
S. I . : ADAPTIVE AND LEARNING AGENTS 2020

Lucid dreaming for experience replay: refreshing past states
with the current policy

Yunshu Du1 • Garrett Warnell2 • Assefaw Gebremedhin1 • Peter Stone3,4 • Matthew E. Taylor1,5,6

Received: 16 November 2020 / Accepted: 5 May 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Experience replay (ER) improves the data efficiency of off-policy reinforcement learning (RL) algorithms by allowing an

agent to store and reuse its past experiences in a replay buffer. While many techniques have been proposed to enhance ER

by biasing how experiences are sampled from the buffer, thus far they have not considered strategies for refreshing

experiences inside the buffer. In this work, we introduce L uc i d D reaming for E xperience R eplay (LiDER), a

conceptually new framework that allows replay experiences to be refreshed by leveraging the agent’s current policy.

LiDER consists of three steps: First, LiDER moves an agent back to a past state. Second, from that state, LiDER then lets

the agent execute a sequence of actions by following its current policy—as if the agent were ‘‘dreaming’’ about the past and

can try out different behaviors to encounter new experiences in the dream. Third, LiDER stores and reuses the new

experience if it turned out better than what the agent previously experienced, i.e., to refresh its memories. LiDER is

designed to be easily incorporated into off-policy, multi-worker RL algorithms that use ER; we present in this work a case

study of applying LiDER to an actor–critic-based algorithm. Results show LiDER consistently improves performance over

the baseline in six Atari 2600 games. Our open-source implementation of LiDER and the data used to generate all plots in

this work are available at https://github.com/duyunshu/lucid-dreaming-for-exp-replay.

Keywords Deep reinforcement learning � Experience replay � Self-imitation learning � Behavior cloning

1 Introduction

One of the critical components contributing to the recent

success of integrating reinforcement learning (RL) with

deep learning is the experience replay (ER) mechanism

[27]. While deep RL algorithms are often data hungry, ER

enhances data efficiency by allowing the agent to store and

reuse its past experiences in a replay buffer [24]. Several

techniques have been proposed to enhance ER to further

reduce data complexity and one of the commonly used

techniques is to influence the order of replayed experi-

ences. Instead of replaying experiences uniformly at ran-

dom [23, 27], studies have found that sampling experiences

with different priorities can speed up the learning

[7, 31, 37, 40, 47].

Biased experience sampling affects how the experiences

are replayed. However, it does not consider what experi-

ence to replay. An experience comprises a state, the action

& Yunshu Du

yunshu.du@wsu.edu

Garrett Warnell

garrett.a.warnell.civ@mail.mil

Assefaw Gebremedhin

assefaw.gebremedhin@wsu.edu

Peter Stone

pstone@cs.utexas.edu

Matthew E. Taylor

matthew.e.taylor@ualberta.ca

1 Washington State University, Pullman, USA

2 Army Research Laboratory, Austin, USA

3 The University of Texas at Austin, Austin, USA

4 Sony AI, Austin, USA

5 University of Alberta, Edmonton, Canada

6 Alberta Machine Intelligence Institute, Edmonton, Canada

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-021-06104-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9891-211X
https://github.com/duyunshu/lucid-dreaming-for-exp-replay
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06104-5&domain=pdf
https://doi.org/10.1007/s00521-021-06104-5

taken at that state, and the return1 obtained by following

the agent’s current policy from that state. Existing ER

methods usually operate on a fixed set of experiences. That

is, once an experience is stored, it remains static inside the

buffer until it ages out. An experience from several steps

ago may no longer be useful for the current policy to replay

because it was generated in the past with a much worse

policy. If the agent were given a chance to try again at the

same place, its current policy might be able to take dif-

ferent actions that lead to higher returns than what it

obtained in the past. What the agent should replay is

therefore the newer and updated experience, instead of the

older one. Given this intuition, we propose in this work

L uc i d D reaming for E xperience R eplay (LiDER), a

conceptually new framework that refreshes past experi-

ences by leveraging the agent’s current policy, allowing the

agent to learn from valuable data generated by its newer

self.

LiDER refreshes replay experiences in three steps: First,

LiDER moves the agent back to a state it has visited before.

Second, LiDER lets the agent follow its current policy to

generate a new trajectory from that state. Third, if the new

trajectory led to a better outcome than what the agent

previously experienced from that state, LiDER stores the

new experience into a separate replay buffer and reuses it

during training. We refer to this process as ‘‘lucid dreaming

for experience replay,’’ because it is as if the agent were

‘‘dreaming’’ about the past and can control the dream to

practice again in a past state to achieve better rewards—

much like how research in sports science has found that a

person’s motor skills can be improved by consciously

rehearsing the movements in a lucid dream (e.g., Stumbrys

et al. [41]).

One limitation of LiDER is it requires environmental

interactions to refresh past states. However, we carefully

account for all environment interactions, including steps

taken to generate new trajectories, and show that LiDER

reduces the overall sample complexity of learning com-

pared to methods that do not refresh experiences. LiDER is

applicable when a simulator exists for the task—either the

task itself is a simulation like a video game or we can build

a simulator of the real world—and the simulator is capable

of teleporting the agent back to previously visited states

and rolling forward in time from there.

The main contributions of this work are as follows:

1. We propose LiDER, a conceptually new framework to

refresh replay experiences, allowing an agent to revisit

and update past experiences using its current policy in

off-policy, multi-worker RL algorithms.

2. LiDER is implemented in an actor–critic-based algo-

rithm as a case study.

3. We experimentally show LiDER outperforms the

baseline method (where past experiences were not

refreshed) in six Atari 2600 games, including two hard

exploration games that are challenging for several RL

benchmark algorithms.

4. Analyses and ablation studies help illustrate the

functioning of different components of LiDER.

5. Two extensions demonstrate that LiDER is also

capable of leveraging policies from external sources,

i.e., a policy trained by a different RL algorithm and a

behavior cloning policy pre-trained from non-expert

human demonstrations.

6. We open-source our implementation of LiDER and the

data used to generate all plots in this work for

reproducibility at https://github.com/duyunshu/lucid-

dreaming-for-exp-replay.

2 Background

Our algorithm leverages several existing methods, which

we briefly review in this section.

2.1 Reinforcement learning

We consider an RL problem to be modeled using a Markov

decision process, represented by a 5-tuple hS;A;P;R; ci. A
state st 2 S represents the environment at time t. An agent

learns what action at 2 AðsÞ to take in st by interacting

with the environment. The transition function Pðstþ1jst; atÞ
denotes the probability of reaching state stþ1 after taking

action at at state st. A reward rt 2 R � R is given based

on at and stþ1. The goal is to maximize the expected

cumulative return Gt ¼
P1

k¼0 c
krtþk from time step t,

where c 2 ½0; 1� is a discount factor that determines the

relative importance of future and immediate rewards [42].

2.2 Asynchronous advantage actor–critic

Policy-based methods such as the asynchronous advantage

actor–critic (A3C) algorithm [28] combine a deep neural

network with the actor–critic framework. In this work, we

leverage the A3C framework to learn both a policy function

pðatjst; hÞ (parameterized as h) and a value function

Vðst; hvÞ (parameterized as hv). The policy function is the

actor that takes action. The value function is the critic that

evaluates the quality of the action against a baseline (e.g.,

1 A one-step reward r is usually stored instead of the cumulative

return (e.g., Mnih et al. [27]). In this work, we follow Oh et al. [32]

and store the Monte-Carlo return G; we fully describe the buffer

structure in Sect. 3.

Neural Computing and Applications

123

https://github.com/duyunshu/lucid-dreaming-for-exp-replay
https://github.com/duyunshu/lucid-dreaming-for-exp-replay

state value). A3C directly minimizes the policy loss La3cpolicy

as

La3cpolicy ¼ rh logðpðatjst; hÞÞ
�
QðnÞðst; at; h; hvÞ � Vðst; hvÞ

�

þ ba3cHrh

�
pðst; hÞ

�
;

where QðnÞðst; at; h; hvÞ ¼
Pn�1

k¼0 c
krtþk þ cnVðstþn; hvÞ is

the n-step bootstrapped value that is bounded by a hyper-

parameter tmax (n� tmax). H is an entropy regularizer for

policy p (weighted by ba3c) which helps to prevent pre-

mature convergence to sub-optimal policies. The value loss

La3cvalue is

La3cvalue ¼ rhv

��
QðnÞðst; at; h; hvÞ � Vðst; hvÞ

�2
�
:

The full A3C loss La3c given by Mnih et al. [28] is then

La3c ¼ La3cpolicy þ aLa3cvalue; ð1Þ

where a is a weight for the value loss. A3C’s architecture

contains one global policy and k parallel actor–critic

workers. The workers run in parallel and each has its copy

of the environment and parameters; each worker updates

the global policy asynchronously using the data collected

in its own environment. We use the feedforward version of

A3C as it runs faster than, but with comparable perfor-

mance to, the recurrent version [28].

2.3 Transformed Bellman operator for A3C

The A3C algorithm uses reward clipping to help stabilize

learning. However, Hester et al. [18] showed that clipping

rewards to ½þ1;�1� results in the agent being unable to

distinguish between small and large rewards, thus hurting

the performance in the long-term. Pohlen et al. [33]

introduced the transformed Bellman (TB) operator to

overcome this problem in the deep Q-network (DQN)

algorithm [27]. The authors consider reducing the scale of

the action-value function while keeping the relative dif-

ferences between rewards which enables DQN to use raw

rewards instead of clipping. Pohlen et al. [33] apply a

transform function h : R7!R to reduce the scale of

QðnÞðst; at; h; hvÞ to

Q
ðnÞ
TB ðst; at; h; hvÞ ¼

Xn�1

k¼0

h ckrtþk þ cnh�1V stþn; hvð Þ
� �

;

where

h : z7!signðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jzj þ 1

p
� 1

� �
þ ez

and

h�1 : x 7! signðxÞ
ffi
1þ 4eðjxj þ 1þ eÞ

p
� 1

2e

 !2

�1

0

@

1

A;

and e is a constant that ensures h�1 is Lipschitz continuous

with a closed form inverse. Pohlen et al. [33] also prove

that the TB operator reduces the variance of the opti-

mization goal while still enabling learning an optimal

policy. Given this benefit, our previous work [6] applied

the TB operator to A3C, denoted as A3CTB, and showed

that A3CTB empirically outperforms A3C.

2.4 Self-imitation learning for A3CTB

The self-imitation learning (SIL) algorithm [32] is moti-

vated by the intuition that an agent can exploit its own past

good experiences and thus improve performance. Built

upon the actor–critic framework [28], SIL adds a priori-

tized experience replay buffer D ¼ ðS;A;GÞ to store the

agent’s past experiences, where S is a state, A is the action

taken in S, and G is the Monte-Carlo return from S (i.e., the

return is computed only after a terminal state is reached). In

addition to the A3C loss in Equation (1), at each step t, SIL

samples a minibatch from D forM times and optimizes the

following off-policy, actor–critic loss Lsilpolicy and Lsilvalue:

Lsilpolicy ¼ � logðpðatjst; hÞÞ
�
Gt � Vðst; hvÞ

�
þ

Lsilvalue ¼
1

2
jj
�
Gt � Vðst; hvÞ

�
þjj

2;

where Gt ¼
P1

k¼0 c
krtþk ¼ rt þ cGtþ1 is the discounted

cumulative return, V is the state value. The value of
�
Gt �

Vðst; hvÞ
�
is called the advantage, and the max operator

ð�Þþ ¼ maxð�; 0Þ meaning that only experiences with pos-

itive advantage values (i.e., good experiences) can con-

tribute to the policy update. The experience buffer is

prioritized by
�
Gt � Vðst; hvÞ

�
þ to increase the chance that

a good experience is sampled. The SIL loss Lsil is then

Lsil ¼ Lsilpolicy þ bsilLsilvalue; ð2Þ

where bsil is a weight for the value loss.

