 2.2.2 that in the batch policy evaluation problem,
we seek to estimate v(πe) for some evaluation policy, πe. We will assume
we are given a batch of trajectories, D, that was collected by running some
behavior policy, πb. Our objective is to use a policy evaluation method, PE,
that estimates v(πe) with low mean squared error:

MSE

[
PE

]
:= E

[
(PE(D)− v(πe))

2

∣∣∣∣ D ∼ πb].
Our primary baseline is the OIS estimator, though, we also consider extensions
of OIS such as weighted importance sampling [Precup et al., 2000] and doubly
robust estimators [Jiang and Li, 2016, Thomas and Brunskill, 2016a]. Our
experiments are designed to answer the following questions:

1. What is the empirical effect of replacing OIS weights, πe(a|s)
πb(a|s) , with RIS

weights, πe(a|s)π̂(a|s) , in policy evaluation for sequential decision making tasks?

2. How important is using D to both estimate the behavior policy and compute
the importance sampling estimate?

3. How does the choice of n affect the MSE of RIS(n)?

With non-linear function approximation, our results suggest that the com-
mon supervised learning approach of model selection using hold-out validation
loss may be sub-optimal for the RIS estimator. Thus, we also investigate the
question:

4. Does minimizing hold-out validation loss set yield the minimal MSE re-
gression importance sampling estimator when estimating π̂ with gradient
descent and neural network function approximation?

6.1 Empirical Set-up: Trajectory Expectations

We run policy evaluation experiments in several domains. We provide a short
description of each domain here and the motivation for evaluating RIS methods
in these domains.

6.1.1 Grid World

This domain is the same 4 × 4 Grid World used in Section 4 and has been
used in prior off-policy policy evaluation work [Thomas, 2015, Thomas and
Brunskill, 2016a]. This domain allows us to study RIS separately from questions
of function approximation as the small number of states and actions permits
RIS to use count-based estimation of πb. Our first set of experiments uses
a behavior policy, πb, that can reach the high reward terminal state and an
evaluation policy, πe, that is the same policy with lower entropy action selection.
The second set of experiments uses the same behavior policy as both behavior
and evaluation policy.
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6.1.2 Single Path

See Figure 10 for a description. This domain is small enough to make imple-
mentations of RIS(l − 1) and the REG method from Li et al. [2015] tractable.
We include the REG baseline since it can be shown to be equivalent to any RIS
estimator in the contextless bandit setting; see Appendix E for more discussion.
All RIS methods use count-based estimation of πb. In each state, πb selects
action, a0, with probability p = 0.6 and πe selects action, a0, with probability
1−p = 0.4. Action a0 causes a deterministic transition to the next state. Action
a1 causes a transition to the next state with probability 0.5, otherwise, the
agent remains in its current state. The agent receives a reward of 1 for action
a0 and 0 otherwise. The REG baseline is given access to the environment’s
state transition function, P , which it needs to compute its estimate.

6.1.3 Linear Dynamical System

This domain is the same LDS domain used in Section 4. We make one change
which is that policies are linear in a second order polynomial transform of the
state features instead of being linear in the state features. The intention of this
change is to make the true behavior policy be a non-linear function of state
features but still allow us to estimate π̂ with ordinary least squares. We obtain
a basic policy by optimizing the parameters of a policy for 10 iterations of the
Cross-Entropy optimization method [Rubinstein and Kroese, 2013]. The basic
policy maps the state to the mean of a Gaussian distribution over actions. The
evaluation policy and true behavior policy both use the same basic policy to
provide the mean but the evaluation policy uses a standard deviation of 0.5
and πb uses a standard deviation of 0.6.

6.1.4 Simulated Robotics

We also use two continuous control tasks from the OpenAI gym: Hopper and
HalfCheetah.4 In each task, we use neural network policies with 2 layers of
64 tanh hidden units each for πe and πb. Each policy maps the state to the
mean of a Gaussian distribution with state-independent standard deviation.
We obtain πe and πb by running the OpenAI Baselines [Dhariwal et al., 2017]
implementation of proximal policy optimization (PPO) [Schulman et al., 2017]
and then selecting two policies along the learning curve. For both environments,
we use the policy after 30 updates for πe and after 20 updates for πb. These
policies use tanh activations on their hidden units since these are the default
in the OpenAI Baselines PPO implementation. RIS represents the behavior
policy as a Gaussian distribution over possible actions with the mean given
by a neural network function of the state and a state-independent standard
deviation. RIS estimates the behavior policy with gradient descent on the
negative log-likelihood of the actions with respect to the policy parameters.

4 For these tasks we use the Roboschool versions: https://github.com/openai/roboschool
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s0 s1 ... s5
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a1

Fig. 10: The Single Path MDP. This environment has 5 states, 2 actions, and
l = 5. The agent begins in state 0 and both actions either take the agent from
state n to state n+ 1 or cause the agent to remain in state n. Not shown: If
the agent takes action a1 it remains in its current state with probability 0.5.

In all our experiments we use the Adam optimizer [Kingma and Ba, 2015]
with a learning rate of 1× 10−3. The neural network behavior policies learned
by RIS have either 0, 1, 2, or 3 hidden layers with 64 hidden units with relu
activations.

In all domains we run repeated trials of each experiment. Except for the
simulated robotics domains, a trial consists of evaluating the squared error
of different estimators over an increasing data set. The average squared error
over multiple trials is an unbiased estimate of the mean squared error of each
method. In the simulated robotics domain, a trial consists of collecting a single
batch of 400 trajectories and evaluating the squared error of different estimators
on this batch.

6.2 Empirical Results: Trajectory Expectations

We now present our empirical results. Except where specified otherwise, RIS
refers to RIS(0).

6.2.1 Grid World Policy Evaluation

Our first experiment compares several importance sampling variants imple-
mented with both RIS weights and OIS weights in the Grid World domain.
Specifically, we use the basic IS estimator, the weighted IS estimator [Precup
et al., 2000], per-decision IS, the doubly robust [Jiang and Li, 2016], and the
weighted doubly robust estimator [Thomas and Brunskill, 2016a]. Figure 11a
shows the MSE of the evaluated methods averaged over 100 trials. The results
show that, for this domain, using RIS weights lowers MSE for all tested IS
variants relative to OIS weights.

We also evaluate alternative data sources for estimating π̂ in order to
establish the importance of using D to both estimate π̂ and compute the
estimate. Specifically, we consider:

1. Independent Estimate: In addition to D, this method has access to an
additional set, Dtrain. The behavior policy is estimated with Dtrain and
the policy value estimate is computed with D. Since state-action pairs in
D may be absent from Dtrain we use Laplace smoothing (i.e., we add 1
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to the count for each (s, a) pair [Manning et al., 2008]) to ensure that the
importance weights never have a zero in the denominator.

2. Extra-data Estimate: This baseline is the same as Independent Esti-
mate except it uses both Dtrain and D to estimate πb. Only D is used to
compute the policy value estimate.

Figure 11f shows that these alternative data sources for estimating πb decrease
accuracy compared to RIS and OIS. Independent Estimate has high MSE
when the sample size is small but its MSE approaches that of OIS as the
sample size grows. We understand this result as showing that this baseline
cannot correct for sampling error in the off-policy data since the behavior
policy estimate is unrelated to the data used in computing the value estimate.
Extra-data Estimate initially has high MSE but its MSE decreases faster
than that of OIS. Since this baseline estimates πb with data that includes D,
it can partially correct for sampling error – though the extra data harms its
ability to do so. Only estimating π̂ with D and D alone lowers MSE over OIS
for all sample sizes.

We also repeat these experiments for the on-policy setting and present
results in Figure 11d and Figure 11e. We observe similar trends as in the
off-policy experiments suggesting that RIS can lower variance in Monte Carlo
sampling methods even when OIS weights are otherwise unnecessary.

