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Abstract

We examine the problem of transferring a policy learned in a source environment to
a target environment with different dynamics, particularly in the case where it is crit-
ical to reduce the amount of interaction with the target environment during learning.
This problem is particularly important in sim-to-real transfer because simulators
inevitably model real-world dynamics imperfectly. In this paper, we show that
one existing solution to this transfer problem—grounded action transformation—
is closely related to the problem of imitation from observation (IfO): learning
behaviors that mimic the observations of behavior demonstrations. After estab-
lishing this relationship, we hypothesize that recent state-of-the-art approaches
from the IfO literature can be effectively repurposed for grounded transfer learning.
To validate our hypothesis we derive a new algorithm—generative adversarial
reinforced action transformation (GARAT)—based on adversarial imitation from
observation techniques. We run experiments in several domains with mismatched
dynamics, and find that agents trained with GARAT achieve higher returns in the
target environment compared to existing black-box transfer methods.

1 Introduction

Transfer learning with dynamics mismatch refers to using experience in a source environment to
more efficiently learn control policies that perform well in a target environment, where the two
environments differ only in their transition dynamics. For example, if the friction coefficient in the
source and target environments is sufficiently different it might cause the action of placing a foot on
the ground to work well in one environment, but cause the foot to slip in the other. One possible
application of such transfer is where the source environment is a simulator and the target environment
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is a robot in the real world, called sim-to-real. In sim-to-real scenarios, source environment (simulator)
experience is readily available, but target environment (real world) experience is expensive. Sim-to-
real transfer has been used effectively to learn a fast humanoid walk [15], dexterous manipulation
[29, 22, 38, 26, 6, 24, 23], and agile locomotion skills [32]. In this work, we focus on the paradigm of
simulator grounding [10, 15, 8], which modifies the source environment’s dynamics to more closely
match the target environment dynamics using a relatively small amount of target environment data.
Policies then learned in such a grounded source environment transfer better to the target environment.

Separately, the machine learning community has also devoted attention to imitation learning [5], i.e.
the problem of learning a policy to mimic demonstrations provided by another agent. In particular,
recent work has considered the specific problem of imitation from observation (IfO) [25], in which
an imitator mimics the expert’s behavior without knowing which actions the expert took, only the
outcomes of those actions (i.e. state-only demonstrations). While the lack of action information
presents an additional challenge, recently-proposed approaches have suggested that this challenge
may be addressable [48, 50].

In this paper, we show that a particular grounded transfer technique that has been shown to successfully
accomplish sim-to-real transfer, called grounded action transformation (GAT) [15], can be seen as
a form of IfO. We therefore hypothesize that recent, state-of-the-art approaches for addressing the
IfO problem might also be effective for grounding the source environment, leading to improved
transfer. Specifically, we derive a distribution-matching objective similar to ones used in adversarial
approaches for generative modeling [14], imitation learning [18], and IfO [49] with considerable
empirical success. Based on this objective, we propose a novel algorithm, Generative Adversarial
Reinforced Action Transformation (GARAT), to ground the source environment by reducing the
distribution mismatch between the source and target environments.

Our experiments confirm our hypothesis by showing that GARAT reduces the difference in the
dynamics between two environments more effectively than GAT. Moreover, our experiments show
that, in several domains, this improved grounding translates to better transfer of policies from one
environment to the other.

The contributions of this paper are as follows: (1) we show that learning the grounded action
transformation can be seen as an IfO problem, (2) we derive a novel adversarial imitation learning
algorithm, GARAT, to learn an action transformation policy for transfer learning with dynamics
mismatch, and (3) we experimentally evaluate the efficacy of GARAT for transfer with dynamics
mismatch.

2 Background

We begin by introducing notation, reviewing the transfer learning with dynamics mismatch problem
formulation, and describing the action transformation approach for sim-to-real transfer. We also
provide a brief overview of imitation learning and imitation from observation.

2.1 Notation

We consider here sequential decision processes formulated as Markov decision processes (MDPs)
[42]. An MDP M is a tuple 〈S,A, R, P, γ, ρ0〉 consisting of a set of states, S; a set of actions, A; a
reward function, R : S×A×S 7−→ ∆([rmin, rmax]) (where ∆([rmin, rmax]) denotes a distribution over
the interval [rmin, rmax] ⊂ R); a discount factor, γ ∈ [0, 1); a transition function, P : S×A 7−→ ∆(S);
and an initial state distribution, ρ0 : ∆(S). An RL agent uses a policy π : S 7−→ ∆(A) to select
actions in the environment. In an environment with transition function P ∈ T, the agent aims to learn
a policy π ∈ Π to maximize its expected discounted return Eπ,P [G0] = Eπ,P [

∑∞
t=0 γ

tRt], where
Rt ∼ R(st, at, st+1), st+1 ∼ P (st, at), at ∼ π(st), and s0 ∼ ρ0.