The SIL algorithm minimizes both the A3C loss La3c

(Equation (1)) and the SIL loss Lsil (Equation (2)). Mini-

mizing La3c lets the agent learn by interacting with the

environment and minimizing Lsil allows the agent to also

learn by replaying its past good experiences. In our pre-

vious work [6], we leveraged this framework to incorporate

SIL into A3CTB, denoted as A3CTBSIL. Specifically, the

return Gt is transformed to the TB return using operators h

and h�1 discussed in Sect. 2.3 as:

Gt ¼ hðrt þ ch�1ðGtþ1ÞÞ:

Neural Computing and Applications

123

For simplicity, from this point on we will use the word

‘‘return’’ to refer to ‘‘TB return.’’ Our previous work has

shown that A3CTBSIL outperformed both the A3C and

A3CTB algorithms [6]. This article, therefore, uses an

implementation of A3CTBSIL as the baseline.2

3 Lucid dreaming for experience replay

In this work, we introduce L uc i d D reaming for E xpe-

rience R eplay (LiDER), a conceptually new framework

that allows replay experiences to be refreshed by following

the agent’s current policy. LiDER consists of three steps:

First, LiDER moves an agent back to a past state. Second,

from that state, LiDER then lets the agent execute a

sequence of actions by following its current policy—as if

the agent were ‘‘dreaming’’ about the past and can try out

different behaviors to encounter new experiences in the

dream. Third, LiDER stores and reuses the new experience

if it turned out better than what the agent previously

experienced, i.e., to refresh its memories. From a high-

level perspective, we expect LiDER to help learning by

allowing the agent to witness and learn from alternate and

advantageous behaviors.

LiDER is designed to be easily incorporated into off-

policy, multi-worker RL algorithms that use ER. We

implement LiDER in the A3C framework with SIL for two

reasons. First, the A3C architecture [28] allows us to

conveniently add the ‘‘refreshing’’ component (which we

will introduce in the next paragraph) in parallel with A3C

and SIL workers, which saves wall-clock time for training.

Second, the SIL framework [32] is an off-policy actor–

critic algorithm that integrates an experience replay buffer

with A3C in a straightforward way, enabling us to directly

leverage the return G of an episode for a policy update—a

key component of LiDER.3

Figure 1 shows the proposed implementation architec-

ture for LiDER. A3C components are in blue: k parallel

workers interact with their own copies of the environment

to update the global policy p [28]. SIL components are in

orange: one SIL worker and a prioritized replay buffer D
are added to A3C [32]. Buffer D stores all experiences

from the A3C workers in the form of D ¼ fS;A;Gg (as

described in Sect. 2). Buffer D is prioritized by the

advantage value such that good states are more likely to be

sampled. The SIL worker runs in parallel with the A3C

workers but does not interact with the environment; it only

samples from buffer D and updates p using samples that

have positive advantage values (Equation (2)).

We introduce the novel concept of a ‘‘refresher’’

worker in parallel with A3C and SIL to generate new data

from past states (shown in green). The refresher has

access to the environment and takes randomly sampled

states from buffer D as input. For each state sampled, the

refresher resets the environment to that state and uses the

agent’s current policy to perform a rollout until reaching a

terminal state (e.g., the agent loses a life). If the Monte-

Carlo return of the new trajectory, Gnew , is higher than

the previous return, G (sampled from buffer D), the new

trajectory is immediately used to update the global policy

p. The update is done in the same way as the A3C

workers (Equation (1), replacing Qn with Gnew). The new

trajectory is also stored in a prioritized buffer R ¼
fS; Anew ; Gnew g (prioritized by advantage, like in buffer

D) if Gnew [G. Finally, the SIL worker samples from

both buffers as follows. A batch of samples is taken from

each of the buffers D and R (i.e., two batches in total),

prioritized by advantage. Samples from both batches are

mixed together and put into a temporary buffer, shown in

the green-orange circle in Fig. 1; the temporary buffer

treats all samples with an equal priority. One batch of

samples is then taken (with replacement) from the mix-

ture of the two batches (shown as the brown arrow) and

SIL performs updates using the good samples from this

Fig. 1 LiDER architecture. A3C components are in blue and SIL

components are in orange. We introduce the novel concept of a

refresher worker, in green, to generate new experiences from a

randomly sampled past state from buffer D by leveraging the agent’s

current policy. If the new experiences obtain a higher return than

what is currently stored in the replay buffer D , they are used to

update global policy p and are also stored into replay buffer R for

reuse

2 The implementation of A3CTBSIL is open-sourced at https://

github.com/gabrieledcjr/DeepRL. In de la Cruz Jr et al. [6], we also

considered using demonstrations to improve A3CTBSIL, which is not

the baseline used in this work.
3 Note that while the A3C algorithm is on-policy, integrating A3C

with SIL makes it an off-policy algorithm (as in Oh et al. [32]).

Neural Computing and Applications

123

https://github.com/gabrieledcjr/DeepRL
https://github.com/gabrieledcjr/DeepRL

batch. Note that, although samples in the temporary buffer

were initialized with equal priorities, the sampling process

is not uniformly at random since we use the implemen-

tation of prioritized sampling with stochastic prioritization

as describe in Section 3.3 of Schaul et al. [37]. Having

this temporary buffer to mix together transitions from

buffers D and R allows the agent to select past and/or

refreshed experiences flexibly without needing a fixed

sampling strategy. We summarize LiDER’s refresher

worker’s procedure in Algorithm 1. Full pseudocode for

the A3C and SIL workers is in ‘‘Appendix 2.’’

The main benefit of LiDER is that it allows an agent to

leverage its current policy to refresh past experiences.

However, LiDER does require the refresher to use addi-

tional environmental steps (see Algorithm 1 line 11: we

account for the refresher steps when measuring the global

steps), which can be concerning if acting in the environ-

ment is expensive. Despite this shortcoming, we show in

our experiments (Sect. 4) that the learning speedup LiDER

provides actually reduces the overall number of environ-

ment interactions required. It seems that the high quality of

the refreshed experiences compensates for the additional

quantity of experiences an agent needs to learn. That is, by

leveraging the refresher worker, LiDER can achieve a

certain level of performance within a shorter period of time

compared to without the refresher—an important benefit as

RL algorithms are often data hungry.

4 Experiments and analyses

We empirically evaluate LiDER in six Atari 2600 games

[3]: Gopher, NameThisGame, Alien, Ms. Pac-Man, Free-

way, and Montezuma’s Revenge. We selected these gam-

es because they cover a range of properties and difficulties.

Based on the Atari game taxonomy defined by Bellemare

et al. [2], Gopher and NameThisGame are easy exploration

games with dense reward functions; they are relatively easy

to learn. Alien and Ms. Pac-Man are hard exploration

games with dense reward functions; they are considered to

be hard games. Freeway and Montezuma’s Revenge are

also hard exploration games but with sparse reward func-

tions; they are considered the hardest games and are

challenging for several benchmark RL algorithms (e.g.,

Bellemare et al. [3], Espeholt et al. [11], and Mnih et al.

[28]).

In the next subsection, we compare A3CTBSIL (the

baseline method from de la Cruz Jr et al. [6], which uses

only the blue and the orange components in Fig. 1) and

LiDER (our proposed framework in which the agent’s

current policy is used as the refresher) to show LiDER

outperforms A3CTBSIL in all games (See ‘‘Appendix 1’’

for implementation details). Section 4.2 then introduces

analyses to understand why LiDER helps learning. In

Sect. 5, we conduct three ablation studies to validate that

our design choices for LiDER were well-founded. Finally,

in Sect. 6, we present two extensions and show that LiDER

can leverage other policies, rather than its current policy, to

refresh past states.

Algorithm 1 LiDER: Refresher Worker
1: // Assume shared global policy π, replay buffer D, replay buffer R
2: while T < Tmax do � Tmax = 50 million
3: Synchronize refresher’s policy with the global policy: πe(·|θe) ← π
4: Synchronize global step T from the most recent A3C worker
5: Initialize S ← ∅, Anew ← ∅, R ← ∅
6: Randomly take a sample {s, a, G} from buffer D, reset the environment to s
7: while not terminal do
8: Execute an action s, a, r, s′ ∼ πe(s|θe)
9: Store the experience S ← S ∪ s, Anew ← Anew ∪ a, R ← R ∪ r

10: Go to next state s ← s′

11: T ← T + 1
12: end while
13: Gnew =

∑∞
k=0 γkrt+k, ∀r ∈ �R Compute the new return

14: if Gnew > G then
15: Update π using {S, Anew, Gnew} � Equation (1), replace Q(n) with Gnew
16: Store to buffer R ← R ∪{S, Anew, Gnew}
17: end if
18: end while

Neural Computing and Applications

123

4.1 Leveraging the current policy to refresh past
states

First, we show that the agent’s current policy can be

effectively leveraged to refresh past experiences. Figure 2

shows LiDER outperforms A3CTBSIL in all six games

(averaged over eight trials); a one-tailed independent-

samples t test confirms statistical significance (p � 0:001,

see ‘‘Appendix 3’’ for details of the t tests). We train each

trial for 50 million environmental steps. For every 1

(a) Gopher (b) NameThisGame

(c) Alien (d) Ms. Pac-Man

(e) Freeway (f) Montezuma’s Revenge

Fig. 2 LiDER performance is compared to A3CTBSIL on six Atari

games. The x-axis is the total number of environmental steps:

A3CTBSIL counts steps from 16 A3C workers, while LiDER counts

steps from 15 A3C workers plus one refresher worker. The y-axis is

the average testing score over eight trials; shaded regions show the

standard deviation

Neural Computing and Applications

123

million steps, we perform a test of 125,000 steps and report

the average testing scores per episode (an episode ends

when the agent loses all its lives).

We hypothesize that the performance improvement in

the four dense reward games (Gopher, NameThisGame,

Alien, and Ms. Pac-Man) was because the likelihood for

the refresher to encounter higher-return new trajectories is

higher when rewards are dense. In addition, we observe in

Ms. Pac-Man that once the return and the action of a state

have been refreshed, LiDER prefers to sample and reuse

the newer rather than the older state-action-return transition

from the same state, which could be another reason for the

speed-up in learning—LiDER replays high-rewarding data

more frequently. We conduct a detailed analysis of

LiDER’s underlying behaviors in the next subsection that

supports this hypothesis.

LiDER also learns well in Freeway and Montezuma’s

Revenge, the two hard exploration, sparse reward games.

In Freeway, the task is difficult because the agent only

receives a nonzero reward after successfully crossing the

highway. We hypothesize that LiDER is helpful in this

case because the refresher can move the agent to an

intermediate state (e.g., in the middle of the highway),

which shortens the distance between the agent and the

rewarding state, and thus allows the agent to learn faster.

We can see LiDER’s learning curve in Freeway from

Fig. 2e that it consistently finds an optimal path after about

15 million steps of training (the standard deviation

becomes negligible) but A3CTBSIL struggles to find a

stable solution. The benefit of LiDER is evident particu-

larly in Montezuma’s Revenge. While A3CTBSIL fails to

learn anything,4 LiDER is capable of reaching a reasonable

score. Although the absolute performance of our method is

not state-of-the-art, we have shown that LiDER is a light-

weight addition to a baseline off-policy deep RL algorithm

which helps improving performance even in the most dif-

ficult Atari games.

4.2 Analyses: Why does LiDER help learning?

To understand why LiDER helps improve learning, in this

section, we analyze the underlying behavior of LiD-ER

from three perspectives. First, we look at the behaviors of

the refresher worker since it is the novel component of

LiDER. Inspecting whether the refresher worker can suc-

cessfully generate higher return trajectories from past

states, and how much better the refreshed data is compared

to the older data, will give us insight into the quality of the

data stored in buffer R .

Second, we examine the SIL worker in LiDER to reveal

how SIL makes use of the refreshed data stored in buffer

R . Not only is it critical for the refresher to be able to

generate better data, but the SIL worker must be able to

effectively leverage these data to improve learning. The

SIL worker should use data from buffer R more often for

policy updates since the refreshed data is of a higher

quality.