In both the on- and off-policy setting, we measure the empirical decom-
position of the MSE for RIS into its bias and variance components. In both
settings we see that variance is the primary contributor to the MSE. In the
on-policy setting, we find that RIS initially has a higher bias but this bias
decreases to a negligible amount with a small number of trajectories.

6.2.2 RIS(n)

In the Grid World domain it is difficult to observe the performance of RIS(n)
for various n because of the long horizon: smaller n perform similarly and larger
n scale poorly with l. To see the effects of different n more clearly, we use the
Single Path domain. Figure 12 gives the mean squared error for OIS, RIS, and
the REG estimator of Li et al. [2015] that has full access to the environment’s
transition probabilities. For RIS, we use n = 0, 3, 4 and each method is run for
200 trials.

Figure 12 shows that higher values of n and REG tend to give inaccurate
estimates when the sample size is small. However, as data increases, these
methods give increasingly accurate value estimates. In particular, REG and
RIS(4) produce estimates with MSE more than 20 orders of magnitude below
that of RIS(3) (Figure 12 is cut off at the bottom for clarity of the rest of the
results). REG eventually passes the performance of RIS(4) since its knowledge
of the transition probabilities allows it to eliminate sampling error in both the
actions and the environment. In the low-to-medium data regime, only RIS(0)
outperforms OIS. However, as data increases, the MSE of all RIS methods and
REG decreases faster than that of OIS. We provide an additional, informal
analysis of the observed similarities between RIS and REG in Appendix E.
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(a) Off-Policy (b) Off-Policy Alternatives (c) Off-Policy Bias-Var

(d) On-Policy (e) On-Policy Alternatives (f) On-Policy Bias-Var

Fig. 11: Grid World policy evaluation results. In all subfigures, the horizontal
axis is the number of trajectories collected and the vertical axis is mean squared
error. Axes are log-scaled. The shaded region represents a 95% confidence
interval. (a) Grid World Off-policy Policy Evaluation: The main point of
comparison is the RIS variant of each method to the OIS variant of each
method. (b) Grid World π̂ Estimation Alternatives: This plot compares RIS
and OIS to two methods that replace the true behavior policy with estimates
from data sources other thanD. (c) Empirical Bias2 and Variance decomposition
of MSE for RIS. Subfigures (d), (e), and (f) are for identical experiments to
(a), (b), and (c) respectively except with the behavior policy from the first
experiments as the evaluation policy (on-policy setting).

6.2.3 RIS with Linear Function Approximation

Our next set of experiments consider continuous state and action spaces in the
Linear Dynamical System domain. RIS represents π̂ as a Gaussian policy with
mean given as a linear function of the state features. Similar to in Grid World,
we compare three variants of IS, each implemented with RIS and OIS weights:
the ordinary IS estimator, weighted IS (WIS), and per-decison IS (PDIS). Each
method is averaged over 200 trials and results are shown in Figure 13a.

We see that RIS weights lower the MSE of both IS and PDIS, while both
WIS variants have similar MSE. This result suggests that the MSE reduction
from using RIS weights depends, at least partially, on the variant of IS being
used.

Similar to Grid World, we also consider estimating π̂ with either an inde-
pendent data-set or with extra data and see a similar ordering of methods.
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Fig. 12: Off-policy policy evaluation in the Single Path MDP for various n.
The horizontal axis is the number of trajectories in D and the vertical axis
is MSE. Both axes are log-scaled. The curves for REG and RIS(4) have been
cut-off to more clearly show all methods. These methods converge to an MSE
value of approximately 1× 10−31

(a) LDS (b) LDS Alt. Weights

Fig. 13: Linear dynamical system results. Figure 13a shows the mean squared
error (MSE) for three IS variants with and without RIS weights. Figure 13b
shows the MSE for different methods of estimating the behavior policy compared
to RIS and OIS. Axes and scaling are the same as in Figure 11a.

Independent Estimate gives high variance estimates for small sample sizes
but then approaches OIS as the sample size grows. Extra-Data Estimate
corrects for some sampling error and has lower MSE than OIS. RIS lowers
MSE compared to all baselines.
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6.2.4 RIS with Neural Network Function Approximation

Our remaining experiments use the Hopper and HalfCheetah domains with
neural network function approximation. A practical concern for RIS estimators
(and also SEC) is how to avoid over-fitting when using powerful function
approximation to estimate the empirical policy. RIS uses all of the available
data to both estimate π̂ and compute the off-policy estimate of E[χ(H)|H ∼ πe].
Unfortunately, the RIS estimate may suffer from high variance if the function
approximator is too expressive and π̂ is over-fit to our data. Additionally, if the
functional form of the true behavior policy, πb, is unknown, it may be unclear
what is the right function approximation representation for π̂. A practical
solution is to use a validation set – distinct from D – to select an appropriate
policy class and appropriate regularization criteria for RIS. This solution is a
small departure from the previous definition of RIS as selecting π̂ to maximize
the log likelihood on D and only D. Rather, we select π̂ to maximize the
log likelihood on D while avoiding over-fitting. This approach represents a
trade-off between robust empirical performance and a potentially stronger
sample correction by further maximizing log likelihood on the data used for
computing the RIS estimate.

Figure 14 compares the MSE of RIS for different neural network architec-
tures. Our main point of comparison is RIS using the architecture that achieves
the lowest validation error during training (the darker bars in Figure 14). Under
this comparison, the MSE of RIS with a two-hidden-layer network is lower
than that of OIS in both Hopper and HalfCheetah, though, in HalfCheetah,
the difference is statistically insignificant. We also observe that the policy class
with the best validation error does not always give the lowest MSE (e.g., in
Hopper, the two hidden layer network gives the lowest validation loss but the
network with a single layer of hidden units has ≈ 25% less MSE than the two
hidden layer network). This last observation motivates our final experiment.

6.2.5 RIS Model Selection

Our final experiment aims to better understand how hold-out validation error
relates to the MSE of the RIS estimator when using gradient descent to estimate
neural network approximations of π̂. This experiment duplicates our previous
experiment, except every 25 steps of gradient descent we stop optimizing π̂ and
compute the RIS estimate with the current π̂ and its MSE. We also compute
the training and hold-out validation negative log-likelihood. Plotting these
values gives a picture of how the MSE of RIS changes as our estimate of π̂
changes. Figure 15 shows these plots for the Hopper and HalfCheetah domains.

We see that the policy with minimal MSE and the policy that minimizes
validation loss are misaligned. If training is stopped when the validation loss
is minimized, the MSE of RIS is lower than that of OIS (the intersection of
the RIS curve and the vertical dashed line in Figure 15. However, the π̂ that
minimizes the validation loss curve is not identical to the π̂ that minimizes
MSE.



Importance Sampling with an Estimated Behavior Policy 35

(a) Hopper (b) HalfCheetah

Fig. 14: Figures 14a and 14b compare different neural network architectures
(specified as #-layers-#-units) for regression importance sampling on the
Hopper and HalfCheetah domain. The darker, blue bars give the MSE for each
architecture and OIS. Lighter, red bars give the negative log likelihood of a
hold-out data set. Our main point of comparison is the MSE of the architecture
with the lowest hold-out negative log likelihood (given by the darker pair of
bars) compared to the MSE of OIS.

To understand this result, we also plot the mean RIS estimate throughout
behavior policy learning (bottom of Figure 15). We can see that at the beginning
of training, RIS tends to over-estimate v(πe) because the probabilities given by
π̂ to the observed data will be small (and thus the RIS weights are large). As
the likelihood of D under π̂ increases (negative log likelihood decreases), the
RIS weights become smaller and the estimates tend to under-estimate v(πe).
The implication of these observations, for RIS, is that during behavior policy
estimation the RIS estimate will likely have zero MSE at some point. Thus,
there may be an early stopping criterion – besides minimal validation loss –
that would lead to lower MSE with RIS, however, to date we have not found
one. Note that OIS also tends to under-estimate policy value in MDPs as has
been previously analyzed by Doroudi et al. [2017].