Given a fixed π and a specific transition function Pq, the marginal transition distribution is
ρq(s, a, s

′) : =(1− γ)π(a|s)Pq(s′|s, a)
∑∞
t=0 γ

tp(st = s|π, Pq) where p(st = s|π, Pq) is the prob-
ability of being in state s at time t. The marginal transition distribution is the probability of being
in state s marginalized over time t, taking action a under policy π, and ending up in state s′ under
transition function Pq (laid out more explicitly in Appendix A). We can denote the expected return
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under a policy π and a transition function Pq in terms of this marginal distribution as:

Eπ,q[G0] =
1

(1− γ)

∑
s,a,s′

ρq(s, a, s
′)R(s′|s, a) (1)

2.2 Transfer Learning with Dynamics Mismatch and Grounded Action Transformation

Let Ps, Pt ∈ T be the transition functions for two otherwise identical MDPs, Ms and Mt, representing
the source and target environments respectively. Transfer learning with dynamics mismatch, as
opposed to transfer learning in general, aims to train an agent policy to maximize return in Mt with
limited trajectories from Mt, and as many as needed in Ms.

The work presented here is specifically concerned with a particular class of approaches used in sim-
to-real transfer known as simulator grounding approaches [1, 8, 10]. Here the source environment is
the simulator and the target environment is the real world. These approaches use some interactions
with the target environment to ground the source environment dynamics to more closely match the
target environment dynamics. Because it may sometimes be difficult or impossible to modify the
source environment itself (when the source environment is a black-box simulator, for example),
the recently-proposed grounded action transformation (GAT) approach [15] seeks to instead induce
grounding by modifying the agent’s actions before using them in the source environment. This
modification is accomplished via an action transformation function πg : S × A 7−→ ∆(A) that
takes as input the state and action of the agent, and produces an action to be presented to the source
environment. From the agent’s perspective, composing the action transformation with the source
environment changes the source environment’s transition function. We call this modified source
environment the grounded environment, and its transition function is given by

Pg(s
′|s, a) =

∑
ã∈A

Ps(s
′|s, ã)πg(ã|s, a) (2)

The action transformation approach aims to learn function πg ∈ Πg such that the resulting transition
function Pg is as close as possible to Pt. We denote the marginal transition distributions in the source
and target environments by ρs and ρt respectively, and ρg ∈ Pg for the grounded environment.

GAT learns a model of the target environment dynamics P̂t(s′|s, a), an inverse model of the source
environment dynamics P̂−1s (a|s, s′), and uses the composition of the two as the action transformation
function, i.e. πg(ã|s, a) = P̂−1s (ã|s, P̂t(s′|s, a)).

2.3 Imitation Learning

In parallel to advances in sim-to-real transfer, the machine learning community has also made
considerable progress on the problem of imitation learning. Imitation learning [5, 36, 39] is the
problem setting where an agent tries to mimic trajectories {ξ0, ξ1, . . .} where each ξ is a demonstrated
trajectory {(s0, a0), (s1, a1), . . .} induced by an expert policy πexp.

Various methods have been proposed to address the imitation learning problem. Behavioral cloning
[4] uses the expert’s trajectories as labeled data and uses supervised learning to recover the maximum
likelihood policy. Another approach instead relies on reinforcement learning to learn the policy,
where the required reward function is recovered using inverse reinforcement learning (IRL) [28]. IRL
aims to recover a reward function under which the demonstrated trajectories would be optimal.

A related setting to learning from state-action demonstrations is the imitation from observation (IfO)
[25, 30, 48, 49] problem. Here, an agent observes an expert’s state-only trajectories {ζ0, ζ1, . . .}
where each ζ is a sequence of states {s0, s1, . . .}. The agent must then learn a policy π(a|s) to imitate
the expert’s behavior, without being given labels of which actions to take.

3 GAT as Imitation from Observation

We now show that the underlying problem of GAT—i.e., learning an action transformation for sim-to-
real transfer—can also been seen as an IfO problem. Adapting the definition by Liu et al. [25], an
IfO problem is a sequential decision-making problem where the policy imitates state-only trajectories
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{ζ0, ζ1, . . .} produced by a Markov process, with no information about what actions generated those
trajectories. To show that the action transformation learning problem fits this definition, we must
show that it (1) is a sequential decision-making problem and (2) aims to imitate state-only trajectories
produced by a Markov process, with no information about what actions generated those trajectories.

Starting with (1), it is sufficient to show that the action transformation function is a policy in
an MDP [34]. This action transformation MDP can be seen clearly if we combine the target
environment MDP and the fixed agent policy π. Let the joint state and action space X := S × A
with x : =(s, a) ∈ X be the state space of this new MDP. The combined transition function is
P xs (x′|x, ã) = Ps(s

′|s, ã)π(a′|s′), where x′ = (s′, a′), and initial state distribution is ρx0(x) =
ρ0(s)π(a|s). For completeness, we consider a reward function Rx : X×A× X 7−→ ∆([rmin, rmax])
and discount factor γx ∈ [0, 1), which are not essential for an IfO problem. With these components,
the action transformation environment is an MDP 〈X,A, Rx, P xs , γx, ρx0〉. The action transformation
function πg(ã|s, a), now πxg (ã|x), is then clearly a mapping from states to a distribution over actions,
i.e. it is a policy in an MDP. Thus, the action transformation learning problem is a sequential
decision-making problem.

We now consider the action transformation objective to show (2). When learning the action transforma-
tion policy, we have trajectories {τ0, τ1, . . .}, where each trajectory τ = {(s0, a0 ∼ π(s0)), (s1, a1 ∼
π(s1)), . . .} is obtained by sampling actions from agent policy π in the target environment. Re-writing
τ in the above MDP, τ = {x0, x1, . . .}. If an expert action transformation policy π∗g ∈ Πg is capable
of mimicking the dynamics of the target environment, P xt (x′|x) =

∑
ã∈A P

x
s (x′|x, ã)π∗g(ã|x), then

we can consider the above trajectories to be produced by a Markov process with dynamics P xs (x′|x, ã)
and policy π∗g(ã|x). The action transformation aims to imitate the state-only trajectories {τ0, τ1, . . .}
produced by a Markov process, with no information about what actions generated those trajectories.