Third, we compare the SIL worker between A3CTB-SIL

and LiDER. In A3CTBSIL, the SIL worker samples only

from one buffer; in LiDER, there are two buffers to sample

from. It is thus interesting to investigate whether the SIL

worker uses data from the two buffers differently. For

example, if samples from buffer R have higher returns, we

should see more samples with positive advantages in

LiDER than in A3CTBSIL. The game of Ms. Pac-Man is

used as the running example for all analyses in this section.

4.2.1 The refresher worker in LiDER

First, we check two quantities of the refresher worker to

get insight into the quality of the data it generated:

– Success rate (Fig. 3a): how often can the refresher

worker generate a better trajectory such that Gnew [G.

– Gnew vs. G (Fig. 3b): the average TB return Gnew

compared to G for all successful refresh.

The success rate is measured as the percentage of the

number of successful rollouts over the total number of

rollouts generated. Figure 3a shows that the success rate

remains at approximately 40%, indicating that the refresher

is able to consistently produce higher return trajectories

throughout the training.

The improvement of the refreshed data over the older

data can be measured by comparing Gnew to G. G is the

(TB) return of a state S sampled from buffer D ; Gnew is

the refreshed (TB) return of S. We record the value of

Gnew and G for all successful rollouts then compute their

average value. Figure 3b shows that Gnew is indeed higher

than G. Both measures from Fig. 3a, b validate that the

refresher worker is able to generate new trajectories with a

higher return, and thus data in buffer R is expected to be

of better quality than data in buffer D .

4.2.2 The SIL worker in LiDER

We have shown the refresher is able to generate higher

return trajectories from past states. Next, we analyze the

behavior of the SIL worker in LiDER to check whether it

can effectively leverage these data. We inspect the fol-

lowing quantities for buffer D and buffer R :
4 Note the performance in Montezuma’s Revenge differs between

A3CTBSIL [6] and the original SIL algorithm [32]—see the

discussion in ‘‘Appendix 4.’’

Neural Computing and Applications

123

– Old samples used (Table 1): how many old samples

were still used for SIL updates even after the sample

has been refreshed to a newer return.

– Batch sample usage ratio (Fig. 4a): for one batch of

samples, how many samples taken from buffer D and

buffer R were used for SIL updates (i.e., samples with

positive advantages), respectively.

– SIL sample usage ratio (Fig. 4b): for samples used for

SIL updates, how many of them were taken from buffer

D and buffer R , respectively.

– Return of used samples (Fig. 4c): the return of samples

used for SIL updates.

As mentioned in Sect. 4.1, we hypothesize that once a

state’s return has been refreshed, LiDER tends not to reuse

the older return. We investigate whether this hypothesis

holds by counting how many older samples were used for

SIL updates. Specifically, we assign a False Boolean value

to each state in buffer D . Once a state has been sampled as

the input to the refresher worker, we flip the Boolean to

True for that state. For each SIL update, we count the

number of samples with Boolean True and compute the

ratio of old samples used over the total number of samples

used for that update.

We show the percentage of the old samples used at 1,

25, and 50 million steps of training in Table 1. It can be

seen that less than 0.01% of the older samples were reused

throughout training, and the reuse ratio keeps decreasing as

training continues. This evidence validates our observation

from Sect. 4.1 that LiDER replays the higher-return data in

buffer R more frequently than the lower-return data in

buffer D .

Recall that the SIL worker only uses samples with

positive advantages (i.e., samples that ‘‘pass’’ the max

operator) to update the policy. The percentage of such

positive samples in buffer D and R , respectively, can tell

us which buffer has higher quality data. We call this per-

centage ‘‘sample usage ratio’’ and measure two types of

ratios: batch and SIL sample usage ratio.

Batch sample usage ratio measures how many positive

samples are from buffer D and R , respectively, over one

batch of samples (the batch size is 32 in our experiments).

For example, in one batch of 32 samples, suppose that there

were 16 samples with positive advantages that were taken

from buffer R , and that there were 8 positive samples

from buffer D . The batch sample usage ratio for buffer R
is computed as 16

32
¼ 50%, and for buffer D is computed as

8
32
¼ 25%. Figure 4a shows that, on average, there are more

positive samples from buffer R than from buffer D in one

batch of data. This trend indicates that buffer R ’s samples

are more useful for SIL updates throughout training, and

are thus of a higher quality than samples in buffer D .

SIL sample usage ratio also measures the ratio of pos-

itive samples for each buffer, but it is computed over the

total number of positive samples instead of the entire batch.

For example, suppose that in one batch of 32 samples, there

were 24 with positive advantages. 18 out of the 24 samples

come from buffer R and the other 6 come from buffer D .

The SIL sample usage ratio for buffer R is computed as
18
24
¼ 75%, and buffer D ’s ratio is 6

24
¼ 25%. Figure 4b

shows that buffer R always has a higher proportion of

positive samples than buffer D among all positive sam-

ples. Both Fig. 4a, b indicate that the SIL worker is able to

effectively leverage the refreshed samples for policy

updates.

We can also confirm that the return of used samples

from buffer R is indeed higher than those from buffer D .

Similar to how Gnew and G were compared, we compare

(a) Refresher success rate

(b) Gnew vs. G

Fig. 3 LiDER’s refresher worker can consistently produce higher

return trajectories. The x-axis is the total number of environmental

steps. The y-axis value is averaged over eight trials; shaded regions

show the standard deviation

Neural Computing and Applications

123

the average (TB) return of all samples used for SIL updates

between buffer R and buffer D . Figure 4c shows that

data in buffer R has a higher return than data in buffer D
during earlier stages of training. The two values then

become similar at the end of training—an expected

observation as the agent has learned a stable policy.

4.2.3 The SIL worker in A3CTBSIL versus LiDER

Lastly, we compare the SIL worker between A3CTBSIL

and LiDER. We have seen in the previous subsection that

the SIL worker in LiDER always prefers to use samples in

buffer R , which allows more, and higher-quality, data to

be leveraged for policy updates. It is thus interesting to

inspect what kind of data has been used in A3CTBSIL, and

whether the data is better or worse than the data in LiDER.

As done in the previous subsection, we examine the batch

sample usage ratio and return of used samples for

A3CTBSIL and LiDER.

For A3CTBSIL, the batch sample usage ratio and return

of used samples are measured in buffer D only. For

LiDER, we make a small modification that instead of

quantifying the two buffers separately, we treat them as

one buffer and measure their values together. For example,

to compute the batch sample usage ratio, suppose that 6

buffer D samples and 18 buffer R samples were used for

a SIL update, the total batch sample usage ratio for LiDER

would be
ð18þ6Þ

32
¼ 75%.

Figure 5a shows that, LiDER has a higher overall batch

sample usage ratio than A3CTBSIL. We can also confirm

the average (TB) return of used samples is higher in LiDER

than in A3CTBSIL (Fig. 5b). This observation indicates

that not only can the refresher generate higher return tra-

jectories, but these trajectories are also effectively lever-

aged by the SIL worker. Both factors contribute to the

performance improvement of LiDER over A3CTBSIL.

In summary, our analyses show that 1) the refresher can

consistently generate good trajectories during training; 2)

the SIL worker of LiDER can effectively leverage these

good trajectories by sampling from buffer R ; and 3) when

compared to A3CTBSIL, LiDER performs policy updates

with more and higher quality data. All three components

(a) Batch sample usage ratio

(b) SIL sample usage ratio

(c) Return of used samples

Table 1 Old samples used (%) by the SIL worker in LiDER at 1, 25,

and 50 million training steps. LiDER rarely reuses an older state after

it has been refreshed. Results were averaged over eight trials

Steps (in millions) 1 25 50

Old samples used (%) 0.0103 0.0053 0.0047

Standard deviation (%) 0.0029 0.0005 0.0003

Neural Computing and Applications

123

contribute to the performance improvement of LiDER over

A3CTBSIL.

5 Ablation studies

We have shown that LiDER can effectively leverage

knowledge from the agent’s current policy. In this section,

we perform several ablation studies to further validate our

design choices.

5.1 How does the quality of refresher-generated
data affect learning?

As shown in Fig. 3b, LiDER increases the overall data

quality because we only use new data when it obtains a

higher reward than the old data, i.e., Gnew [G. We show

that it is important to store the refresher-generated expe-

riences and use them to update the global policy only if

those experiences are better, i.e., when the new return

Gnew computed from the refresher experience is higher

than the return G that the agent previously obtained. This

condition ensures that the data in buffer R is of a higher

quality than that in buffer D . Intuitively, LiDER goes back

in time to test if its current self can perform better than

before and only provide help where it can. To validate the

importance of this condition, we conduct an experiment in

which the refresher adds all new experiences to buffer R ,

i.e., without the Gnew [G condition, to check if doing so

leads to decreased performance. We denote this experiment

as LiDER-AddAll.

5.2 How does the buffer architecture affect
learning?

The other important design choice of LiDER is the two-

buffer architecture: buffer D stores A3C-generated data

and buffer R stores refresher-generated data. One

hypothesis could be that LiDER performs better simply

because the buffer size is doubled and more experiences

can be replayed (e.g., Zhang and Sutton [48] have shown

that buffer size can affect learning). We conduct an

experiment to show that simply increasing the size of a

single buffer does not provide the same performance

improvement as LiDER. We modify LiDER to have only

buffer D and double its size from 105 to 2�105; both

A3C-generated and refresher-generated data are stored in

buffer D . Prioritized sampling still takes a batch of 32

samples from buffer D as the input to the SIL worker, but

without using the temporary buffer. We denote this

experiment as LiDER-OneBuffer.

5.3 How does the sampling ratio affect learning?

LiDER samples from buffer D and R in a flexible manner

as described in Sects. 3, and 4.2.2 we have shown the

bFig. 4 The SIL worker in LiDER leverages more refresher-generated

data in buffer R than A3C-generated data in buffer D because

refreshed data has higher returns. The x-axis is the total number of

environmental steps. The y-axis value is averaged over eight trials;

shaded regions show the standard deviation

(a) Total sample usage ratio

(b) Return of used samples

Fig. 5 Comparing the SIL worker between A3CTBSIL and LiDER.

LiDER leverages more and better quality data for policy updates than

A3CTBSIL. The x-axis is the total number of environmental steps.

The y-axis value is averaged over eight trials; shaded regions show

the standard deviation

Neural Computing and Applications

123

samples from buffer R are more likely to be used for

learning because they have higher returns. The question

then arises, ‘‘Should the agent always sample from buffer

R since the refresher-generated data is better?’’ We con-

duct an experiment in which the agent only samples from

buffer R ; a batch of 32 samples are sampled with priority

from buffer R as the input of the SIL worker, but without

using the temporary buffer. Note that although we do not

sample from buffer D , we still keep it in the architecture

since the refresher worker needs to randomly select a past

state from buffer D to perform the refresh. We denote this

experiment as LiDER-SampleR.5

5.4 Results

Figure 6 shows the results of all ablation studies compared

to A3CTBSIL and LiDER. The performance of LiDER-

AddAll degraded in four out of six games, except for in

Gopher and NameThisGame, where LiDER-AddAll per-

forms comparably to LiDER. This could be because they

are easy-exploration games with dense reward functions (as

categorized by Bellemare et al. [2]), thus the refresher is

more likely to generate better trajectories in these games;

adding a few ‘‘bad’’ samples (i.e., Gnew �G) does not hurt

the general performance. In Alien and Montezuma’s

Revenge, LiDER-AddAll performs at about the same level

as the baseline A3CTBSIL method. Ms. Pac-Man shows

the least amount of performance drop for LiDER-AddAll,

but it still under-performed LiDER. In Freeway, while

LiDER-AddAll eventually reaches the same score as

LiDER, it struggled during the early stages of training.

These results demonstrate the importance of focusing the

exploitation only on places where the refresher can do

better than what the agent had previously experienced.