7 Related Work

In this section we survey literature related to importance sampling with an es-
timated behavior policy, alternatives to Monte Carlo sampling in reinforcement
learning, and variance reduction for Monte Carlo sampling.

7.1 Importance Sampling with an Estimated Behavior Policy

A number of research works have shown that estimating the denominator
of importance weights (instead of using the true probabilities) lowers the
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(a) Hopper (b) HalfCheetah

Fig. 15: Mean squared error and estimate of the importance sampling estimator
during training of πD. The horizontal axis is the number of gradient descent
steps. The top plot shows the training and validation loss curves. The vertical
axis of the top plot is the average negative log-likelihood. The y-axis of the
middle plot is mean squared error (MSE). The y-axis of the bottom plot is
the value of the estimate. MSE is minimized close to, but slightly before, the
point where the validation and training loss curves indicate that overfitting is
beginning. This point corresponds to where the RIS estimate transitions from
over-estimating to under-estimating the policy value.

variance of importance sampling. To the best of our knowledge, all such
prior work has been done in the multi-armed bandit, contextual bandit, or
causal inference communities. One can directly extend these methods to state-
action expectations by estimating dπ(s)π(s) or to trajectory expectations by
estimating Pr(h|π). Unfortunately, such methods are often impractical as they
require knowing dπ(s) or Pr(h|π) for the numerator of the importance weights.
Concurrent to this work, Pavse et al. [2020] built upon our prior work [Hanna
et al., 2019, Hanna and Stone, 2019] and showed that a SEC-like method could
lower error in batch value function approximation.

Our work takes inspiration from Li et al. [2015] who prove, for contextless
bandits, that importance sampling with an estimated behavior policy has
lower minimax mean squared error than using the true behavior policy. They
corroborate these theoretical findings with experiments showing that the mean
squared error of the so-called REG estimator decreases faster than that of
importance sampling with the true behavior policy. The main distinction
between this work and the work of Li et al. [2015] is that we consider MDPs
where actions affect both reward and the next state. Our theoretical results
only address the asymptotic sample size while Li et al. [2015] provide variance
and bias results for finite samples of any size.

For contextual bandits, Narita et al. [2019] prove that importance sampling
with an estimated behavior policy minimizes asymptotic variance among all
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asymptotically normal estimators (including ordinary importance sampling).
They also provide a large-scale study of policy evaluation with the empirical
behavior policy on an ad-placement task. Xie et al. [2018] provide similar
results and prove a reduction in finite-sample mean squared error when using
an estimated behavior policy. Again, our work differs from these two works in
that we are concerned with full MDPs.

It has long been known in the causal inference literature that the empirical
behavior policy produces lower variance estimates than using the true behavior
policy for importance sampling. In this literature, the behavior policy action
probabilities are known as propensities and importance sampling is known
as inverse propensity scoring [Austin, 2011]. Rosenbaum [1987] first showed
that using parametric propensity estimates lowered the variance of importance
sampling. In later work, Hirano et al. [2003] studied this approach using non-
parametric propensity score estimates. The causal inference problems studied
can be viewed as a class of contextual bandit problems. Under that view, our
work differs from these earlier studies in that we are concerned with MDPs.

Importance sampling is commonly defined as a way to use samples from a
proposal distribution to estimate an expectation under a target distribution.
Henmi et al. [2007] proved that importance sampling with a maximum likelihood
parametric estimate of the proposal distribution has lower asymptotic variance
than using the true proposal distribution. This result forms the basis of our
own proofs that show SEC and all RIS methods have lower asymptotic variance
than Monte Carlo estimates. Delyon and Portier [2016] proved asymptotic
lower variance for using a non-parametric estimate of the proposal distribution.

Other works have explored directly estimating the importance weights
instead of first estimating the proposal distribution (i.e., behavior policy)
to compute the importance weights [Oates et al., 2017, Liu and Lee, 2017].
These “blackbox” importance sampling approaches show superior convergence
rates compared to ordinary importance sampling. In recent years a number of
methods have been proposed that attempt to weight (s, a) pairs with blackbox
weights when estimating state-action expectations for policy evaluation [Liu
et al., 2018, Mousavi et al., 2020, Yang et al., 2020]. The stated focus of most
of these works tends to be on reducing variance due to long horizons; an
interesting question is whether some of the success of these methods is due to
correcting sampling error.

In contextual bandit problems, Dud́ık et al. [2011] present theoretical
results showing that an estimated behavior policy may increase the variance
of importance sampling while also introducing bias. Farajtabar et al. [2018]
prove similar results for full MDPs. However, in these works the behavior
policy is estimated with a separate set of data than the set used for computing
the off-policy value estimate. Because the behavior policy is estimated with
a separate set of data it has no power to correct sampling error in the data
used for the off-policy value estimate. In fact, these theoretical findings are
in line with our experiments showing that it is important to use the same set
of data both to estimate the behavior policy and to compute the regression
importance sampling estimate (see Figures 11f, 11e, 13b in Section 6).
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Raghu et al. [2018] report that larger differences between the true behavior
policy and estimated behavior policy lead to more error in the off-policy value
estimate. However, they measure off-policy policy evaluation error with respect
to the true behavior policy weighted importance sampling estimate and so it is
unsurprising that as the policies become more different the error increases.

7.2 Analytic Expectations

In this work we use importance sampling with an estimated behavior policy to
correct sampling error in reinforcement learning. Here, we discuss alternative
approaches in the reinforcement learning literature that avoid sampling error
altogether.

The SARSA algorithm [Rummery and Niranjan, 1994] uses (S,A,R, S′, A′)
tuples to learn an estimate of the action-value function, qπ, for a policy π. The
algorithm requires two sampled actions for each update and the second of these
is used to form a Monte Carlo estimate of the expected value of qπ in state
S′. The expected SARSA update [Van Seijen et al., 2009] replaces the Monte
Carlo estimate with an analytic evaluation of the expected value of qπ in S′. By
replacing the Monte Carlo estimate, sampling error is eliminated and expected
SARSA may converge much faster than SARSA. Expected SARSA requires
either a small discrete action-set or for π and qπ to have forms that allow
analytic integration. In this work, we place no limitations on the action-set or
policy and do not explicitly learn an action-value function.

Expected SARSA can be extended to a multi-step algorithm with the tree-
backup algorithm [Precup et al., 2000, Sutton and Barto, 1998]. More recent
work has shown that the amount of sampling as opposed to exact expectations
can be done on a per-state basis using the Q(σ) algorithm [Asis et al., 2018].
Other tree-backup-like algorithms have been proposed and hold the promise to
eliminate sampling error in off-policy data [Yang et al., 2018, Shi et al., 2019].
Like expected SARSA, these algorithms require the ability to compute the
sum of π(a|s)qπ(s, a) over all a ∈ A.

In policy gradient reinforcement learning, Sutton et al. [2000] introduced the
all-actions policy gradient algorithm that avoids sampling in the action-space by
first learning the function qπθ and then analytically computing the expectation
of qπθ (s, a) ∂

∂θ log πθ(a|s). This approach has been further developed as the
expected policy gradient algorithm [Ciosek and Whiteson, 2018, Fellows et al.,
2018], the mean actor-critic algorithm [Asadi et al., 2017], and the MC-256
algorithm [Petit et al., 2019]. With a good approximation of qπ, these algorithms
learn faster than a Monte Carlo policy gradient estimator. However, requiring a
good approximation of qπ undercuts one of the primary reasons for using policy
gradient RL: it may be easier to represent a good policy than to represent the
correct action-value function [Sutton and Barto, 1998]. The sampling error
corrected policy gradient estimator provides an alternative method for reducing
sampling error when qπ is difficult to learn. We also note that estimating π
(as the sampling error corrected policy gradient estimator does) may be easier
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than estimating qπ since the right function approximator class for π is known
while, in general, it is unknown for qπ.