The problem of learning the action transformation thus satisfies the conditions we identified above,
and so it is an IfO problem.

4 Generative Adversarial Reinforced Action Transformation

The insight above naturally leads to the following question: if learning an action transformation for
transfer learning is equivalent to IfO, might recently-proposed IfO approaches lead to better transfer
learning approaches? To investigate the answer, we derive a novel generative adversarial approach
inspired by GAIfO[49] that can be used to train the action transformation policy using IfO. A source
environment grounded with this action transformation policy can then be used to train an agent policy
which can be expected to transfer effectively to a given target environment. We call our approach
generative adversarial reinforced action transformation (GARAT), and Algorithm 1 lays out its details.

The rest of this section details our derivation of the objective used in GARAT. First, in Section
4.1, we formulate a procedure for action transformation using a computationally expensive IRL
step to extract a reward function and then learning an action transformation policy based on that

Algorithm 1 GARAT
Input: Target environment with Pt, source environment with Ps, number of update steps N

Agent policy π with parameters η , pretrained in source environment;
Initialize action transformation policy πg with parameters θ
Initialize discriminator Dφ with parameters φ
while performance of policy π in target environment not satisfactory do

Rollout policy π in target environment to obtain trajectories {τt,1, τt,2, . . .}
for i = 0, 1, 2, . . . N do

Rollout Policy π in grounded source environment and obtain trajectories {τg,1, τg,2, . . .}
Update parameters φ of Dφ using gradient descent to minimize
−
(
Eτg [log(Dφ(s, a, s′))] + Eτt [log(1−Dφ(s, a, s′))

)
Update parameters θ of πg using policy gradient with reward −[logDφ(s, a, s′)]

end
Optimize parameters η of π in source environment grounded with action transformer πg

end
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reward. Then, in Section 4.2, we show that this entire procedure is equivalent to directly reducing the
marginal transition distribution discrepancy between the target environment and the grounded source
environment. This is important, as recent work [14, 18, 49] has shown that adversarial approaches are
a promising algorithmic paradigm to reduce such discrepancies. Thus, in Section 4.3, we explicitly
formulate a generative adversarial objective upon which we build the proposed approach.

4.1 Action Transformation Inverse Reinforcement Learning

We first lay out a procedure to learn the action transformation policy by extracting the appropriate cost
function, which we term action transformation IRL (ATIRL). We use the cost function formulation in
our derivation, similar to previous work [18, 49]. ATIRL aims to identify a cost function such that
the observed target environment transitions yield higher return than any other possible transitions.
We consider the set of cost functions C as all functions RS×A×S = {c : S×A× S 7−→ R}.

ATIRLψ(Pt) : = argmax
c∈C

−ψ(c) +

(
min
πg∈Πg

Eρg [c(s, a, s′)]

)
− Eρt [c(s, a, s′)] (3)

where ψ : RS×A×S 7−→ R is a (closed, proper) convex reward function regularizer, and R denotes
the extended real numbers R

⋃
{∞}. This regularizer is used to avoid overfitting the expressive set C.

Note that πg influences ρg (Equation 10 in Appendix A) and Pt influences ρt. Similar to GAIfO, we
do not use causal entropy in our ATIRL objective due to the surjective mapping from Πg to Pg .

The action transformation then uses this per-step cost function as a reward function in an RL
procedure: RL(c) : = argminπg∈Πg

Eρg [c(s, a, s′)]. We assume here for simplicity that there is an
action transformation policy that can mimic the target environment dynamics perfectly. That is,
there exists a policy πg ∈ Πg, such that Pg(s′|s, a) = Pt(s

′|s, a)∀s ∈ S, a ∈ A. We denote the RL
procedure applied to the cost function recovered by ATIRL as RL ◦ ATIRLψ(Pt).

4.2 Characterizing the Policy Induced by ATIRL

This section shows that it is possible to bypass the ATIRL step and learn the action transformation
policy directly from data. We show that ψ-regularized RL ◦ ATIRLψ(Pt) implicitly searches for
policies that have a marginal transition distribution close to the target environment’s, as measured
by the convex conjugate of ψ, which we denote as ψ∗. As a practical consequence, we will then be
able to devise a method for minimizing this divergence through the use of generative adversarial
techniques in Section 4.3. But first, we state our main theoretical claim:

Theorem 1. RL◦ATIRLψ(Pt) and argminπg
ψ∗(ρg−ρt) induce policies that have the same marginal

transition distribution, ρg .

To reiterate, the agent policy π is fixed. So the only decisions affecting the marginal transition
distributions are of the action transformation policy πg . We can now state the following proposition:

Proposition 4.1. For a given ρg generated by a fixed policy π, Pg is the only transition function
whose marginal transition distribution is ρg .

Proof in Appendix B.1. We can also show that if two transition functions are equal, then the optimal
policy in one will be optimal in the other.

Proposition 4.2. If Pt = Pg , then argmaxπ∈Π Eπ,Pg
[G0] = argmaxπ∈Π Eπ,Pt

[G0].