In all games, LiDER-OneBuffer significantly under-

performed LiDER (p � 0:001). Especially in the game of

Gopher, NameThisGame, and Ms. Pac-Man where they

also performed worse than the baseline A3CTBSIL. These

results confirm our analysis in Sect. 4.2.2 that the SIL

worker must be able to effectively leverage the high-

quality data generated by the refresher to improve learning.

When mixing the refresher-generated data and the A3C-

generated data into one buffer, it is less likely for the SIL to

sample from the good data. Thus, our design of the two-

buffer architecture was well chosen.

LiDER-SampleR’s performance was significantly worse

than LiDER in five out of six games (p � 0:001). Except

for in Freeway where LiDER-SampleR eventually reaches

the same performance as LiDER—but it acts quite unsta-

ble (the variance is high). We hypothesize that sampling

only from buffer R reduces the amount of state the agent

can experience, leading to a lack of exploration which

impairs the learning. Therefore, despite that the refresher

can generate higher quality data, the agent should learn

from both A3C-generated data and refresher-generated

data.

In summary, in this section we presented three ablation

studies to show the benefits of our design choices of

LiDER. Using only experiences where the return is

improved, the two-buffer architecture, and the flexible

sampling strategy between buffer D and buffer R indeed

improve performance.

6 Extensions: leveraging other policies
to refresh past states

So far, we have shown in Sect. 4.1 that LiDER out-

performed the baseline A3CTBSIL. The analyses in Sect.

4.2 revealed why LiDER helps learning. Section 5 vali-

dated the design choices of LiDER through three ablation

studies. In this section, we present two extensions to show

that LiDER can leverage not only the agent’s current pol-

icy, but also policies from external sources to refresh past

states.

In particular, we consider leveraging a trained agent

(TA) and a behavior cloning (BC) model trained from

human demonstration data. LiDER-TA uses a trained agent

(TA) as the refresher. While the TA could come from any

source, we use the best checkpoint from a fully trained

LiDER agent from experiments in Sect. 4.1 as the TA. This

scenario tests whether LiDER can effectively leverage a

high-quality policy.

LiDER-BC uses a behavior cloning (BC) model in the

refresher. The BC policy is far from expert and we explore

if LiDER can benefit from a sub-optimal policy. The BC

model in LiDER-BC is pre-trained with non-expert

demonstration data6, which was collected in our previous

work [6]. Then, we follow the pre-training method intro-

duced in our previous work [6] to jointly pre-train a model

with supervised, value, and unsupervised autoencoder

losses, which gives us a BC model trained from human

demonstration data (see ‘‘Appendix 6’’ for pre-training

details). The difference between the TA and BC model

used in our setting is that the TA is an RL agent trained

with LiDER while the BC model is trained only with

human demonstrations.

Figure 7 shows the results of LiDER-TA and LiDER-

BC compared with A3CTBSIL and LiDER (averaged over

5 Note that the baseline A3CTBSIL represents the scenario of

SampleD, i.e., always sample from buffer D .

6 The data is publicly available: https://github.com/gabrieledcjr/

atari_human_demo

Neural Computing and Applications

123

https://github.com/gabrieledcjr/atari_human_demo
https://github.com/gabrieledcjr/atari_human_demo

eight trials). As expected, LiDER-TA performs better than

the other three methods, since it uses a trained agent as the

refresher—the learning agent can observe and learn from

high-quality data generated by an expert. LiDER-TA even

(a) Gopher (b) NameThisGame

(c) Alien (d) Ms. Pac-Man

(e) Freeway (f) Montezuma’s Revenge

Fig. 6 Ablation studies on LiDER in six Atari games. Results show

that using only experiences where the return is improved, the two-

buffer architecture, and the flexible sampling method does indeed

improve performance. The x-axis is the total number of

environmental steps: A3CTBSIL counts steps from 16 A3C workers,

while LiDER counts steps from 15 A3C workers plus one refresher

worker. The y-axis is the average testing score over eight trials;

shaded regions show the standard deviation

Neural Computing and Applications

123

exceeds the TA’s performance in Gopher and Mon-

tezuma’s Revenge. The TA’s performance is shown in the

purple dotted line (shaded regions show the standard

deviation), estimated by executing the TA greedily in the

game for 50 episodes. See ‘‘Appendix 5’’ for the score of

each TA.

(a) Gopher (b) NameThisGame

(c) Alien (d) Ms. Pac-Man

(e) Freeway (f) Montezuma’s Revenge

Fig. 7 LiDER-TA and LiDER-BC outperform A3CTBSIL and

LiDER. The x-axis is the total number of environmental steps:

A3CTBSIL counts steps from 16 A3C workers, while LiDER counts

steps from 15 A3C workers plus one refresher worker. The y-axis is

the average testing score over eight trials; shaded regions show the

standard deviation

Neural Computing and Applications

123

The more interesting result is the performance of

LiDER-BC, which demonstrates that LiDER works well

even when using a refresher that is far from expert. The

black dashed line shows the average performance of the

BC model (shaded regions show the standard deviation),

estimated by executing the model greedily in the game for

50 episodes (see ‘‘Appendix 6’’ for the score of each BC).

LiDER-BC can learn to quickly outperform BC and

achieve better results than the baseline. LiDER-BC also

slightly outperforms LiDER in five out of the six games,

except for NameThisGame in which LiDER-BC outper-

forms LiDER initially, but later plateaued lower than

LiDER. These results suggest that the sub-optimal BC

model was able to provide better-than-random data during

the early stages of training, which in turn helps the learning

in the later stages. LiDER-BC could thus be one method of

leveraging imperfect demonstrations to improve RL.

7 Related work

LiDER is related to several research directions in the RL

literature; we briefly review four of them in this section.

7.1 Experience replay and extensions

ER was first introduced to improve the data efficiency of

off-policy RL algorithms [24] and has since become an

essential component for off-policy deep RL [27]. Many

techniques have been proposed to enhance ER for better

data efficiency and generally fall into two categories. One

category focuses on biasing the sampling strategy such that

important experiences are reused more frequently for pol-

icy updates [7, 31, 37, 39, 40, 47]. The other category

focuses on tuning the replay buffer architecture, such as

changing the buffer size [8, 25, 48], combining experiences

from multiple workers to generate more data to replay

[11, 19, 21], or augmenting the structure or content of

replay experiences (e.g., generating additional ‘‘goal

states’’ [1] or modifying experiences based on a teacher’s

advice [4]).

LiDER does not fall into the first category but is com-

plementary to existing sampling methods. We leverage

prioritized experience replay [37] in our experiments:

experiences are prioritized by advantages in buffer D and

buffer R , the SIL worker samples from both buffers with

priority (although the refresher worker samples randomly

from buffer D). LiDER is related to the second category

but differs in three ways. First, LiDER uses two replay

buffers which double the buffer size, but we have shown

that simply extending the size of a single buffer does not

achieve the same performance as LiDER. Second, the

refresher worker generates additional data, which is similar

to using multiple workers to generate more data, but we

kept the total number of workers the same between LiDER

and the baseline and accounted for all environmental steps.

Third, the refresher-generated data is stored in a separate

buffer only when it has a higher return than the old data,

which can be viewed as augmenting the quality of the data,

but we do not change the data structure when storing them.

Recently, Fedus et al. [12] revisited the fundamentals of

ER to study how the architecture and the content of a

replay buffer can affect learning. One of their key findings

was that performance can be improved by increasing the

replay buffer size and decreasing the age of the oldest data

stored in the buffer. LiDER’s refreshing mechanism

achieves exactly this purpose: the two-buffer architecture

doubles the replay size and the refresher worker refreshes

older experiences with a newer policy, which reduces the

age of the overall policy. Therefore, LiDER can be viewed

as a validation of the above finding by Fedus et al. [12].

7.2 Experience replay for actor–critic algorithms

The difficulty of combining ER into actor–critic algorithms

is caused by the discrepancy between the current policy

and the past policy that generated the experience. This

problem is usually solved by leveraging various impor-

tance sampling techniques, such that the bias from past

experiences can be corrected when used for updating the

current policy [11, 15, 29, 45, 46]. In this work, we chose

to use the SIL algorithm over the other actor–critic with ER

algorithms because SIL provides a straightforward way of

integrating ER into A3C without importance sampling

[32].

As proven theoretically by Oh et al. [32], the SIL

objective (Equation 2) updates the policy and the value

function directly toward optimal by leveraging the Monte-

Carlo return G, which can be viewed as a form of lower-

bound-soft-Q learning. Thus, off-policy correction tech-

niques like importance sampling are not needed even

though the SIL worker learns from off-policy data (i.e.,

from a replay buffer), while the A3C worker learns on-

policy. In addition, Oh et al. [32] have shown that the SIL

objective is compatible, not conflicting, with off-policy

correction algorithms like ACER [45]. LiDER builds upon

the SIL objective and thus shares similar properties.

Incorporating LiDER into other off-policy RL algorithms

is important for future work (as described in Sect. 8).

7.3 Learning from past good experiences
of oneself

The main idea of LiDER is to allow the agent to learn from

past states that have been improved by its current policy.

Several existing methods have shown that it is beneficial

Neural Computing and Applications

123

for the agent to learn from its past good experiences. For

example, the optimality tightening proposed by He et al.

[17] constrains the Q function with lower and upper

bounds, with the intuition that the Q function should be

updated using trajectories that perform better than the

current policy. The self-imitation learning (SIL) algorithm

was inspired by the lower-bound Q learning from opti-

mality tightening that only trajectories with positive

advantages should be used to update the policy [32].

Gangwani et al. [14] and Guo et al. [16] extended the

SIL algorithm and found that the performance can be fur-

ther improved if the past good experiences are also

diverse—diversity helps drive exploration. While we did

not design LiDER to explicitly leverage exploration tech-

niques, LiDER revisits a past state, and then generates new

trajectories using a different policy, which could poten-

tially lead to unseen states and increase the data diversity.

This implicit exploration could be one of the reasons that

LiDER improves the performance of two hard exploration

Atari games.

A generalized form of SIL algorithm was proposed

recently by Tang [43]. This new algorithm leverages n-step

lower bound Q-learning which improves the original SIL

algorithm in two aspects: 1) the agent can now self-imitate

partial trajectories while the original SIL algorithm

requires learning from a full trajectory, and 2) bootstrap-

ping from learned Q-functions is enabled while the original

SIL algorithm does not bootstrap from learned Q-functions.

The generalized SIL algorithm can be applied to both

deterministic and stochastic RL algorithms and outper-

forms SIL in a wide range of continuous control tasks.

Leveraging the generalized SIL algorithm could be an

interesting future work to improve LiDER.

Interestingly, the idea of learning from refreshed past

states was also used in the MuZero algorithm [38], a tree-

based searching algorithm that combines a learned model.

Specifically, MuZero introduced a second variant called

MuZero Reanalyze, in which the agent revisits a past time

step and performs Monte-Carlo tree search again using the

current model parameters. According to Schrittwieser et al.

[38], MuZero Reanalyze largely improves the performance

of MuZero because the reanalyze process potentially

results in better policy than the original search. LiDER’s

results align with the findings of MuZero Reanalyze: an

agent’s current policy can be used to generate better quality

data from a past state; leveraging these data leads to

improved performance.

7.4 Relocating the agent to a past state

LiDER assumes there is a simulator for the task where

resetting to a previously seen state is possible. The idea of

relocating the agent to past states has been explored in the

literature (e.g., Mihalkova and Mooney [26]). Particularly,

in the research area of curriculum learning, it is common to

assume a simulator is available and the agent can be reset

to any arbitrary state at the beginning of training (e.g.,

Florensa et al. [13]). A similar line of work has found that

resetting the agent to a past state, instead of the simulator’s

default initial state, can benefit the learning. Such a state

can be drawn from different distributions over the replay

buffer [44] or from human demonstrations

[20, 30, 34, 36, 49]. Many simulators are already equipped

with the ability to relocate the agent so that they can reset

the agent to an initial state when an episode ends. LiDER

makes full use of this common feature.