7.3 Variance Reduction in Reinforcement Learning

Aside from reducing sampling error, other approaches exists for lowering the
variance of Monte Carlo expectation evaluations in reinforcement. Control
variates use the known expected value of a second random variable to lower
the variance of estimating the expected value of φ or χ. The most commonly
considered type of control variate in the RL literature is the additive control
variate which includes constant baselines [Thomas and Brunskill, 2017], state
dependent baselines [Greensmith et al., 2004, Schulman et al., 2016] and state-
action dependent baselines [Jiang and Li, 2016, Thomas and Brunskill, 2016a]
A second type of control variate is the multiplicative control variate of which
the weighted importance sampling estimator [Precup et al., 2000] may be the
best known in the RL literature. As we have shown in our empirical study,
control variate techniques are complementary to the sampling error correction
methods we introduce.

Adaptive importance sampling methods change the data distribution to
lower the variance of the Monte Carlo estimator. The data distribution of a
Monte Carlo estimator can be adapted by either changing the behavior policy
or the MDP transition probabilities. Hanna et al. [2017] show that the OIS
estimator can have lower variance than on-policy Monte Carlo sampling and
introduce a method that adapts the behavior policy to obtain low variance
estimates for the problem of off-policy batch policy evaluation. Ciosek and
Whiteson [2017] and Frank et al. [2008] consider adaptive importance sampling
through changing P . This approach is possible when learning is done in a
simulator and we can both know and control P . Regardless of how the data
distribution is adapted, adaptive importance sampling methods still have
variance due to sampling error.

Finally, bootstrapping from a learned value function is a widely used variance
reduction strategy in RL [Sutton, 1984, Mnih et al., 2016, Greensmith et al.,
2004]. In some cases, this technique would provide complementary variance
reduction to that of SEC or RIS estimators. For example, in Section 4, we
use a learned value function as a baseline [Greensmith et al., 2004, Schulman
et al., 2016] for both the SEC policy gradient estimator and the Monte Carlo
policy gradient estimator. In other cases, such as online value function learning,
further work may be needed to apply SEC and RIS.

8 Discussion of Limitations

In this section we discuss the results we have presented and limitations of the
SEC and RIS estimator.

Our theoretical and empirical studies have focused on the statistical proper-
ties of the SEC and RIS estimators. The gain in statistical efficiency comes at a
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cost of increased computational complexity. Both SEC and all RIS estimators
have an additional step of estimating the empirical behavior policy compared
to the Monte Carlo estimator. Furthermore, in the on-policy setting, the Monte
Carlo estimator avoids computing importance ratios while SEC and RIS esti-
mators must always compute the ratios. The trade-off between computational
and statistical efficiency is a trade-off that must be made by practitioners.

Our theoretical analysis compared the asymptotic properties of our new
estimators to that of the Monte Carlo estimator. This analysis proves the
statistical benefit of using our new estimators when the sample size is very
large. However, our empirical results show a statistical benefit to using the
new estimators even for smaller sample sizes. Currently, we lack a theoretical
explanation for small sample size variance reduction. We also know that SEC
and RIS estimators are introducing bias but we lack theoretical analysis as to
how much bias is introduced and how fast this bias goes to zero.

The SEC and RIS estimators are related to the use of importance sampling
for off-policy reinforcement learning where the behavior policy is unknown and
thus must be estimated before it can be used to form the importance weights.
In practice, behavior policy estimation can be challenging when the distribution
class of the true behavior policy is unknown [Raghu et al., 2018]. However, in
the settings we studied, we have complete access to the behavior policy and can
specify the policy set Π to include π (thus ensuring consistency of the SEC and
RIS estimators). We can even simplify the policy set Π by estimating a policy
that conditions on intermediate representations of the behavior policy. For
example if the behavior policy, πb, is a convolutional neural network mapping
states to a softmax distribution over actions, we can use all but the last layer
of πb as a feature extractor and then model Π as all linear functions mapping
these features to a softmax distribution over actions. Such a technique can
significantly simplify estimating π̂ while maintaining consistency guarantees
when the behavior policy is a complex function. Our CartPole experiment in
Section 4 shows evidence of the benefit of this approach.

9 Future Work

In this section, we outline directions for future work to further develop the SEC
and RIS estimators for correcting sampling error in reinforcement learning.
As an overarching direction, we note that this work assumed an episodic and
fully observable environment. Future work should consider how to best correct
sampling error in continuing or partially observable environments.

9.1 Behavior Policy Search for Regression Importance Sampling

The methods introduced in this article are methods that lower variance post
data collection. That is, data is collected in the same way that a Monte Carlo
estimator would collect data, and only then do our new methods re-weight
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data to lower variance. One direction for future work would be to answer
the question, “how should we collect data for the most accurate SEC or RIS
estimate?”

Hanna et al. [2017] introduce the idea of adapting the behavior policy to
lower the variance of Monte Carlo policy evaluation. However, after collecting
data, their policy value estimate remains a Monte Carlo estimate. A straightfor-
ward additional study would be to use their behavior policy gradient algorithm
to learn how collect data but then use regression importance sampling to lower
sampling error in the observed data.

Though straightforward, this proposed approach may be sub-optimal and
we illustrate this fact by considering the bandit setting. Consider a k-armed
bandit with deterministic rewards on each arm. After all k arms have been
observed, the RIS estimate will have both zero bias and zero variance.5 Thus the
optimal behavior policy for RIS should increase the probability of unobserved
actions; it is a non-stationary policy that depends on all of the past actions.
In contrast, an optimal behavior policy for the Monte Carlo estimator would
take actions in proportion to π(a)r(a) [Hanna et al., 2017]. Thus behavior
policy search, as introduced in prior work, may yield a behavior policy that is
sub-optimal for the RIS estimator.

9.2 Finite-Sample Analysis

In Sections 3.2 and 5.2 we proved SEC and RIS have asymptotically variance
at most that of the Monte Carlo estimator. Further theoretical analysis should
examine the finite-sample bias and variance of SEC and RIS compared to the
Monte Carlo estimator. A starting point for this work could be the results
of Li et al. [2015] who provide bounds on these finite-sample quantities in
the bandit setting. Extending these results to MDPs would give us a deeper
understanding of when RIS and SEC are lower error estimators than Monte
Carlo. The empirical results in Section 6 provide strong evidence that RIS is
always preferable to OIS. However, theoretical analysis would strengthen this
claim.

The theoretical analysis in Section 5.2 did not distinguish different RIS
methods according to how much history they conditioned on (the estimator
parameter n). Theoretical analysis of the finite-sample bias-variance trade-
off and asymptotic variance for different RIS methods would deepen our
understanding of how to choose n. Empirical results on the Singlepath domain
(Figure 12) suggest that small n have lower small-sample MSE while large n
have asymptotically lower MSE. Verifying this finding formally is an interesting
direction for future work.

5 This statement follows from having deterministic rewards and the observation of Li
et al. [2015] that importance sampling with an estimated behavior policy is equivalent to an
analytic expectation over the estimated reward function.
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9.3 Value Function Learning

Finally, we have only considered estimating scalar or vector-valued expectations
that arise in the RL literature. Another important problem that arises in the RL
literature is how to efficiently learn the value function that gives the expected
return of a policy from any state. Many value function learning algorithms rely
on leveraging intermediate value estimates to avoid variance due to sampling
many consecutive actions [Sutton, 1984]. However, these methods still tend
to require some amount of action sampling and thus have some amount of
sampling error to be corrected. Pavse et al. [2020] have shown that correcting
sampling error with a method like SEC or the RIS estimators leads to lower
value function error compared to standard temporal difference learning when
learning from a fixed batch of data. Future work should consider whether a
similar advantage can be shown in online value function learning where the
learning agent processes a single transition tuple (s, a, r, s′) at a time.