Proof in Appendix B.2. We now prove Theorem 1, which characterizes the policy learned by RL(c̃)
on the cost function c̃ recovered by ATIRLψ(Pt).

Proof of Theorem 1. To prove Theorem 1, we prove that RL◦ATIRLψ(Pt) and argminπg
ψ∗(ρg−ρt)

result in the same marginal transition distribution. This proof has three parts, two of which are proving
that both objectives above can be formulated as optimizing over marginal transition distributions.
The third is to show that these equivalent objectives result in the same distribution.

The output of both RL◦ATIRLψ(Pt) and argminπg
ψ∗(ρg−ρt) are policies. To compare the marginal

distributions, we first establish a different RL ◦ ATIRLψ(Pt) objective that we argue has the same
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marginal transition distribution as RL ◦ ATIRLψ(Pt). We define

ATIRLψ(Pt) : = argmax
c∈C

−ψ(c) +

(
min
ρg∈Pg

Eρg [c(s, a, s′)]

)
− Eρt [c(s, a, s′)] (4)

with the same ψ and C as Equation 3, and similar except the internal optimization for Equa-
tion 3 is over πg ∈ Πg, while it is over ρg ∈ Pg for Equation 4. We define an RL procedure
RL(c) : = argminρg∈Pg

Eρgc(s, a, s′) that returns a marginal transition distribution ρg ∈ Pg which
minimizes the given cost function c. RL(c) will output the marginal transition distribution ρg .

Lemma 4.1. RL ◦ ATIRLψ(Pt) outputs a marginal transition distribution ρg which is equal to ρ̃g
induced by RL ◦ ATIRLψ(Pt).

Proof in Appendix B.3. The mapping from Πg to Pg is not injective, and there could be multiple
policies πg that lead to the same marginal transition distribution. The above lemma is sufficient for
proof of Theorem 1, however, since we focus on the effect of the policy on the transitions.

Lemma 4.2. RL ◦ ATIRLψ(Pt) = argminρg∈Pg
ψ∗(ρg − ρt).

The proof in Appendix B.4 relies on the optimal cost function and the optimal policy forming a saddle
point, ψ∗ leading to a minimax objective, and these objectives being the same.

Lemma 4.3. The marginal transition distribution of argminπg
ψ∗(ρg − ρt) is equal to

argminρg∈Pg
ψ∗(ρg − ρt).

Proof in appendix B.5. With these three lemmas, we have proved that RL ◦ ATIRLψ(Pt) and
argminπg

ψ∗(ρg − ρt) induce policies that have the same marginal transition distribution.

Theorem 1 thus tells us that the objective argminπg
ψ∗(ρg − ρt) is equivalent to the procedure from

Section 4.1. In the next section, we choose a function ψ which leads to our adversarial objective.

4.3 Forming the Adversarial Objective

Section 4.2 laid out the objective we want to minimize. To solve argminπg
ψ∗(ρg − ρt) we require

an appropriate regularizer ψ. GAIL [18] and GAIfO [49] optimize similar objectives and have shown
a regularizer similar to the following to work well:

ψ(c) =

{
Et[g(c(s, a, s′))] if c < 0

+∞ otherwise
where g(x) =

{
−x− log(1− ex) if x < 0

+∞ otherwise
(5)

It is closed, proper, convex and has a convex conjugate leading to the following minimax objective:

min
πg∈Πg

ψ∗(ρg − ρt) = min
πg∈Πg

max
D

EPg
[log(D(s, a, s′))] + EPt

[log(1−D(s, a, s′))] (6)

where the reward for the action transformer policy πg is −[log(D(s, a, s′))], and D : S×A× S 7−→
(0, 1) is a discriminative classifier. These properties have been shown in previous works [18, 49].
Algorithm 1 lays out the steps for learning the action transformer using the above procedure, which
we call generative adversarial reinforced action transformation (GARAT).

5 Related Work

While our work lies in the space of transfer learning with dynamics mismatch, the eventual goal of
this research is to enable effective sim-to-real transfer. In this section, we discuss the variety of sim-
to-real methods, work more closely related to GARAT, and some related methods in the IfO literature.
Sim-to-real transfer can be improved by making the agent’s policy more robust to variations in the
environment or by making the simulator more accurate w.r.t. the real world. The first approach, which
we call policy robustness methods, encompasses algorithms that train a robust policy that performs
well on a range of environments [20, 31, 32, 33, 35, 37, 45, 46]. Robust adversarial reinforcement
learning (RARL) [33] is such an algorithm that learns a policy robust to adversarial perturbations
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[43]. While primarily focused on training with a modifiable simulator, a version of RARL treats the
simulator as a black-box by adding the adversarial perturbation directly to the protagonist’s action.
Additive noise envelope (ANE) [21] is another black-box robustness method which adds an envelope
of Gaussian noise to the agent’s action during training.

The second approach, known as domain adaption or system identification, grounds the simulator using
real world data to make its transitions more realistic. Since hand engineering accurate simulators
[44, 52] can be expensive and time consuming, real world data can be used to adapt low-fidelity
simulators to the task at hand. Most simulator adaptation methods [1, 8, 10, 19] rely on access to a
parameterized simulator.

GARAT, on the other hand, does not require a modifiable simulator and relies on an action transforma-
tion policy applied in the source environment to bring its transitions closer to the target environment.
GAT[15] learns an action transformation function similar to GARAT. It was shown to have successfully
learned and transferred one of the fastest known walk policies on the humanoid robot, Nao.