While we can exploit simulators’ relocation features if

one is available, there are also situations when such a

feature does not exist. The recently developed policy-based

Go-Explore algorithm learned a goal-conditioned policy to

guide the agent to return to a past state, which enables

relocating without using the simulator reset feature [10].7

Concurrently with policy-based Go-Explore, Guo et al.

[16] proposed the diverse trajectory-conditioned self-imi-

tation learning (DTSIL) algorithm. It uses similar mecha-

nisms as Ecoffet et al. [10] to train a goal-condition based

policy for the relocating process and no simulator reset is

needed for DTSIL.8

Both the policy-based Go-Explore and DTSIL algo-

rithms share similarities with LiDER in that they first

teleport the agent to a past state then explore from there.

However, LiDER is distinct from these two algorithms in

three perspectives. First, the functionality of the learned

policy is different. LiDER learns an actor–critic policy that

maximizes the cumulative return; its policy takes a state as

input and produces actions that can achieve maximum

return. While the policy-based Go-Explore and DTSIL’s

policies are goal-conditioned and only learn how to return

the agent to a past state, not how to maximize return. Their

policies take both the agent’s current state and the selected

state (called a goal state) as input and produce actions that

will lead the agent back to the goal state. Second, the state

selection strategy is different. LiDER teleports the agent

back to a randomly selected state, while the policy-based

Go-Explore and DTSIL algorithms select ‘‘novel’’’ states

to return to (i.e., states that are rarely visited). Lastly, from

the relocated state, LiDER then performs a refresh with its

current policy. While the policy-based Go-Explore

explores with either random actions or actions sampled

7 The policy-based Go-Explore algorithm is an extension of the Go-

Explore without a policy framework, which was presented in an

earlier pre-print [9]. Go-Explore without a policy framework also

leverages the simulator reset feature.
8 Ecoffet et al. [10] made a detailed comparison between the policy-

based Go-Explore and DTSIL. We refer the interested readers to

Ecoffet et al. [10] for further reading.

Neural Computing and Applications

123

from the goal-conditioned policy (with equal probability),

the DTSIL algorithm only explores randomly from that

state.

Besides the three key differences, there are many minor

distinctions between LiDER and these two algorithms,

such as the main goal and structure of the algorithm, the

replay buffer architecture, the state representations, and the

hyperparameters. Because of these differences, policy-

based Go-Explore and DTSIL are not directly comparable

to LiDER. On the other hand, LiDER can be considered as

more evidence that supports the core benefits of ‘‘agent

relocation,’’ rather than a competing method. Nevertheless,

leveraging the relocation mechanism of these two algo-

rithms in LiDER can be an important step toward allowing

LiDER to work outside of simulations, as mentioned in the

future work discussion in Sect. 8.

8 Discussion and future work

In this paper, we proposed Luc i d D reaming for E xpe-

rience R eplay (LiDER), a conceptually new framework

that allows experiences in the replay buffer to be refreshed

by leveraging the agent’s current policy, leading to

improved performance compared to the baseline method

without refreshing past experiences. We investigated the

underlying behavior of the refresher to better understand

why LiDER helps learning. We also conducted several

ablation studies to validate our design choices of LiDER.

Two extensions demonstrated that LiDER is also capable

of leveraging knowledge from external policies, such as a

trained agent and a behavior cloning model. One potential

limitation of LiDER is that it must have access to a sim-

ulator that can return to previously visited states before

resuming.

This paper opens up several new interesting directions

for future work. First, based on the initial positive results

reported in this paper, additional computational resources

ought to be devoted to evaluating LiDER in a broad variety

of domains.

Second, while we have presented in this paper a case

study of applying LiDER to a multi-worker, actor–critic-

based algorithm, future work could investigate extending

LiDER to other types of off-policy RL algorithms that

leverage ER. We expect LiDER to be most applicable to

the PPO?SIL algorithm Oh et al. [32]. PPO?SIL’s multi-

worker, actor–critic architecture allows the refresher

worker to be easily added as was done in A3CTBSIL.

Similarly, the SIL objective (Equation (2)) of PPO?SIL

enables integrating ER, and the agent can learn from both

PPO-generated and refresher-generated experiences.

On the other hand, applying LiDER to single-worker,

value-based algorithms, such as the deep Q-network

(DQN) algorithm [27], presents more challenges. The first

is that it is non-trivial to decide how often one should

‘‘pause’’ the training and perform a refresh. In multi-

worker architectures, we do not need to explicitly control

this frequency as all workers are running in parallel. With a

single worker, the training and the refreshing cannot hap-

pen simultaneously. Another challenge is that, in value-

based algorithms like DQN, a value function is learned

instead of directly learning a policy. The Q value is

updated using a one-step TD error instead of the Monte-

Carlo return. Since the key concept of LiDER is to leverage

higher returns for policy updates, how to integrate returns

in value updates should be considered carefully before

applying LiDER to DQN. Nevertheless, LiDER has the

potential to benefit other off-policy algorithms that use ER,

which is a good direction to explore in future work.

Third, the refresher in LiDER-BC uses a fixed policy

from behavior cloning. Future work could investigate

whether it helps to use different policies during training.

For example, one could use the BC policy during the early

stages of training, and then once A3C’s current policy

outperforms BC, replace it with the A3C policy. Addi-

tionally, it is thus natural to consider adding multiple SIL

and/or refresher works to enable leveraging multiple poli-

cies. Investigating how the proportion among the number

of A3C, SIL, and refresher workers affects performance

would make for an interesting future study.

Fourth, it would be interesting to allow LiDER to work

outside of simulations by returning to a similar, but not

identical state, and from there generate new trajectories.

For example, in robotics, a robot may be able to return to a

position that is close to, but not identical to, a previously

experienced state.

Appendices for ‘‘lucid dreaming
for experience replay: refreshing past states
with the current policy’’

We provide further details of our work in the following six

appendices:

– ‘‘Appendix 1’’ contains the implementation details of

LiDER, including neural network architecture, hyper-

parameters, and computation resources used for all

experiments.

– ‘‘Appendix 2’’ presents the pseudocode for the A3C and

SIL workers. Both follow the original work of Mnih

et al. [28] and Oh et al. [32], respectively, we add them

here for completeness.

– ‘‘Appendix 3’’ provides detailed statistics of the one-

tailed independent-samples t tests: 1) A3CTBSIL

compared to LiDER, 2) A3CTBSIL compared to the

Neural Computing and Applications

123

three ablation studies of LiDER, 3) A3CTBSIL com-

pared to the two extensions of LiDER, 4) LiDER

compared to the three ablation studies of LiDER, and 5)

LiDER compared to the two extensions of LiDER.

– ‘‘Appendix 4’’ discusses the differences between the

A3CTBSIL algorithm in Jr et al. [6] and the original

SIL algorithm in Oh et al. [32] (as mentioned in Sect.

4.1).

– ‘‘Appendix 5’’ presents the performance of the trained

agents (TA) used in LiDER-TA.

– ‘‘Appendix 6’’ details the pre-training process for

obtaining the BC models used in LiDER-BC, including

the statistics of the demonstration collected by de la

Cruz et al. [5], the network architecture, the hyperpa-

rameters used for pre-training, and the performance of

the trained BC models.

Appendix 1: Implementation details

We use the same neural network architecture as in the

original A3C algorithm [28] for all A3C, SIL, and refresher

workers (the blue, orange, and green components in Fig. 1,

respectively). The network consists of three convolutional

layers, one fully connected layer, followed by two branches

of a fully connected layer: a policy function output layer

and a value function output layer. Atari images are con-

verted to grayscale and resized to 88�88 with 4 images

stacked as the input.

We run each experiment for eight trials due to compu-

tation limitations. Each experiment uses one GPU (Tesla

K80 or TITAN V), five CPU cores, and 40 GB of memory

(each LiDER-OneBuffer experiment uses 64 GB of mem-

ory since the buffer size was doubled). The refresher

worker runs on GPU to generate data as quickly as possi-

ble; the A3C and SIL workers run distributively on CPU

Table 2 Hyperparameters for

all experiments. We train each

game for 50 million steps with a

frame skip of 4, i.e., 200 million

game frames were consumed for

training

Network architecture Value

Input size 88�88�4

Tensorflow Padding method SAME

Convolutional layer 1 32 filters of size 8�8 with stride 4

Convolutional layer 2 64 filters of size 4�4 with stride 2

Convolutional layer 3 64 filters of size 3�3 with stride 1

Fully connected layer 512

Policy output layer number of actions

Value output layer 1

Common parameters

RMSProp initial learning rate 7� 10�4

RMSProp epsilon 1� 10�5

RMSProp decay 0.99

RMSProp momentum 0

Maximum gradient norm 0.5

Discount factor c 0.99

Parameters for A3CTB

A3C entropy regularizer weight ba3c 0.01

A3C maximum bootstrap step tmax 20

A3C value loss weight a 0.5

k parallel actors 16

Transformed Bellman operator e 10�2

Parameters for SIL

SIL value loss weight bsil 0.5

SIL update per step M 4

Replay buffer D size 105

Replay buffer priority a 0.6

Minibatch size 32

Parameters for LiDER (refresher worker)

Replay buffer R size 105

Minibatch size 32

Neural Computing and Applications

123

cores. In all games, the wall-clock time is roughly 0.8 to 1

million steps per hour and around 50 to 60 hours to com-

plete one trial of 50 million steps.

The baseline A3CTBSIL is trained with 17 parallel

workers; 16 A3C workers and 1 SIL worker. The RMSProp

optimizer is used with a learning rate = 0.0007. We use

tmax ¼ 20 for n-step bootstrap QðnÞ (n� tmax). The SIL

worker performs M ¼ 4 SIL policy updates (Equation (2))

per step t with minibatch size 32 (i.e., 32�4=128 total

samples per step). Buffer D is of size 105. The SIL loss

weight bsil ¼ 0:5.

LiDER is also trained with 17 parallel workers: 15 A3C

workers, 1 SIL worker, and 1 refresher worker—we keep

the total number of workers in A3CTBSIL and LiDER the

same to ensure a fair performance comparison. The SIL

worker in LiDER also uses a minibatch size of 32; samples

are taken from buffer D and R as described in Sect. 3.

All other parameters are identical to that of A3CTBSIL.

We summarize the details of the network architecture and

experiment parameters in Table 2.

Appendix 2: Pseudocode for the A3C and SIL
workers

Algorithm 2 LiDER: A3C Worker (as in Mnih et al. [28])
1: // Assume global network parameters θ and θv and global step T = 0
2: // Assume replay buffer D ← ∅, replay buffer R ← ∅
3: Initialize worker-specified local network parameters, θ

′
, θ

′
v

4: Initialize worker-specified local time step t = 0 and local episode buffer E ← ∅
5: while T < Tmax do � Tmax = 50 million
6: Reset gradients: dθ ← 0, dθv ← 0
7: Synchronize local parameters with global parameters θ

′ ← θ and θ
′
v ← θv

8: tstart ← t
9: while st+1 is not terminal or t < tmax do � tmax = 20

10: Execute an action st, at, rt, st+1 ∼ π(at|st, θ
′
)

11: Store transition to local buffer: E ← E∪ {st, at, rt, }
12: T ← T + 1, t ← t + 1
13: end while

14: G ←
{

0 if st+1 is terminal
V (St+1; θ

′
v) otherwise

� Perform A3C update [28]

15: for i ∈ {t, ..., tstart} do
16: G ← ri + γG

17: Accumulate gradients w.r.t. θ
′
: dθ ← dθ + ∇

θ
′ logπ(ai|si, θ

′
)(G − V (si; θ

′
v))

18: Accumulate gradients w.r.t. θ
′
v : dθv ← dθv + ∂(G − V (si; θ

′
v))2/∂θ

′
v

19: end for
20: if st+1 is terminal then: � Prepare for SIL worker [32]
21: compute Gt =

∑∞
k γk−trk for all t in E

22: Store transition to global replay buffer D ← D ∪{st, at, Gt} for all t in E
23: Reset local buffer E ← ∅
24: end if
25: Asynchronously update global parameters using local parameters
26: end while

Neural Computing and Applications

123

Appendix 3: One-tailed independent-
samples t tests

We conducted one-tailed independent-samples t tests

(equal variances not assumed) in all games to compare the

differences in the mean episodic reward among all methods

in this paper. For each game, we restored the best model

checkpoint from each trial (eight trials per method) and

executed the model in the game following a deterministic

policy for 100 episodes (an episode ends when the agent

loses all its lives) and recorded the reward per episode.