9.4 Regression Importance Sampling for High Confidence Off-policy
Evaluation

Empirical results in Section 6 showed that regression importance sampling
leads to lower mean squared error off-policy evaluation. It remains to be seen
if RIS also leads to tighter confidence intervals for high confidence off-policy
evaluation. One way to tackle this problem would be to simply use RIS with
a bootstrap confidence interval as done by Thomas et al. [2015] and Hanna
et al. [2017]. Given that RIS has been empirically shown to have lower variance
than ordinary importance sampling, we could expect such a method to produce
tighter confidence intervals.

A more challenging direction for future work would be to obtain true
confidence intervals with an estimated behavior policy. While the data efficiency
of bootstrapping is desirable, it only provides approximate confidence bounds. In
order to determine exact confidence intervals for RIS, we would need to develop
concentration inequalities for RIS in the same way that one can use Hoeffding’s
inequality to establish confidence intervals for OIS. One possible direction is to
explore use of the Dvoretzky-Kiefer-Wolfowitz inequality which bounds how far
the empirical distribution of samples is from the true distribution [Dvoretzky
et al., 1956]. Regardless of the exact approach, exact confidence bounds for
importance sampling with an estimated behavior policy would be of great value
to providing provable guarantees of safety in real world settings where the true
behavior policy is unknown.

10 Conclusion

This article introduces and describes a general method for reducing the variance
of Monte Carlo estimation in reinforcement learning: estimate the empirical
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action probabilities, π̂(a|s), from observed data and then use importance

sampling with the ratio π(a|s)
π̂(a|s) . This general approach lowers variance by

correcting sampling error – error due to stochasticity in the agent’s action
selection. Following this general approach, we first introduce the sampling
error corrected (SEC) estimator and present theoretical analysis showing
that the SEC estimator has asymptotic variance at most that of the Monte
Carlo estimator. We use the SEC estimator to lower the variance of policy
gradient estimates in two batch policy gradient algorithms and demonstrate
this approach leads to more data efficient RL compared to a Monte Carlo
approach.

We next introduce a family of regression importance sampling (RIS) es-
timators for settings where the desired expectation to estimate is written
as a distribution over trajectories. Like the SEC estimator, RIS estimators
first estimate the behavior policy before importance sampling. Unlike the
SEC estimator, the family of RIS estimators contains methods that estimate
non-Markovian behavior policies before importance sampling and corrects for
sampling error due to action selection along the entire trajectory. We show that
all RIS estimators have asymptotic variance at most that of the Monte Carlo
estimator. We further apply RIS to the problem of off-policy policy evaluation
and show that RIS estimators lead to lower mean squared error policy value
estimates than Monte Carlo importance sampling variants.
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L. Li, R. Munos, and C. Szepesvári. Toward minimax off-policy value estimation.
In Proceedings of the 18th International Conference on Artificial Intelligence
and Statistics, 2015.

Q. Liu and J. D. Lee. Black-box importance sampling. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, 2017.

Q. Liu, L. Li, Z. Tang, and D. Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. In Advances in Neural Information Processing
Systems (NeurIPS), volume 31, pages 5356–5366, 2018.

S. Mahadevan. Average reward reinforcement learning: foundations, algorithms,
and empirical results. Machine Learning, 1:159–196, 1996.

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information
retrieval. Cambridge university press, 2008.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.



46 Josiah P. Hanna et al.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In Proceedings of the 33rd International Conference on Machine Learning
(ICML), pages 1928–1937, 2016.

A. Moore. Efficient Memory-Based Learning for Robot Control. PhD thesis,
University of Cambridge, 1990.

A. Mousavi, L. Li, Q. Liu, and D. Zhou. Black-box off-policy estimation
for infinite-horizon reinforcement learning. In International Conference on
Learning Representations (ICLR), 2020.

Y. Narita, S. Yasui, and K. Yata. Efficient counterfactual learning from
bandit feedback. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), 2019.

C. J. Oates, M. Girolami, and N. Chopin. Control functionals for monte carlo
integration. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3):695–718, 2017.

B. S. Pavse, I. Durugkar, J. P. Hanna, and P. Stone. Reducing sampling error in
batch temporal difference learning. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697, 2008.

B. Petit, L. Amdahl-Culleton, Y. Liu, J. Smith, and P.-L. Bacon. All-action
policy gradient methods: A numerical integration approach. arXiv preprint
arXiv:1910.09093, 2019.

D. Precup, R. S. Sutton, and S. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the 17th International Conference on Machine
Learning (ICML), pages 759–766, 2000.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

A. Raghu, O. Gottesman, Y. Liu, M. Komorowski, A. Faisal, F. Doshi-Velez,
and E. Brunskill. Behaviour policy estimation in off-policy policy evaluation:
Calibration matters. In Proceedings of the ICML Workshop on Causal
Inference, Counterfactual Prediction, and Autonomous Action, 2018.

P. R. Rosenbaum. Model-based direct adjustment. Journal of the American
Statistical Association, 82(398):387–394, 1987.

R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: a unified
approach to combinatorial optimization, Monte Carlo simulation and machine
learning. Springer Science & Business Media, 2013.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering
Cambridge, England, 1994.

J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. Trust region
policy optimization. In Proceedings of the 32nd International Conference
on Machine Learning (ICML), 2015. URL http://jmlr.csail.mit.edu/

proceedings/papers/v37/schulman15.html.
J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-

dimensional continuous control using generalized advantage estimation. In



Importance Sampling with an Estimated Behavior Policy 47

Proceedings of the International Conference on Learning Representations
(ICLR), 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

A. Schwartz. A reinforcement learning method for maximizing undiscounted
rewards. In Proceedings of the 10th International Conference on Machine
Learning (ICML), 1993.

L. Shi, S. Li, L. Cao, L. Yang, and G. Pan. TBQ (σ): Improving efficiency
of trace utilization for off-policy reinforcement learning. In Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 1025–1032, 2019.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility
traces. Machine Learning, 22:123–158, 1996.

R. S. Sutton. Temporal credit assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts, Amherst, 1984.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

R. S. Sutton, S. Singh, and D. McAllester. Comparing policy-gradient algo-
rithms. 2000.

P. S. Thomas. Safe Reinforcement Learning. PhD thesis, University of Mas-
sachusetts Amherst, 2015.

P. S. Thomas and E. Brunskill. Data-efficient off-policy policy evaluation for
reinforcement learning. In Proceedings of the 33rd International Conference
on Machine Learning (ICML), 2016a.

P. S. Thomas and E. Brunskill. Magical policy search: Data efficient reinforce-
ment learning with guarantees of global optimality. European Workshop On
Reinforcement Learning, 2016b.

P. S. Thomas and E. Brunskill. Importance sampling with unequal support.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

P. S. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence pol-
icy improvement. In Proceedings of the 32nd International Conference on
Machine Learning (ICML), 2015.

H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering. A theoretical
and empirical analysis of expected SARSA. In Proceedings of the IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning,
pages 177–184. IEEE, 2009.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

Y. Xie, B. Liu, Q. Liu, Z. Wang, Y. Zhou, and J. Peng. Off-policy evaluation and
learning from logged bandit feedback: Error reduction via surrogate policy.
In Proceedings of the International Conference on Learning Representations



48 Josiah P. Hanna et al.

(ICLR), 2018.
L. Yang, M. Shi, Q. Zheng, W. Meng, and G. Pan. A unified approach for

multi-step temporal-difference learning with eligibility traces in reinforcement
learning. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI), 2018.

M. Yang, O. Nachum, B. Dai, L. Li, and D. Schuurmans. Off-policy evaluation
via the regularized lagrangian. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, 2020.



Importance Sampling with an Estimated Behavior Policy 49

A Consistency Proof

In this appendix we show that, assuming we use a consistent estimator of the behavior policy,
the SEC estimator and RIS estimators are consistent estimators of φ̄ and χ̄ respectively.