GARAT draws from recent generative adversarial approaches to imitation learning (GAIL [18]) and
IfO (GAIfO [49]). AIRL[11], FAIRL[13], and WAIL[51] are related approaches which use different
divergence metrics to reduce the marginal distribution mismatch. GARAT can be adapted to use any
of these metrics, as we show in the appendix.

One of the insights of this paper is that grounding the simulator using action transformation can be
seen as a form of IfO. BCO [48] is an IfO technique that utilizes behavioral cloning. I2L [12] is an
IfO algorithm that aims to learn in the presence of transition dynamics mismatch in the expert and
agent’s domains, but requires millions of real world interactions to be competent.

6 Experiments

In this section, we conduct experiments to verify our hypothesis that GARAT leads to improved
transfer in the presence of dynamics mismatch compared to previous methods. We also show that
it leads to better source environment grounding compared to the previous action transformation
approach, GAT.

We validate GARAT for transfer by transferring the agent policy between Open AI Gym [7] simulated
environments with different transition dynamics. We highlight the Minitaur domain (Figure 2) as a
particularly useful test since there exist two simulators, one of which has been carefully engineered
for high fidelity to the real robot [44]. For other environments, the target environment is the source
environment modified in different ways such that a policy trained in the source environment does
not transfer well to the target environment. Details of these modifications are provided in Appendix
C.1. Apart from a thorough evaluation across multiple different domains, this setup also allows us
to compare GARAT and other algorithms against a policy trained directly in the target environment
with millions of interactions, which is otherwise prohibitively expensive on a real robot. This setup
also allows us to perform a thorough evaluation of sim-to-real algorithms across multiple different
domains. We focus here on answering the following questions :

1. How well does GARAT ground the source environment with respect to the target environ-
ment?

2. Does GARAT lead to improved transfer with in the presence of dynamics mismatch, compared
to other related methods?

6.1 Source Environment Grounding

In Figure 1, we evaluate how well GARAT grounds the source environment to the target environment
both quantitatively and qualitatively. This evaluation is in the InvertedPendulum domain, where the
target environment has a heavier pendulum than the source; implementation details are in Appendix
C.1. In Figure 1a, we plot the average error in transitions in source environments grounded with
GARAT and GAT with different amounts of target environment data, collected by deploying π in
the target environment. In Figure 1b we deploy the same policy π from the same start state in the
different environments (source, target, and grounded source). From both these figures it is evident
that GARAT leads to a grounded source environment with lower error on average, and responses
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(a) L2 norm of per step transition errors (lower is better)
between different source environments and the target
environment, shown over number of action transforma-
tion policy updates for GARAT.

(b) Example trajectories of the same agent policy de-
ployed in different environments, plotted using the pen-
dulum angle across time. Response of GARAT grounded
source environment is the most like target environment.

Figure 1: Evaluation of source environment grounding with GARAT in InvertedPendulum domain

qualitatively closer to the target environment compared to GAT. Details of how we obtained these
plots are in Appendix C.2.

6.2 Transfer Experiments

Figure 2: The Minitaur Domain

We now validate the effectiveness of GARAT at transferring
a policy from source environment to target environment.
For various MuJoCo [47] environments, we pretrain the
agent policy π in the ungrounded source environment,
collect target environment data with π, use GARAT to
ground the source environment, re-train the agent policy
until convergence in these grounded source environments,
and then evaluate mean return across 50 episodes for the
updated agent policy in the target environment.

The agent policy π and action transformation policy πg
are trained with TRPO [40] and PPO [41] respectively. The
specific hyperparameters used are provided in Appendix
C. We use the implementations of TRPO and PPO provided
in the stable-baselines library [17]. For every πg update, we update the GARAT discriminator Dφ

once as well. Results here use the losses detailed in Algorithm 1. However, we find that GARAT is
just as effective with other divergence measures [11, 13, 51] (Appendix C).

GARAT is compared to GAT [15], RARL [33] adapted for a black-box simulator, and action-noise-
envelope (ANE) [21]. πt and πs denote policies trained in the target environment and source environ-
ment respectively until convergence. We use the best performing hyperparameters for these methods,
specified in Appendix C.

Figure 3 shows that, in most of the domains, GARAT with just a few thousand transitions from the
target environment facilitates transfer of policies that perform on par with policies trained directly
in the target environment using 1 million transitions. GARAT also consistently performs better than
previous methods on all domains, except HopperHighFriction, where most of the methods perform
well. The shaded envelope denotes the standard error across 5 experiments with different random
seeds for all the methods. Apart from the MuJoCo simulator, we also show successful transfer in the
PyBullet simulator [9] using the Ant domain. Here the target environment has gravity twice that of the
source environment, resulting in purely source environment-trained policies collapsing ineffectually
in the target environment. In this relatively high dimensional domain, as well as in Walker, we see
GARAT still transfers a competent policy while the related methods fail.

In the Minitaur domain [44] we use the high fidelity simulator as our target environment. Here as well,
a policy trained in the source environment does not directly transfer well to the target environment
[53]. We see in this realistic setting that GARAT learns a policy that obtains more than 80% of the
optimal target environment performance with just 1000 target environment transitions while the next
best baseline (GAT) obtains at most 50%, requiring ten times more target environment data.
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Figure 3: Performance of different techniques evaluated in target environment. Environment return
on the y-axis is scaled such that πt achieves 1 and πs achieves 0.