This gives us 800 data points for each method in each

game. We use a significance level a ¼ 0:001 for all tests.

First, we check the statistical significance of the baseline

A3CTBSIL compared to LiDER (Sect. 4.1), the main

framework proposed in this paper. We report the detailed

statistics in Table 3. Results show that the mean episodic

reward of LiDER is significantly higher than A3CTBSIL

(p � 0:001) in all games.

Second, we compare A3CTBSIL to the three ablation

studies, LiDER-AddAll, LiDER-OneBuffer, and LiDER-

SampleR (Sect. 5). Table 4 shows that all ablations were

helpful in Freeway and Montezuma’s Revenge, in which

the mean episodic rewards of the ablations are significantly

higher than the baseline (p � 0:001). LiDER-AddAll also

performed significantly better than A3CTBSIL in all games

(p � 0:001). LiDER-OneBuffer outperformed A3CTBSIL

in Freeway and Montezuma’s Revenge (p � 0:001), but it

performed worse than the other four games (p � 0:001).

LiDER-SampleR outperformed A3CTBSIL in Ms. Pac-

Man, Freeway, and Montezuma’s Revenge (p � 0:001),

but under-performed A3CTBSIL in Gopher, Name-

ThisGame, and Alien (p � 0:001).

Third, we compare A3CTBSIL to the two extensions,

LiDER-BC and LiDER-TA (Sect. 6). Table 5 shows that

the two extensions outperformed the baseline significantly

in all games (p � 0:001).

Fourth, we check the statistical significance of LiDER

compared to the three ablation studies, LiDER-AddAll,

LiDER-OneBuffer, and LiDER-SampleR (Sect. 5). Results

in Table 6 show that most of the ablations significantly

under-performed LiDER (p � 0:001) in terms of the mean

Table 3 One-tailed independent-samples t test for the differences of

the mean episodic reward between A3CTBSIL and LiDER. Equal

variances are not assumed

Methods Mean episodic reward SD One-tailed p-value

(800 episodes)

Gopher

A3CTBSIL 4291.20 2913.52 –

LiDER 6618.88 3300.10 1.24�10�47

NameThisGame

A3CTBSIL 6786.75 1275.87 –

LiDER 8332.50 1754.30 4.09�10�80

Alien

A3CTBSIL 3558.58 1596.18 –

LiDER 5065.04 2012.93 3.77�10�57

Ms. Pac-Man

A3CTBSIL 4975.03 1527.05 –

LiDER 8532.34 2477.02 1.49�10�187

Freeway

A3CTBSIL 23.10 5.84 –

LiDER 31.62 0.98 1.19�10�201

Montezuma’s Revenge

A3CTBSIL 0.25 4.99 –

LiDER 987.63 951.69 3.36�10�129

Algorithm 3 LiDER: SIL Worker (as in Oh et al. [32])
1: // Assume global network parameters, θ, θv

2: // Assume (Non-empty) replay buffer D, replay buffer R
3: Initialize worker-specific local network parameters, θ

′
, θ

′
v

4: Initialize local buffer B ← ∅
5: while T < Tmax do � Tmax = 50 million
6: Synchronize global step T from the most recent A3C worker
7: Synchronize parameters θ

′ ← θ and θ
′
v ← θv

8: for m = 1 to M do � M = 4
9: Sample a minibatch of size 32 {sD, aD, GD} from D

10: Sample a minibatch of size 32 {sR, aR, GR} from R
11: Store both batches into B: B ← {sD, aD, rD} ∪ {sR, aR, rR} � Length of B=64
12: Sample a minibatch of 32 {sB , aB , GB} from B � Perform SIL update [32]
13: Compute gradients w.r.t. θ

′
: dθ ← ∇

θ
′ logπ(aB |sB ; θ

′
)(GB − V (sB ; θ

′
v))+

14: Compute gradients w.r.t. θ
′
v : dθv ← ∂((GB − V (sB ; θ

′
v))+)2/∂θ

′
v

15: Perform asynchronous update of θ using dθ and θv using dθv

16: Reset local buffer B ← ∅
17: end for
18: end while

Neural Computing and Applications

123

episodic reward. Except for Gopher and NameThisGame,

in which LiDER-AddAll performs at the same level as

LiDER (p[0:001).

Lastly, we compare LiDER to the two extensions,

LiDER-TA and LiDER-BC (Sect. 6). Results in Table 7

show that LiDER-TA always outperforms LiDER

(p � 0:001). LiDER-BC outperformed LiDER in Gopher,

Alien, Ms. Pac-Man, and Montezuma’s Revenge. In

Freeway, LiDER-BC performs the same as LiDER

(p[0:001), while in NameThisGame LiDER-BC per-

formed worse than LiDER (p � 0:001).

Appendix 4: Differences between A3CTBSIL
and SIL

There is a performance difference in Montezuma’s

Revenge between the A3CTBSIL algorithm (our previous

work in de la Cruz Jr et al. [6], which is used as the

baseline method in this article) and the original SIL algo-

rithm (by Oh et al. [32]). The A3CTBSIL agent fails to

achieve any reward while the SIL agent can achieve a score

of 1100 (Table 5 in [32]).

We hypothesize that the difference is due to the different

number of SIL updates (Equation (2)) that can be per-

formed in A3CTBSIL and SIL; lower numbers of SIL

updates would decrease the performance. In particular, Oh

et al. [32] proposed to add the ‘‘Perform self-imitation

Table 4 One-tailed

independent-samples t test for

the differences of the mean

episodic reward between

A3CTBSIL and LiDER-

AddALL, between A3CTBSIL

and LiDER-OneBuffer, and

between A3CTBSIL and

LiDER-SampleR. Equal

variances are not assumed

Methods Mean episodic reward SD One-tailed p-value

(800 episodes)

Gopher

A3CTBSIL 4291.20 2913.52 –

(Ablation) LiDER-AddAll 7086.53 3188.04 2.72�10�68

(Ablation) LiDER-OneBuffer 1962.05 1872.94 5.97�10�72

(Ablation) LiDER-SampleR 3072.40 5146.23 3.61�10�9

NameThisGame

A3CTBSIL 6786.75 1275.87 –

(Ablation) LiDER-AddAll 8200.04 1580.23 2.86�10�77

(Ablation) LiDER-OneBuffer 6422.48 1374.87 2.34�10�8

(Ablation) LiDER-SampleR 5819.81 1743.05 3.35�10�35

Alien

A3CTBSIL 3558.58 1596.18 –

(Ablation) LiDER-AddAll 4054.28 1837.20 5.13�10�9

(Ablation) LiDER-OneBuffer 3204.41 1998.95 4.74�10�5

(Ablation) LiDER-SampleR 3104.99 1548.04 4.86�10�9

Ms. Pac-Man

A3CTBSIL 4975.03 1527.05 –

(Ablation) LiDER-AddAll 6828.82 2562.33 1.81�10�62

(Ablation) LiDER-OneBuffer 4625.37 1920.67 2.95�10�5

(Ablation) LiDER-SampleR 7303.22 1869.98 4.32�10�134

Freeway

A3CTBSIL 23.10 5.84 –

(Ablation) LiDER-AddAll 31.20 0.99 1.35�10�189

(Ablation) LiDER-OneBuffer 27.55 5.15 6.34�10�55

(Ablation) LiDER-SampleR 27.45 10.46 4.17�10�24

Montezuma’s Revenge

A3CTBSIL 0.25 4.99 –

(Ablation) LiDER-AddAll 77.63 144.18 3.93�10�46

(Ablation) LiDER-OneBuffer 3.00 24.31 8.97�10�4

(Ablation) LiDER-SampleR 265.86 178.74 8.46�10�205

Neural Computing and Applications

123

learning’’ step in each A3C worker (Algorithm 1 of Oh

et al. [32]). That is, when running with 16 A3C workers,

the SIL agent is actually using 16 SIL workers to update

the policy. However, A3CTBSIL only has one SIL worker,

which means A3CTBSIL performs strictly fewer SIL

updates compared to that of the original SIL algorithm, and

thus resulting in lower performance.

We empirically validate the above hypothesis by con-

ducting an experiment in the game of Ms. Pac-Man by

modifying the A3CTBSIL algorithm from our previous

work [6]. Instead of performing a SIL update whenever the

SIL worker can, we force the SIL worker to only perform

an update at even global steps; this setting reduces the total

number of SIL updates by half. We denote this experiment

as A3CTBSIL-ReduceSIL.

Figure 8 shows that A3CTBSIL-ReduceSIL under-per-

formed A3CTBSIL, which provides preliminary evidence

that the number of SIL updates is positively correlated to

performance. More experiments will be performed in

future work to further validate this correlation.

Appendix 5: The performance of trained
agents used in LiDER-TA

Section 6 shows that LiDER can leverage knowledge from

a trained agent (TA). While the TA could come from any

source, we use the best checkpoint of a fully trained LiDER

agent. Table 8 shows the average performance of the TA

used in each game. The score is estimated by executing the

TA greedily in the game for 50 episodes. An episode ends

when the agent loses all its lives.

Appendix 6: Pre-training the behavior
cloning model for LiDER-BC

In Sect. 6, we demonstrated that a BC model can be

incorporated into LiDER to improve learning. The BC

model is pre-trained using a publicly available human

demonstration dataset. Dataset statistics are shown in

Table 9.

The BC model uses the same network architecture as the

A3C algorithm [28] and pre-training a BC model for A3C

Table 5 One-tailed

independent-samples t test for

the differences of the mean

episodic reward between

A3CTBSIL and LiDER-BC,

and between A3CTBSIL and

LiDER-TA. Equal variances are

not assumed

Methods Mean episodic reward SD One-tailed p-value

(800 episodes)

Gopher

A3CTBSIL 4291.20 2913.52 –

(Extension) LiDER-TA 8133.50 3800.38 1.97�10�98

(Extension) LiDER-BC 7775.75 3480.92 1.11�10�91

NameThisGame

A3CTBSIL 6786.75 1275.87 –

(Extension) LiDER-TA 10227.69 2222.20 7.63�10�212

(Extension) LiDER-BC 7303.74 1649.01 1.81�10�12

Alien

A3CTBSIL 3558.58 1596.18 –

(Extension) LiDER-TA 7753.54 1681.06 0.000

(Extension) LiDER-BC 6261.79 1865.67 4.01�10�166

Ms. Pac-Man

A3CTBSIL 4975.03 1527.05 –

(Extension) LiDER-TA 10272.18 2035.98 0.000

(Extension) LiDER-BC 9613.89 2875.71 2.40�10�226

Freeway

A3CTBSIL 23.10 5.84 –

(Extension) LiDER-TA 32.42 0.73 2.81�10�223

(Extension) LiDER-BC 31.68 0.85 4.63�10�203

Montezuma’s Revenge

A3CTBSIL 0.25 4.99 –

(Extension) LiDER-TA 1677.50 1050.33 2.53�10�222

(Extension) LiDER-BC 1811.86 994.38 2.30�10�256

Neural Computing and Applications

123

requires a few more steps than just using supervised

learning as to how it is normally done in standard imitation

learning (e.g., Ross and Bagnell [35]). A3C has two output

layers: a policy output layer and a value output layer. The

policy output is what we usually train a supervised clas-

sifier for. However, the value output layer is usually ini-

tialized randomly without being pre-trained. Our previous

work [6] observed this inconsistency and leveraged

demonstration data to also pre-train the value output layer.

In particular, since the demonstration data contains the true

return G, we can obtain a value loss that is almost identical

to A3C’s value loss La3cvalue: instead of using the n-step

bootstrap value QðnÞ to compute the advantage, the true

return G is used.