Assumption 3 (Consistent estimation of π̂)

argmax
π∈Π

k∑
j=1

log π(Aj |Sj)
a.s.−−−→ π

where
a.s.−−−→ denotes almost sure convergence.

Proposition 1 Under Assumption 3, the SEC estimator is a consistent estimator of φ̄:

SEC(D)
a.s.−−−→ φ̄.

Proof We have assumed that as the amount of data increases, the behavior policy estimated
by SEC will almost surely converge to the true behavior policy:

π̂
a.s.−−−→ πb.

Almost sure convergence to the true behavior policy means that SEC almost surely converges

to the Monte Carlo estimate. Consider the difference, SEC(D)−MC(D). Since π̂
a.s.−−−→ πb,

we have that:
SEC(D)−MC(D)

a.s.−−−→ 0.

Thus, with probability 1, SEC and Monte Carlo converge to the same value. Since the
Monte Carlo estimator is a consistent estimator of φ̄, then with probability 1 we have that

OIS(πe, D) converges to φ̄. Thus SEC(D)
a.s.−−−→ φ̄.

Similarly, for RIS(n):

Proposition 3 Under Assumption 3, ∀n, RIS(n) is a consistent estimator of χ̄: RIS(n)(π,D)
a.s.−−−→

χ̄.

Proof The proof is identical to that for Proposition 3 with RIS(n) taking the place of SEC,
χ̄ taking the place of φ̄, and the off-policy ordinary importance sampling estimator taking
the place of the Monte Carlo estimator.

B Consistent Behavior Policy Estimation

The previous section proves the SEC and RIS estimators are consistent as long as they
use consistent estimators of the true behavior policy. In this section we give more precise
assumptions under which we can prove consistent behavior policy estimation.

The main intuition for the proofs is that SEC and RIS estimators are performing policy
search on an estimate of the log-likelihood, L̂(π|D), as a surrogate objective for the true
log-likelihood, L(π). Since πb has generated our data, πb is the optimal solution to this

policy search. As long as, for all π, L̂(π|D) is a consistent estimator of L(π) then selecting

π̂ = argmax
π∈Π

L̂(π|D) will converge probabilistically to πb. If the set of policies we search over,

Π, is countable then this argument is almost enough to show a consistent behavior policy
estimator. The difficulty (as we explain below) arises when Π is not countable.

Our proof takes inspiration from Thomas and Brunskill who show that their magical
policy search algorithm converges to the optimal policy by maximizing a surrogate estimate
of policy value [2016b]. They show that performing policy search on a policy value estimate,
v̂(π), will almost surely return the policy that maximizes v(π) if v̂(π) is a consistent estimator
of v(π). The proof is almost identical; the notable difference is substituting the log-likelihood,

L(π), and a consistent estimator of the log-likelihood, L̂(π|D), in place of v(π) and v̂(π).
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B.1 Definitions and Assumptions

Let Hn be the set of all possible state-action trajectory segments with n states and n− 1
actions:

Hn = Sn ×An−1.

We will denote elements of Hn as hn and random variables that take values from Hn as
Hn. Let dπb,Hn : Hn → [0, 1] be the distribution over elements of Hn induced by running
πb. Previously, we defined the behavior policy, πb, to be a function mapping state-action
pairs to probabilities. We re-define πb : Hn ×A → [0, 1], i.e., a policy that conditions the
distribution over actions on the preceding length n trajectory segment. These definitions
are equivalent provided for any hn,i = (si, ai, ...si+n−1) and hn,j = (sj , aj , ...sj+n−1), if
si+n−1 = sj+n−1 then ∀a πb(a|hn,i) = πb(a|hn,j).

Let (Ω,F , µ) be a probability space and Dm : Ω → D be a random variable. Dm(ω) is
a sample of m trajectories with ω ∈ Ω. Let dπb be the distribution of length n trajectory
segments under πb. Define the expected log-likelihood:

L(π) = E

[
log π(A|Hn)

∣∣∣∣ Hn ∼ dπb,Hn , A ∼ πb]
and its sample estimate from samples in Dm(ω):

L̂(π|Dm(ω)) =
1

ml

m∑
j=1

l−1∑
t=0

log π(Ajt |H
j
t−n,t).

Note that:

πb = argmax
π∈Π

L(π)

and

πD
(n) = argmax

π∈Π
L̂(π|Dm(ω)).

Define the KL-divergence (DKL) between πb and πD after segment hn as:

δKL(hn) = DKL(πb(·|hn), πD(·|hn)).

Assuming for all hn and a the variance of log π(a|hn) is bounded, L̂(π|Dm(ω)) is a
consistent estimator of L(π). We make this assumption explicit:

Assumption 8 (Consistent Estimation of Log Likelihood) (Consistent Estimation

of Log likelihood). For all π ∈ Π, L̂(π|Dm(ω))
a.s.−−−→ L(π).

This assumption will hold when the support of πb is a subset of the support of π for
all π ∈ Π, i.e., no π ∈ Π places zero probability measure on an action that πb might take.
We can ensure this assumption is satisfied by only considering π ∈ Π that place non-zero
probability on any action that πb has taken.

We also make an additional assumption about the piece-wise continuity of the log-
likelihood, L, and the estimate of the log-likelihood, L̂. First we present two necessary
definitions as given by Thomas and Brunskill [2016b]:

Definition 3 (Piecewise Lipschitz continuity). We say that a function f : M → R on a
metric space (M,d) is piecewise Lipschitz continuous with respect to Lipschitz constant K
and with respect to a countable partition, {M1,M2, ...} if f is Lipschitz continuous with
Lipschitz constant K on all metric spaces in {(Mi, di)}∞i=1.

Definition 4 (δ-covering). If (M,d) is a metric space, a set X ⊂M is a δ-covering of (M,d)
if and only if maxy∈M minx∈X d(x, y) ≤ δ.
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Assumption 9 (Piecewise Lipschitz objectives) (Piecewise Lipschitz objectives). Our
policy class, Π, is equipped with a metric, dΠ , such that for all Dm(ω) there exist countable

partition of Π, ΠL := {ΠL1 , ΠL2 , ...} and ΠL̂ := {ΠL̂1 , ΠL̂2 , ...}, where L and L̂(·|Dm(ω))

are piecewise Lipschitz continuous with respect to ΠL and ΠL̂ with Lipschitz constants K
and K̂ respectively. Furthermore, for all i ∈ N>0 and all δ > 0 there exist countable δ-covers

of ΠLi and ΠL̂i .

As pointed out by Thomas and Brunskill, this assumption holds for the most commonly
considered policy classes but is also general enough to hold for other settings (see Thomas
and Brunskill [2016b] for further discussion of Assumption 9 and the related definitions).

B.2 Consistent Behavior Policy Estimation Proof

We now show that SEC and RIS estimators use consistent behavior policy estimation by
showing that the expected KL-divergence between the true behavior policy and estimted
behavior policy almost surely goes to zero.

Lemma 1 If Assumptions 8 and 9 hold then E[δKL(Hn)|Hn ∼ dπb,Hn ]
a.s.−−−→ 0.