7 Conclusion

In this paper, we have shown that grounded action transformation, a particular kind of grounded
transfer technique, can be seen as a form of imitation from observation. We use this insight to develop
GARAT, an adversarial imitation from observation algorithm for grounded transfer. We hypothesized
that such an algorithm would lead to improved grounding of the source environment as well as
better transfer compared to related techniques. This hypothesis is validated in Section 6 where we
show that GARAT leads to better grounding of the source environment as compared to GAT, and
improved transfer to the target environment on various mismatched environment transfers, including
the realistic Minitaur domain.
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Broader Impact

Reinforcement learning [42] is being considered as an effective tool to train autonomous agents in
various important domains like robotics, medicine, etc. A major hurdle to deploying learning agents
in these environments is the massive exploration and data requirements [16] to ensure that these
agents learn effective policies. Real world interactions and exploration in these situations could be
extremely expensive (wear and tear on expensive robots), or dangerous (treating a patient in the
medical domain).

Sim-to-real transfer aims to address this hurdle and enables agents to be trained mostly in simulation
and then transferred to the real world based on very few interactions. Reducing the requirement for

9



real world data for autonomous agents might open up the viability for autonomous agents in other
fields as well.

Improved sim-to-real transfer will also reduce the pressure for high fidelity simulators, which require
significant engineering effort [8, 44]. Simulators are also developed with a task in mind, and are
generally not reliable outside their specifications. Sim-to-real transfer might enable simulators that
learn to adapt to the task that needs to be performed, a potential direction for future research.

Sim-to-real research needs to be handled carefully, however. Grounded simulators might lead to a
false sense of confidence in a policy trained in such a simulator. However, a simulator grounded
with real world data will still perform poorly in situations outside the data distribution. As has been
noted in the broader field of machine learning [3], out of training distribution situations might lead to
unexpected consequences. Simulator grounding must be done carefully in order to guarantee that the
grounding is applied over all relevant parts of the environment.

Improved sim-to-real transfer could increase reliance on compute and reduce incentives for sample
efficient methods. The field should be careful in not abandoning this thread of research as the
increasing cost and impact of computation used by machine learning becomes more apparent [2].
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A Marginal Distributions and Returns

We expand the marginal transition distribution (ρs) definition to be more explicit below.

ρsim,t(s, a, s
′) : = ρsim,t(s)π(a|s)Ps(s′|s, a) (7)

ρsim,t(s
′) : =

∑
s∈S

∑
a∈A

ρsim,t−1(s, a, s′) (8)

ρs(s, a, s
′) : =(1− γ)

∞∑
t=0

γtρsim,t(s, a, s
′) (9)

where ρsim,0(s) = ρ0(s) is the starting state distribution. Written in a single equation:

ρs(s, a, s
′) = (1− γ)

∑
s0∈S

ρ0(s0)

∞∑
t=0

γt
∑
at∈A

∑
st+1∈S

π(at|st)P (st+1|st, at)

The expected return can be written more explicitly to show the dependence on the transition function.
It then makes the connection to 1 more explicit.

Eπ,P [G0] = Eπ,P

[ ∞∑
t=0

γtR(st, at, st+1)

]

=
∑
s0∈S

ρ0(s0)

∞∑
t=0

γt
∑
at∈A

∑
st+1∈S

π(at|st)P (st+1|st, at)R(st, at, st+1)

In the grounded source environment, the action transformer policy πg transforms the transition
function as specified in Section 2.2. Ideally, such a πg ∈ Πg exists. We denote the marginal
transition distributions in sim and real by ρs and ρt respectively, and ρg ∈ Pg for the grounded source
environment. The distribution ρg relies on πg ∈ Πg as follows:

ρg(s, a, s
′) = (1− γ)π(a|s)

∑
ã∈A

Ps(s
′|s, ã)πg(ã|s, a)

∞∑
t=0

γtp(st = s|π, Pg) (10)

The marginal transition distribution of the source environment after action transformation, ρg(s, a, s′),
differs in Equation 7 as follows:

ρg,t(s, a, s
′) : = ρg,t(s)π(a|s)

∑
ã∈A

πg(ã|s, a)Pg(s
′|s, ã) (11)

B Proofs

B.1 Proof of Proposition 4.1

Proposition 4.1. For a given ρg generated by a fixed policy π, Pg is the only transition function
whose marginal transition distribution is ρg .

Proof. We prove the above statement by contradiction. Consider two transition functions P1 and P2

that have the same marginal distribution ρπ under the same policy π, but differ in their likelihood for
at least one transition (s, a, s′).

P1(s′|s, a) 6= P2(s′|s, a) (12)

Let us denote the marginal distributions for P1 and P2 under policy π as ρπ1 and ρπ2 . Thus, ρπ1 (s) =
ρπ2 (s) ∀s ∈ S and ρπ1 (s, a, s′) = ρπ2 (s, a, s′)∀s, s′ ∈ S, a ∈ A.
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The marginal likelihood of the above transition for both P1 and P2 is:

ρπ1 (s, a, s′) =

T−1∑
t=0

ρπ1 (s)π(a|s)P1(s′|s, a)

ρπ2 (s, a, s′) =

T−1∑
t=0

ρπ2 (s)π(a|s)P2(s′|s, a)

Since the marginal distributions match, and the policy is the same, this leads to the equality:

P1(s′|s, a) = P2(s′|s, a)∀s, s′ ∈ S, a ∈ A (13)

Equation 13 contradicts Equation 12, proving our claim.