Inspired by the supervised autoencoder (SAE) frame-

work [22], our previous work [6] also blended in an

unsupervised loss for pre-training. In SAE, an image

reconstruction loss is incorporated with the supervised loss

to help extract better feature representations and achieve

better performance. A BC model pre-trained jointly with

supervised, value, and unsupervised losses can lead to

better performance after fine-tuning with RL, compared to

pre-training with the supervised loss only.

We copy this approach by jointly pre-training the BC

model for 50,000 steps with a minibatch of size 32. Adam

optimizer is used with a learning rate = 0.0005. After

training, we perform testing for 50 episodes by executing

the model greedily in the game and record the average

episodic reward (an episode ends when the agent loses all

Table 6 One-tailed

independent-samples t test for

the differences of the mean

episodic reward between

LiDER and LiDER-AddAll,

between LiDER and LiDER-

OneBuffer, and between LiDER

and LiDER-SampleR. Equal

variances are not assumed.

Methods in bold are not
significant at level a ¼ 0:001

Methods Mean episodic reward SD One-tailed p-value

(800 episodes)

Gopher

LiDER 6618.88 3300.10 –

(Ablation) LiDER-AddAll 7086.53 3188.04 0.002

(Ablation) LiDER-OneBuffer 1962.05 1872.94 3.65�10�186

(Ablation) LiDER-SampleR 3072.40 5146.23 1.38�10�55

NameThisGame

LiDER 8332.50 1754.30 –

(Ablation) LiDER-AddAll 8200.04 1580.23 0.056

(Ablation) LiDER-OneBuffer 6422.48 1374.87 4.25�10�110

(Ablation) LiDER-SampleR 5819.81 1743.05 6.54�10�147

Alien

LiDER 5065.04 2012.93 –

(Ablation) LiDER-AddAll 4054.28 1837.20 3.28�10�25

(Ablation) LiDER-OneBuffer 3204.41 1998.95 5.92�10�70

(Ablation) LiDER-SampleR 3104.99 1548.04 3.55�10�92

Ms. Pac-Man

LiDER 8532.34 2477.02 –

(Ablation) LiDER-AddAll 6828.82 2562.33 9.06�10�40

(Ablation) LiDER-OneBuffer 4625.37 1920.67 4.18�10�199

(Ablation) LiDER-sampleR 7303.22 1869.98 2.76�10�28

Freeway

LiDER 31.62 0.98 –

(Ablation) LiDER-AddAll 31.20 0.99 1.32�10�17

(Ablation) LiDER-OneBuffer 27.55 5.15 1.62�10�85

(Ablation) LiDER-SampleR 27.45 10.46 1.22�10�27

Montezuma’s Revenge

LiDER 987.63 951.69 –

(Ablation) LiDER-AddAll 77.63 144.18 1.68�10�114

(Ablation) LiDER-OneBuffer 3.00 24.31 1.09�10�128

(Ablation) LiDER-SampleR 265.86 178.74 5.31�10�80

Neural Computing and Applications

123

its lives). For each set of demonstration data, we train five

models and use the one with the highest average episodic

reward as the BC model in LiDER-BC. The performance of

the trained BC models is present in Table 10. All

Fig. 8 A3CTBSIL-ReduceSIL compared to A3CTBSIL in the game

of Ms. Pac-Man. The x-axis is the total number of environmental

steps. The y-axis is the average testing score over five trials. We ran

A3CTBSIL-ReduceSIL for five trials due to limited computing

resources; we plot the first five trials out of eight for A3CTBSIL for a

fair comparison to the number of trials in A3CTBSIL-ReduceSIL.

Shaded regions show the standard deviation

Table 8 The performance of trained agents used in LiDER-TA,

shown as the purple dotted line in Fig. 7. The score is estimated by

executing the TA greedily in the game for 50 episodes

Game Trained TA score SD

Gopher 6972.4 2190.26

NameThisGame 9969.0 1910.91

Alien 7190.4 1251.27

Ms. Pac-Man 9145.42 955.94

Freeway 32.92 0.27

Montezuma’s Revenge 1108.0 1057.14

Table 7 One-tailed

independent-samples t test for

the differences of the mean

episodic reward between

LiDER and LiDER-TA, and

between LiDER and LiDER-

BC. Equal variances are not

assumed. Methods in bold are

not significant at level
a ¼ 0:001

Methods Mean episodic reward Standard deviation One-tailed p-value

(800 episodes)

Gopher

LiDER 6618.86 3300.10 –

(Extension) LiDER-TA 8133.50 3800.38 2.07�10�17

(Extension) LiDER-BC 7775.75 3480.92 6.55�10�12

NameThisGame

LiDER 8332.50 1754.30 –

(Extension) LiDER-TA 10227.69 2222.20 3.75�10�72

(Extension) LiDER-BC 7303.74 1649.01 1.68�10�32

Alien

LiDER 5065.04 2012.93 –

(Extension) LiDER-TA 7753.54 1681.06 3.53�10�148

(Extension) LiDER-BC 6261.79 1865.67 1.05�10�33

Ms. Pac-Man

LiDER 8532.34 2477.02 –

(Extension) LiDER-TA 10272.18 2035.98 8.01�10�50

(Extension) LiDER-BC 9613.89 2875.71 7.81�10�16

Freeway

LiDER 31.62 0.98 –

(Extension) LiDER-TA 32.42 0.73 8.54�10�69

(Extension) LiDER-BC 31.68 0.85 0.104

Montezuma’s Revenge

LiDER 987.63 951.69 –

(Extension) LiDER-TA 1677.50 1050.33 4.55�10�41

(Extension) LiDER-BC 1811.88 994.38 1.53�10�59

Neural Computing and Applications

123

parameters are based on those from our previous work [6]

and we summarize them in Table 11.

Acknowledgements We thank Gabriel V. de la Cruz Jr. for helpful

discussions; his open-source code at https://github.com/gabrieledcjr/

DeepRL is used for training the behavior cloning models in this work.

This research used resources of Kamiak, Washington State

University’s high-performance computing cluster. Assefaw

Gebremedhin is supported by the NSF award IIS-1553528. Part of this

work has taken place in the Intelligent Robot Learning (IRL) Lab at

the University of Alberta, which is supported in part by research

grants from the Alberta Machine Intelligence Institute (Amii),

CIFAR, and NSERC. Part of this work has taken place in the

Learning Agents Research Group (LARG) at UT Austin. LARG

research is supported in part by NSF (CPS-1739964, IIS-1724157,

NRI-1925082), ONR (N00014-18-2243), FLI (RFP2-000), ARL,

DARPA, Lockheed Martin, GM, and Bosch. Peter Stone serves as the

Executive Director of Sony AI America and receives financial com-

pensation for this work. The terms of this arrangement have been

reviewed and approved by the University of Texas at Austin in

accordance with its policy on objectivity in research.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R,

Welinder P, McGrew B, Tobin J, Pieter Abbeel O, Zaremba W

(2017) Hindsight experience replay. In: Guyon I, Luxburg UV,

Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds)

Advances in neural information processing systems. Curran

Associates, Inc., 30:5048–5058. https://proceedings.neurips.cc/

paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf

2. Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D,

Munos R (2016) Unifying count-based exploration and intrinsic

motivation. In: Lee D, Sugiyama M, Luxburg U, Guyon I, Gar-

nett R (eds) Advances in neural information processing systems.

Curran Associates, Inc., vol 29, pp 1471–1479. https://proceed

ings.neurips.cc/paper/2016/file/afda332245e2af431fb7

b672a68b659d-Paper.pdf

3. Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The

arcade learning environment: an evaluation platform for general

agents. J Artif Intell Res 47(1):253–279

4. Chan H, Wu Y, Kiros J, Fidler S, Ba J (2019) ACTRCE: aug-

menting experience via teacher’s advice for multi-goal rein-

forcement learning. arXiv:190204546

5. de la Cruz GV, Du Y, Taylor ME (2019) Pre-training with non-

expert human demonstration for deep reinforcement learning.

Knowl Eng Rev 34:e10. https://doi.org/10.1017/

S0269888919000055

6. de la Cruz Jr GV, Du Y, Taylor ME (2019) Jointly pre-training

with supervised, autoencoder, and value losses for deep rein-

forcement learning. In: Adaptive and learning agents workshop,

AAMAS

Table 9 Demonstration size and

quality, collected in de la Cruz

et al. [5]. All games are limited

to 20 min of demonstration time

per episode

Game Worst score Best score # of states # of episodes

Gopher 1420 5800 16847 8

NameThisGame 2510 4840 17113 4

Alien 3000 8240 12885 5

Ms. Pac-Man 4020 18241 14504 8

Freeway 26 31 24396 12

Montezuma’s Revenge 500 10100 18751 9

Table 10 The performance of behavior cloning models used in

LiDER-BC, shown as the black dashed line in Fig. 7. The score is

estimated by executing the BC greedily in the game for 50 episodes

Game Trained BC model score SD

Gopher 450.8 393.57

NameThisGame 1491.2 530.55

Alien 839.2 718.72

Ms. Pac-Man 1776.6 993.94

Freeway 25.06 1.48

Montezuma’s Revenge 174.0 205.72

Table 11 Hyperparameters for pre-training the behavior cloning (BC)

model used in LiDER-BC

Network architecture Value

Input size 88�88�4

Tensorflow Padding method SAME

Convolutional layer 1 32 filters of size 8�8 with stride 4

Convolutional layer 2 64 filters of size 4�4 with stride 2

Convolutional layer 3 64 filters of size 3�3 with stride 1

Fully connected layer 512

Classification output layer number of actions

Value output layer 1

Parameters for pre-training

Adam learning rate 5� 10�4

Adam epsilon 1� 10�5

Adam b1 0.9

Adam b2 0.999

L2 regularization weight 1� 10�5

Number of minibatch updates 50,000

Batch size 32

Neural Computing and Applications

123

https://github.com/gabrieledcjr/DeepRL
https://github.com/gabrieledcjr/DeepRL
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
http://arxiv.org/abs/190204546
https://doi.org/10.1017/S0269888919000055
https://doi.org/10.1017/S0269888919000055

7. Dao G, Lee M (2019) Relevant experiences in replay buffer. In:

2019 IEEE symposium series on computational intelligence

(SSCI), pp 94–101. https://doi.org/10.1109/SSCI44817.2019.

9002745

8. De Bruin T, Kober J, Tuyls K, Babuška R (2015) The importance

of experience replay database composition in deep reinforcement

learning. In: Deep reinforcement learning workshop, NIPS

9. Ecoffet A, Huizinga J, Lehman J, Stanley KO, Clune J (2019)

Go-explore: a new approach for hard-exploration problems. arXiv

preprint arXiv:190110995

10. Ecoffet A, Huizinga J, Lehman J, Stanley KO, Clune J (2020)

First return then explore. arXiv preprint arXiv:200412919

11. Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T,

Doron Y, Firoiu V, Harley T, Dunning I, Legg S, Kavukcuoglu K

(2018) IMPALA: scalable distributed deep-RL with importance

weighted actor-learner architectures. In: Proceedings of Machine

learning research 80:1407–1416. http://proceedings.mlr.press/

v80/espeholt18a.html

12. Fedus W, Ramachandran P, Agarwal R, Bengio Y, Larochelle H,

Rowland M, Dabney W (2020) Revisiting fundamentals of

experience replay. In: Proceedings of the 37th international

conference on machine learning, PMLR. https://proceedings.

icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-

Abstract.html

13. Florensa C, Held D, Wulfmeier M, Zhang M, Abbeel P (2017)

Reverse curriculum generation for reinforcement learning. In:

Levine S, Vanhoucke V, Goldberg K (eds) Proceedings of

machine learning research, PMLR, 78:482–495. http://proceed

ings.mlr.press/v78/florensa17a.html

14. Gangwani T, Liu Q, Peng J (2019) Learning self-imitating

diverse policies. In: International conference on learning repre-

sentations. https://openreview.net/forum?id=HyxzRsR9Y7

15. Gruslys A, Dabney W, Azar MG, Piot B, Bellemare M, Munos R

(2018) The reactor: a fast and sample-efficient actor-critic agent

for reinforcement learning. In: International conference on

learning representations. https://openreview.net/forum?id=

rkHVZWZAZ

16. Guo Y, Choi J, Moczulski M, Feng S, Bengio S, Norouzi M, Lee

H (2020) Memory based trajectory-conditioned policies for

learning from sparse rewards. In: Advances in neural information

processing systems. https://papers.nips.cc/paper/2020/hash/

2df45244f09369e16ea3f9117ca45157-Abstract.html

17. He FS, Liu Y, Schwing AG, Peng J (2017) Learning to play in a

day: faster deep reinforcement learning by optimality tightening.