Proof Define ∆(π, ω) = |L̂(π|Dm(ω)) − L(π)|. From Assumption 8 and one definition of
almost sure convergence, for all π ∈ Π and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∆(π, ω) < ε}
)

= 1. (21)

Thomas and Brunskill point out that because Π may not be countable, (21) may not
hold at the same time for all π ∈ Π. More precisely, it does not immediately follow that for
all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε}
)

= 1. (22)

Let C(δ) denote the union of all of the policies in the δ-covers of the countable partitions
of Π assumed to exist by Assumption 2. Since the partitions are countable and the δ-covers
for each region are assumed to be countable, we have that C(δ) is countable for all δ. Thus,
for all π ∈ C(δ), (21) holds simulatenously. More precisely, for all δ > 0 and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ C(δ),∆(π, ω) < ε}
)

= 1. (23)

Consider a π 6∈ C(δ). By the definition of a δ-cover and Assumption 9, we have that
∃π′ ∈ ΠLi , d(π, π

′) ≤ δ. Since Assumption 9 requires L to be Lipschitz continuous on

ΠLi , we have that |L(π)− L(π′)| ≤ Kδ. Similarly |L̂(π|Dm(ω))− L̂(π′|Dm(ω))| ≤ K̂δ. So,

|L̂(π|Dm(ω))− L(π)| ≤ |L̂(π|Dm(ω))− L(π′)|+Kδ ≤ |L̂(π′|Dm(ω))− L(π′)|+ (K̂ +K)δ.
Then it follows that for all δ > 0:

(∀π ∈ C(δ),∆(π, ω) ≤ ε)→
(
∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ

)
.

Substituting this into (23) we have that for all δ > 0 and for all ε > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ}
)

= 1.

The next part of the proof massages (23) into a statement of the same form as (22).

Consider the choice of δ := ε/(K + K̂). Define ε′ = 2ε. Then for all ε′ > 0:

Pr
(

lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε′}
)

= 1. (24)
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Since ∀π ∈ Π,∆(π, ω) < ε′, we obtain:

∆(πb, ω) < ε′ (25)

∆(πD, ω) < ε′ (26)

and then applying the definition of ∆:

L(πD)
(a)

≤L(πb) (27)

(b)
< L̂(πb|Dm(ω)) + ε′ (28)

(c)

≤L̂(πD|Dm(ω)) + ε′ (29)

(d)

≤L(πD) + 2ε′ (30)

where (a) comes from the fact that πb maximizes L, (b) comes from (25), (c) comes

from the fact that πD maximizes L̂(·|Dm(ω)), and (d) comes from (26). Considering (27)
and (30), it follows that |L(πD)− L(πb)| < 2ε′. Thus, (24) implies that:

∀ε′ > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < 2ε′}
)

= 1.

Using ε′′ := 2ε′ we obtain:

∀ε′′ > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < ε′′}
)

= 1

From the definition of the KL-Divergence,

L(πD)− L(πb) = E[δKL(Hn)|Hn ∼ dπb,Hn ]

and we obtain that:

∀ε > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : | −E[δKL(Hn)|Hn ∼ dπb,Hn ]| < ε}
)

= 1

And finally, since the KL-Divergence is non-negative:

∀ε > 0,Pr
(

lim inf
m→∞

{ω ∈ Ω : E[δKL(Hn)|Hn ∼ dπb,Hn ]| < ε}
)

= 1,

which, by the definition of almost sure convergence, means that

E[δKL(Hn)|Hn ∼ dπb,Hn ]
a.s.−−−→ 0.

C Asymptotic Variance of RIS and SEC

In this section we prove that the SEC estimator and, ∀n, RIS(n) has asymptotic variance
at most that of the Monte Carlo estimator. These results are corollaries of Theorem 1 in
Henmi et al. [2007] that holds for general Monte Carlo integration. Consider estimating
v = E[f(X)|X ∼ p] for probability mass function p and real-valued function f with domain
X . Note that while we define distributions as probability mass functions, this result can
be applied to continuous-valued state and action spaces by replacing probability mass
functions with density functions. Given parameterized and twice differentiable probability

mass function q(·|θ̃), the Monte Carlo estimator of v is ṽ := 1
m

∑m
i=1

p(Xi)

q(Xi,θ̃)
f(Xi). Similarly,

define v̂ := 1
m

∑m
i=1

p(Xi)

q(Xi,θ̂)
f(Xi) where θ̂ is the maximum likelihood estimate of θ̃ given

samples from q(·|θ̃). The following theorem relates the asymptotic variance of v̂ to that of ṽ.
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Theorem 1
VarA(v̂) ≤ VarA(ṽ)

where VarA denotes the asymptotic variance.

Proof See Theorem 1 of Henmi et al. [2007].

Theorem 1 shows that an importance sampling estimate using the maximum likelihood
estimate of the sampling distribution parameters yields an asymptotically lower variance
estimate than using the true parameters, θ̃. To specialize this theorem to our setting, we show
that the maximum likelihood behavior policy parameters are also the maximum likelihood
parameters for the state-action distribution (for SEC) and the trajectory distribution (for
RIS methods). We first need to specify the parameterized class of the sampling distribution.
For SEC, the sampling distribution is Pr(S = s,A = a; θ) = dπ(s)πθ(a|s). Note that the
state distribution dπ is not parameterized by θ – only the policy, πθ . This parameterization
means that changing θ leaves the distribution of states unchanged and is justified because we
are only concerned with weighting already sampled data and not with collecting additional
data. For RIS(n), the sampling distribution is Pr(H = h; θ) = p(h)wπθ (h) where p(h) :=

d0(s0)
∏l−1
t=1 P (st|st−1, at−1) and wπθ (h) =

∏l−1
t=0 πθ(at|st−n, at−n, . . . , st).

We next present two lemmas that show that maximum likelihood estimation of the
behavior policy is equivalent to maximum likelihood estimation of the specified sampling
distributions. For SEC, we give the following lemma:

Lemma 2

argmax
θ

k∑
i=1

log πθ(Ai|Si) = argmax
θ

k∑
i=1

log Pr(Sk, Ak; θ)

Proof

argmax
θ

k∑
i=1

log πθ(Ai|Si) = argmax
θ

k∑
i=1

log πθ(Ai|Si) + log dπ(Si)︸ ︷︷ ︸
const w.r.t. θ

= argmax
θ

k∑
i=1

log Pr(Si, Ai; θ)

And for all RIS(n):

Lemma 3

argmax
θ

m∑
i=1

l−1∑
t=0

log πθ(ait|sit−n, ait−n, . . . , sit) = argmax
θ

m∑
i=1

log Pr(hi; θ)

Proof

argmax
θ

m∑
i=1

l−1∑
t=0

log πθ(ait|sit−n, ait−n, . . . , sit) = argmax
θ

m∑
i=1

l−1∑
t=0

log πθ(ait|sit−n, ait−n, . . . , sit)

+ log d(si0) +

l−1∑
t=1

logP (sit|sit−1, a
i
t−1)︸ ︷︷ ︸

const w.r.t. θ

= argmax
θ

m∑
i=1

logwπθ (hi) + log p(hi)

= argmax
θ

m∑
i=1

log Pr(hi; θ)
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Combining each of these lemmas in turn with Theorem 1 allows us to prove Corollaries 1
and 2 respectively.

Corollary 1 Let VarA(EST) denote the asymptotic variance of estimator EST. Under
assumptions 4 and 5,

VarA(SEC) ≤ VarA(MC).

Proof Define X := S × A, f(x) := φ(s, a), p(x) := Pr(s, a|π) and q(s, a|θ) := Pr(s, a|πθ).
Lemma 2 implies that:

θ̂ = argmax
θ∈Πθ

k∑
i=1

l−1∑
t=0

log πθ(aj |sj)

is the maximum likelihood estimate of θ̃ (where πθ̃ = π and Pr(s, a|θ̃) is the probability of
(s, a) under π) and then Corollary 1 follows directly from Theorem 1.

Corollary 2 Under Assumptions 4 and 5,∀n,

VarA(RIS(n)(π,D)) ≤ VarA(OIS(π,D, πb))

where VarA denotes the asymptotic variance.

Proof Define f(x) = g(h), p(h) = Pr(h|πe) and q(h|θ) = Pr(h|πθ). Lemma 3 implies that:

θ̂ = argmax
θ∈Πθ

m∑
i=1

l−1∑
t=0

log πθ(ait|sit)

is the maximum likelihood estimate of θ̃ (where πθ̃ = πb and Pr(h|θ̃) is the probability of h
under πb) and then Corollary 2 follows directly from Theorem 1.