B.2 Proof of Proposition 4.2

Proposition 4.2. If Pt = Pg , then argmaxπ∈Π Eπ,Pg
[G0] = argmaxπ∈Π Eπ,Pt

[G0].

Proof. We overload the notation slightly and refer to ρπt as the marginal transition distribution in the
target environment while following agent policy π. Proposition 4.1 still holds under this expanded
notation.

From Proposition 4.1, if Pt = Pg, we can say that ρπt = ρπg∀π ∈ Π. From Equation 1, Eπ,g[G0] =
Eπ,real[G0]∀π ∈ Π, and argmaxπ∈Π Eπ,g[G0] = argmaxπ∈Π Eπ,real[G0].

B.3 Proof of Lemma 4.1

Lemma 4.1. RL ◦ ATIRLψ(Pt) outputs a marginal transition distribution ρg which is equal to ρ̃g
induced by RL ◦ ATIRLψ(Pt).

Proof. For every ρg ∈ Pg, there exists at least one action transformer policy πg ∈ Πg, from our
definition of Pg . Let RL ◦ ATIRLψ(Pt) lead to a policy π̃g , with a marginal transition distribution ρ̃g .
The marginal transition distribution induced by RL ◦ ATIRLψ(Pt) is ρg .

We need to prove that ρ̃g = ρg, and we do so by contradiction. We assume that ρ̃g 6= ρg. For this
inequality to be true, the marginal transition distribution of the result of RL(c̃) must be different than
the result of RL(c), or the cost functions c̃ and c must be different.

Let us compare the RL procedures first. Assume that c̃ = c.

RL(c̃) = argmin
π

Eρg [c̃(s, a, s′)]

= argmin
ρg

Eρg [c̃(s, a, s′)] ...(surjective mapping)

= RL(c)(~c = c)

which leads to a contradiction.

Now let’s consider the cost functions presented by ATIRLψ(Pt) and ATIRLψ(Pt). Since RL(c̃) and
RL(c) lead to the same marginal transition distributions, for the inequality we assumed at the beginning
of this proof to be true, ATIRLψ(Pt) and ATIRLψ(Pt) must return different cost functions.
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ATIRLψ(Pt) = argmax
c∈C

−ψ(c) +

(
min
πg

EPg
[c(s, a, s′)]

)
− EPt

[c(s, a, s′)]

= argmax
c∈C

−ψ(c) +

min
πg

∑
s,a,s′

ρg(s, a, s
′)c(s, a, s′)

−
∑
s,a,s′

ρt(s, a, s
′)c(s, a, s′)

= argmax
c∈C

−ψ(c) +

min
ρg

∑
s,a,s′

ρg(s, a, s
′)c(s, a, s′)

−
∑
s,a,s′

ρt(s, a, s
′)c(s, a, s′)

= ATIRLψ(Pt)

which leads to another contradiction. Therefore, we can say that ρg = ρg̃ .

B.4 Proof of Lemma 4.2

We prove convexity under a particular agent policy π but across AT policies πg ∈ Πg

Lemma B.1. Pg is compact and convex.

Proof. We first prove convexity of ρΠg,t for πg ∈ Πg and 0 ≤ t <∞, by means of induction.

Base case: λρat1,0 + (1− λ)ρat2,0 ∈ ρΠg,0, for 0 ≤ λ ≤ 1.

λρat1,0(s, a, s′) + (1− λ)ρat2,0(s, a, s′) = λρ0(s)π(a|s)
∑
ã∈A

πat1(ã|s, a)Ps(s
′|s, ã)

+ (1− λ)ρ0(s)π(a|s)
∑
ã∈A

πat2(ã|s, a)Ps(s
′|s, ã)

= ρ0(s)π(a|s)
∑
ã∈A

(λπat1(ã|s, a) + (1− λπat2(ã|s, a)))Ps(s
′|s, ã)

Πg is convex and hence ρ0(s)π(a|s)
∑
ã∈A (λπat1(ã|s, a) + (1− λπat2(ã|s, a)))Ps(s

′|s, ã) is a
valid distribution, meaning ρΠg,0 is convex.

Induction Step: If ρΠg,t−1 is convex, ρΠg,t is convex.

If ρΠg,t−1 is convex, λρat1,t(s) + (1 − λ)ρat2,t(s) is a valid distribution. This is true simply by
summing the distribution at time t− 1 over states and actions.

λρat1,t(s, a, s
′) + (1− λ)ρat2,t(s, a, s

′) = λρat1,t(s)π(a|s)
∑
ã∈A

πat1(ã|s, a)Ps(s
′|s, ã)

+ (1− λ)ρat2,t(s)π(a|s)
∑
ã∈A

πat2(ã|s, a)Ps(s
′|s, ã)

= (λρat1,t(s) + (1− λ)ρat2,t(s))π(a|s)∑
ã∈A

(λπat1(ã|s, a) + (1− λπat2(ã|s, a)))Ps(s
′|s, ã)

λρπat1,t(s) + (1− λ)ρπat1,t(s) is a valid distribution, and Πg is convex. This proves that the transition
distribution at each time step is convex. The normalized discounted sum of convex sets (Equation 9)
is also convex. Since the exponential discounting factor γ ∈ [0, 1), the sum is bounded as well.