In: International conference on learning representations. https://

openreview.net/forum?id=rJ8Je4clg

18. Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B,

Horgan D, Quan J, Sendonaris A, Osband I, Dulac-Arnold G,

Agapiou J, Leibo JZ, Gruslys A (2018) Deep Q-learning from

demonstrations. In: Annual meeting of the association for the

advancement of artificial intelligence (AAAI), New Orleans

(USA)

19. Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van

Hasselt H, Silver D (2018) Distributed prioritized experience

replay. In: International conference on learning representations.

https://openreview.net/forum?id=H1Dy—0Z

20. Hosu IA, Rebedea T (2016) Playing atari games with deep

reinforcement learning and human checkpoint replay. arXiv

preprint arXiv:160705077

21. Kapturowski S, Ostrovski G, Dabney W, Quan J, Munos R (2019)

Recurrent experience replay in distributed reinforcement learn-

ing. In: International conference on learning representations.

https://openreview.net/forum?id=r1lyTjAqYX

22. Le L, Patterson A, White M (2018) Supervised autoencoders:

improving generalization performance with unsupervised regu-

larizers. In: Bengio S, Wallach H, Larochelle H, Grauman K,

Cesa-Bianchi N, Garnett R (eds) Advances in neural information

processing systems, Curran Associates, Inc., 31:107–117. https://

proceedings.neurips.cc/paper/2018/file/

2a38a4a9316c49e5a833517c45d31070-Paper.pdf

23. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver

D, Wierstra D (2016) Continuous control with deep reinforce-

ment learning. In: International conference on learning repre-

sentations. https://openreview.net/forum?id=tX_O8O-8Zl

24. Lin LJ (1992) Self-improving reactive agents based on rein-

forcement learning. Planning and teaching. Mach Learn

8(3–4):293–321

25. Liu R, Zou J (2018) The effects of memory replay in reinforce-

ment learning. In: The 56th annual allerton conference on com-

munication, control, and computing, pp 478–485

26. Mihalkova L, Mooney R (2006) Using active relocation to aid

reinforcement learning. In: Proceedings of the 19th international

FLAIRS conference (FLAIRS-2006), Melbourne Beach, FL,

pp 580–585. http://www.cs.utexas.edu/users/ai-lab?mihalkova:

flairs06

27. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-

mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G

et al (2015) Human-level control through deep reinforcement

learning. Nature 518(7540):529

28. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T,

Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep

reinforcement learning. In: Balcan MF, Weinberger KQ (eds)

Proceedings of machine learning research, PMLR, New York,

New York, USA, vol 48, pp 1928–1937. http://proceedings.mlr.

press/v48/mniha16.html

29. Munos R, Stepleton T, Harutyunyan A, Bellemare M (2016) Safe

and efficient off-policy reinforcement learning. In: Lee D,

Sugiyama M, Luxburg U, Guyon I, Garnett R (eds) Advances in

neural information processing systems, Curran Associates, Inc.,

vol 29, pp 1054–1062. https://proceedings.neurips.cc/paper/2016/

file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf

30. Nair A, McGrew B, Andrychowicz M, Zaremba W, Abbeel P

(2018) Overcoming exploration in reinforcement learning with

demonstrations. In: 2018 IEEE international conference on

robotics and automation (ICRA), pp 6292–6299. https://doi.org/

10.1109/ICRA.2018.8463162

31. Novati G, Koumoutsakos P (2019) Remember and forget for

experience replay. In: Chaudhuri K, Salakhutdinov R (eds) Pro-

ceedings of machine learning research, PMLR, Long Beach,

California, USA, vol 97, pp 4851–4860. http://proceedings.mlr.

press/v97/novati19a.html

32. Oh J, Guo Y, Singh S, Lee H (2018) Self-imitation learning. In:

Dy J, Krause A (eds) Proceedings of machine learning research,

PMLR, Stockholmsmässan, Stockholm Sweden, vol 80,

pp 3878–3887. http://proceedings.mlr.press/v80/oh18b.html

33. Pohlen T, Piot B, Hester T, Azar MG, Horgan D, Budden D,

Barth-Maron G, van Hasselt H, Quan J, Večerı́k M, et al. (2018)

Observe and look further: achieving consistent performance on

Atari. arXiv preprint arXiv:180511593

34. Resnick C, Raileanu R, Kapoor S, Peysakhovich A, Cho K, Bruna

J (2018) Backplay:’’ Man muss immer umkehren’’. In: Workshop

on reinforcement learning in games, AAAI

35. Ross S, Bagnell D (2010) Efficient reductions for imitation

learning. In: Teh YW, Titterington M (eds) Proceedings of

machine learning research, JMLR workshop and conference

proceedings, Chia Laguna Resort, Sardinia, Italy, 9:661–668.

http://proceedings.mlr.press/v9/ross10a.html

36. Salimans T, Chen R (2018) Learning montezuma’s revenge from

a single demonstration. arXiv preprint arXiv:181203381

37. Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized

experience replay. In: International conference on learning rep-

resentations. arXiv:1511.05952

Neural Computing and Applications

123

https://doi.org/10.1109/SSCI44817.2019.9002745
https://doi.org/10.1109/SSCI44817.2019.9002745
http://arxiv.org/abs/190110995
http://arxiv.org/abs/200412919
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-Abstract.html
https://proceedings.icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-Abstract.html
https://proceedings.icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-Abstract.html
http://proceedings.mlr.press/v78/florensa17a.html
http://proceedings.mlr.press/v78/florensa17a.html
https://openreview.net/forum?id=HyxzRsR9Y7
https://openreview.net/forum?id=rkHVZWZAZ
https://openreview.net/forum?id=rkHVZWZAZ
https://papers.nips.cc/paper/2020/hash/2df45244f09369e16ea3f9117ca45157-Abstract.html
https://papers.nips.cc/paper/2020/hash/2df45244f09369e16ea3f9117ca45157-Abstract.html
https://openreview.net/forum?id=rJ8Je4clg
https://openreview.net/forum?id=rJ8Je4clg
https://openreview.net/forum?id=H1Dy---0Z
http://arxiv.org/abs/160705077
https://openreview.net/forum?id=r1lyTjAqYX
https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://openreview.net/forum?id=tX_O8O-8Zl
http://www.cs.utexas.edu/users/ai-lab?mihalkova:flairs06
http://www.cs.utexas.edu/users/ai-lab?mihalkova:flairs06
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
http://proceedings.mlr.press/v97/novati19a.html
http://proceedings.mlr.press/v97/novati19a.html
http://proceedings.mlr.press/v80/oh18b.html
http://arxiv.org/abs/180511593
http://proceedings.mlr.press/v9/ross10a.html
http://arxiv.org/abs/181203381
http://arxiv.org/abs/1511.05952

38. Schrittwieser J, Antonoglou I, Hubert T, Simonyan K, Sifre L,

Schmitt S, Guez A, Lockhart E, Hassabis D, Graepel T, et al.

(2019) Mastering Atari, go, chess and shogi by planning with a

learned model. arXiv preprint arXiv:191108265

39. Sinha S, Song J, Garg A, Ermon S (2020) Experience replay with

likelihood-free importance weights. arXiv preprint arXiv:

200613169

40. Sovrano F (2019) Combining experience replay with exploration

by random network distillation. In: 2019 IEEE conference on

games (CoG), pp 1–8. https://doi.org/10.1109/CIG.2019.8848046

41. Stumbrys T, Erlacher D, Schredl M (2016) Effectiveness of

motor practice in lucid dreams: a comparison with physical and

mental practice. J Sports Sci 34:27–34

42. Sutton RS, Barto AG (2018) Reinforcement learning: an intro-

duction. MIT Press, Cambridge

43. Tang Y (2020) Self-imitation learning via generalized lower

bound Q-learning. In: Advances in neural information processing

systems, vol 33. https://papers.nips.cc/paper/2020/file/

a0443c8c8c3372d662e9173c18faaa2c-Paper.pdf

44. Tavakoli A, Levdik V, Islam R, Smith CM, Kormushev P (2018)

Exploring restart distributions. arXiv:181111298

45. Wang Z, Bapst V, Heess NMO, Mnih V, Munos R, Kavukcuoglu

K, de Freitas N (2017) Sample efficient actor-critic with experi-

ence replay. In: International conference on learning representa-

tions. https://openreview.net/pdf?id=HyM25Mqel

46. Wawrzyński P (2009) Real-time reinforcement learning by

sequential actor-critics and experience replay. Neural Netw

22(10):1484–1497

47. Zha D, Lai KH, Zhou K, Hu X (2019) Experience replay opti-

mization. In: Proceedings of the twenty-eighth international joint

conference on artificial intelligence, IJCAI-19, international joint

conferences on artificial intelligence organization, pp 4243–4249.

https://doi.org/10.24963/ijcai.2019/589, https://doi.org/10.24963/

ijcai.2019/589

48. Zhang S, Sutton RS (2017) A deeper look at experience replay.

arXiv preprint arXiv:171201275

49. Zhang X, Bharti SK, Ma Y, Singla A, Zhu X (2020) The teaching

Dimension of Q-learning. arXiv preprint arXiv:200609324

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/191108265
http://arxiv.org/abs/200613169
http://arxiv.org/abs/200613169
https://doi.org/10.1109/CIG.2019.8848046
https://papers.nips.cc/paper/2020/file/a0443c8c8c3372d662e9173c18faaa2c-Paper.pdf
https://papers.nips.cc/paper/2020/file/a0443c8c8c3372d662e9173c18faaa2c-Paper.pdf
http://arxiv.org/abs/181111298
https://openreview.net/pdf?id=HyM25Mqel
https://doi.org/10.24963/ijcai.2019/589
https://doi.org/10.24963/ijcai.2019/589
https://doi.org/10.24963/ijcai.2019/589
http://arxiv.org/abs/171201275
http://arxiv.org/abs/200609324

	Lucid dreaming for experience replay: refreshing past states with the current policy
	Abstract
	Introduction
	Background
	Reinforcement learning
	Asynchronous advantage actor--critic
	Transformed Bellman operator for A3C
	Self-imitation learning for A3CTB

	Lucid dreaming for experience replay
	Experiments and analyses
	Leveraging the current policy to refresh past states
	Analyses: Why does LiDER help learning?
	The refresher worker in LiDER
	The SIL worker in LiDER
	The SIL worker in A3CTBSIL versus LiDER

	Ablation studies
	How does the quality of refresher-generated data affect learning?
	How does the buffer architecture affect learning?
	How does the sampling ratio affect learning?
	Results

	Extensions: leveraging other policies to refresh past states
	Related work
	Experience replay and extensions
	Experience replay for actor--critic algorithms
	Learning from past good experiences of oneself
	Relocating the agent to a past state

	Discussion and future work
	Appendices for ‘‘lucid dreaming for experience replay: refreshing past states with the current policy’’
	Appendix 1: Implementation details
	Appendix 2: Pseudocode for the A3C and SIL workers
	Appendix 3: One-tailed independent-samples t tests
	Appendix 4: Differences between A3CTBSIL and SIL
	Appendix 5: The performance of trained agents used in LiDER-TA
	Appendix 6: Pre-training the behavior cloning model for LiDER-BC
	Acknowledgements
	References