Note that for RIS(n) with n > 0, the condition that πθ̃ ∈ Πn can hold even if the
distribution of At ∼ πθ̃ (i.e., At ∼ πb) is only conditioned on st. This condition holds when
∃πθ ∈ Πn such that ∀st−n, at−n, . . . at−1:

πθ̃(at|st) = πθ(at|st−n, at−n, . . . , st),

i.e., the action probabilities only vary with respect to the immediate preceding state.

D SEC Variance proof

In this appendix we prove Proposition 2 from Section 3.2:

Proposition 2 Let Var (EST) denote the variance of estimator EST. Under Assumptions
6 and 7, for the Monte Carlo estimator, MC, and the SEC estimator, SEC:

Var (SEC(B)) ≤ Var (MC(B))

Recall that B is a set of state-action pairs collected by running the current policy π. Let
X be the random variable representing the states observed in B and let U be the random
variable representing the actions observed in B. We will sometimes write {X,U} in place of
B to make the composition of B explicit. Let VarX (EST({X,U})) denote the variance of
estimator EST with respect to the state set X. Let VarU (EST({X,U})|X = X ) denote the
variance of estimator EST with respect to the action set U given X = X

Under assumptions 6 and 7, we make two claims about the SEC estimator, EST.

Claim 1 VarU (SEC({X,U}|X = X )) = 0.
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Proof We can write either SEC or MC as:

EST({X,U}) =
∑
s∈S

dB(s)
∑
a∈A

πB(a|s)w(s, a)φ(s, a) (31)

where w(s, a) =
π(a|s)
πB(a|s)

for SEC and w(s, a) = 1 for MC. In Claim 1, the sampled states are

fixed and variance only arises from πB and w(s, a) which vary for different realizations of A.

When we choose w(s, a) =
πθ(a|s)
πB(a|s)

(as SEC does) the πB(a|s) factors cancel in 31. Since πB

is the only part of SEC that depends on the random variable U , using w(s, a) eliminates
variance due to action selection in the estimator. This proves Claim 1.

Claim 2 EU

[
SEC({X,U})

∣∣∣∣ X] = EU

[
MC({X,U})

∣∣∣∣ X].
Proof Claim 2 also follows from the same logic as Claim 1. The cancellation of the πB(a|s)
factors converts the inner summation over actions into an exact expectation under π. Since
the Monte Carlo estimator is an unbiased estimator, the inner summation over actions must
be equal to the exact expectation under π in expectation. Thus the expectation of both
estimators conditioned on X is:

EU

[
EST({X,U})

∣∣∣∣ X] =
∑
s∈S

dB(s)
∑
a∈A

π(a|s)w(s, a)φ(s, a). (32)

This proves Claim 2.

We can now prove Proposition 2.

Proposition 2 Let Var (EST) denote the variance of estimator EST. Under Assumptions
6 and 7, for the Monte Carlo estimator, MC, and the SEC estimator, SEC:

Var (SEC(B)) ≤ Var (MC(B))

Proof Using the law of total variance, the variance of the general estimator given by (31)
can be decomposed as:

VarX,U (EST) = E

[
VarU (EST({X,U}))

∣∣∣∣ X ∼ π]︸ ︷︷ ︸
ΣU

+ VarX

(
E

[
EST({X,U})

∣∣∣∣ U ∼ π])︸ ︷︷ ︸
ΣX

The first term, ΣU , is the variance due to stochasticity in the action selection. From Claim 1,
we know that for SEC this term is zero while in general it is not zero for MC.6 The second
term, ΣX , is the variance due to only visiting a finite number of states before computing the
estimate. Claim 2 shows that this term is equal for both SEC and MC. Thus the variance of
SEC is at most that of MC.

E Connection to the REG estimator

In this section we show that SEC and RIS can be viewed as approximations of the REG
estimator studied by Li et al. [2015]. This connection is notable because Li et al. showed REG
has asymptotically minimax optimal MSE, however, in MDPs, REG requires knowledge of
the environment’s state transition probabilities and initial state distribution probabilities
[2015] while SEC and RIS do not.

6 The Monte Carlo estimator has zero variance with respect to the sampled actions only
when φ(s, a) is equal for all actions in any state.



56 Josiah P. Hanna et al.

Li et al. introduce the regression estimator (REG) for policy evaluation in multi-armed
bandit problems [2015]. We present it here as a general estimator for any function f . REG
uses the available data to estimate the mean reward for each action as fD(a) and then
computes the estimate:

REG(π,D) :=
∑
a∈A

π(a)fD(a).

In multi-armed bandit problems (MDPs with a single state and length one horizon), REG is
identical to SEC and RIS(0) with f being either the function φ or χ respectively.

To apply REG to state-action expectations, one first estimates the mean φ value over
(s, a) pairs as φD and then computes the estimate:

REG(π,D) =
∑

S,A∈B
dπ(S)π(A|S)φD(S,A)

This estimate requires knowledge of dπ and is thus inapplicable to general RL tasks. To
apply REG to trajectory expectations, one first estimates the mean χ value for each observed
trajectory as χD(H) and then computes the estimate:

REG(π,D) =
∑
H∈D

Pr(H|π)χD(H)

This estimate requires knowledge of d0 and P and is thus also inapplicable to general RL
tasks.

We now elucidate a relationship between RIS(l − 1) and REG even though they are
different estimators. Let c(h) denote the number of times that trajectory h appears in D.
We can rewrite REG as an importance sampling method:

REG(π,D) =
∑
h∈H

Pr(h|π)χD(h) (33)

=
1

m

∑
h∈H

c(h)
Pr(h|π)

c(h)/m
χD(h) (34)

=
1

m

m∑
i=1

Pr(hi|π)

c(hi)/m
χ(hi) (35)

The denominator in (35) can be re-written as a telescoping product to obtain an estimator
that is similar to RIS(l − 1):

REG(π,D) =
1

m

m∑
i=1

Pr(hi|π)

c(hi)/m
χ(hi)

=
1

m

m∑
i=1

Pr(hi|π)
c(s0)
m

c(s0,a0)
c(s0)

· · · c(hi)
c(hi/al−1)

χ(hi)

=
1

m

m∑
i=1

d0(s0)π(a0|s0)P (s1|s0, a0) · · ·
d̂(s0)πD(a0|s0)P̂ (s1|s0, a0) · · ·

· · ·P (sl−1|sl−2, al−2)π(al−1|sl−1)

· · · P̂ (sl−1|h0:l−1)πD(al−1|hi:j)
χ(hi).

This expression differs from RIS(l − 1) in two ways:

1. The numerator includes the initial state distribution and transition probabilities of the
environment.

2. The denominator includes count-based estimates of the initial state distribution and tran-
sition probabilities of the environment where the transition probabilities are conditioned
on all past states and actions.
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If we assume that the empirical estimates of the environment probabilities in the denominator
are equal to the true environment probabilities then these factors cancel and we obtain the
RIS(l − 1) estimate. This assumption will almost always be false except in deterministic
environments. However, showing that RIS(l−1) is approximating REG suggests that RIS(l−1)
may have similar theoretical properties to those derived for REG by Li et al. [2015]. Our
SinglePath experiment (See Figure 10 in Section 6) supports this conjecture: RIS(l − 1) has
high bias in the low to medium sample size but have asymptotically lower MSE compared to
other methods. REG has even higher bias in the low to medium sample size range but has
asymptotically lower MSE compared to RIS(l − 1). RIS with smaller n appear to decrease
the initial bias but have larger MSE as the sample size grows. The asymptotic benefit of
RIS for all n is also corroborated by Corollary 2 in Appendix C though Corollary 2 does not
tell us anything about how different RIS methods compare. The asymptotic benefit of REG
compared to RIS methods can be understood as REG correcting for sampling error in both
the action selection and state transitions. Similar conclusions can be drawn for a comparison
between SEC and REG.