16



We now prove Lemma 4.2.
Lemma 4.2. RL ◦ ATIRLψ(Pt) = argminρg∈Pg

ψ∗(ρg − ρt).

Proof of Lemma 4.2. Let c = ATIRL(Pt), ρg = RL(c) = RL ◦ ATIRL(Pt) and

ρ̂g = argmin
ρg

ψ∗(ρg − ρt) = argmin
ρg

max
c
−ψ(c) +

∑
s,a,s′

(ρg(s, a, s
′)

− ρt(s, a, s′))c(s, a, s′)
(14)

where ψ∗ : C∗ 7−→ R̄ is the convex conjugate of ψ, defined as ψ∗(c∗) : = supc∈C〈c∗, c〉 − ψ(c).
Applying the above definition to the rightmost term in the above equation gives us the middle term.

We now argue that ρg = ρ̂g which are the two sides of the equation we want to prove. Let us consider
loss function L : Pg × RS×A×S 7−→ R to be

L(ρg, c) = −ψ(c) +
∑
s,a,s′

(ρg(s, a, s
′)− ρt(s, a, s′))c(s, a, s′) (15)

We can then pose the above formulations as:

ρ̂g ∈ argmin
ρg∈Pg

max
c
L(ρg, c) (16)

c ∈ argmax
c

min
ρg∈Pg

L(ρg, c) (17)

ρg ∈ argmin
ρg∈Pg

L(ρg, c) (18)

Pg is compact and convex (by Lemma B.1) and RS×A×S is convex. L(·, c) is convex over all c and
L(ρg, ·) is concave over all ρg . Therefore, based on minimax duality:

min
ρg∈Pg

max
c
L(ρg, c) = max

c
min
ρg∈Pg

L(ρg, c) (19)

From Equations 16 and 17, (ρ̂g, c) is a saddle point of L, implying ρ̂g = argminρg∈Pg
L(ρg, c) and

so ρg = ρ̂g .

B.5 Proof of Lemma 4.3

Lemma 4.3. The marginal transition distribution of argminπg
ψ∗(ρg − ρt) is equal to

argminρg∈Pg
ψ∗(ρg − ρt).

Proof. The proof of equivalence here is simply to prove that optimizing over πg is the same as
optimizing over ρg . From Equation 10 and from the fact that agent policy π and source environment
transition function Ps are fixed, we can say that the only way to optimize ρg is to optimize πg , which
leads to the above equivalence.

C Experimental Details

To collect expert trajectories from the target environment, we rollout the stochastic initial policy
trained in sim for 1 million timesteps, on the target environment. This dataset serves as the expert
dataset during the imitation learning step of GARAT. At each GAN iteration, we sample a batch of
data from the grounded source environment and expert dataset and update the discriminator. Similarly,
we rollout the action transformer policy in its environment and update πg . We perform 50 such GAN
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Name Value

Hidden Layers 2
Hidden layer size 64

timesteps per batch 5000
max KL constraint 0.01

λ 0.97
γ 0.995

learning rate 0.0004
cg damping 0.1

cg iters 20
value function step size 0.001

value function iters 5

Table 1: Hyperparameters for the TRPO algorithm used to update the Agent Policy

Name Value

Hidden Layers 2
Hidden layer size 64

nminibatches 2
Num epochs 1

λ 0.95
γ 0.99

clipping ratio 0.1
time steps 5000

learning rate 0.0003

Table 2: Hyperparameters for the PPO algorithm used to update the Action Transformer Policy

updates to ground the source environment using GARAT. The hyperparameters for the PPO algorithm
used to update the action transformer policy is provided in Table 2. The hyperparameters used for the
TRPO algorithm to update the agent policy can be found in Table 1.

We implemented different IfO algorithms and noticed that there was no significant difference between
these backend algorithms in sim-to-real performance. During the discriminator update step in GAIfO-
reverseKL (AIRL), GAIfO and GAIfO-W (WAIL), we use two regularizers in its loss function - L2
regularization of the discriminator’s weights and a gradient penalty (GP) term, with a coefficient of
10. Adding the GP term has been shown to be helpful in stabilizing GAN training [27].

In our implementation of the AIRL [11] algorithm, we do not use the special form of the discriminator,
described in the paper, because our goal is to simply imitate the expert and does not require recovering
the reward function as was the objective of that work. We instead use the approach Ghasemipour
et al. [13] use with state-only version of AIRL.

GAT uses a smoothing parameter α, which we set to 0.95 as suggested by Hanna and Stone [15].
RARL has a hyperparameter on the maximum action ratio allowed to the adversary, which measures
how much the adversary can disrupt the agent’s actions. This hyperparameter is chosen by a coarse
grid-search. For each domain, we choose the best result and report the average return over five
policies trained with those hyperparameters. We used the official implementation of RARL provided
by the authors for the MuJoCo environments. However, since their official code does not readily
support PyBullet environments, for the Ant and Minitaur domain, we use our own implementation of
RARL, which we reimplemented to the best of our ability. When training a robust policy using Action
space Noise Envelope (ANE), we do not know the right amount of noise to inject into the agent’s
actions. Hence, in our analysis, we perform a sweep across zero mean gaussian noise with multiple
standard deviation values and report the highest return achieved in the target environment with the
best hyperparameter, averaged across 5 different random seeds.
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Environment Name Property Modified Default Value Modified Value

InvertedPendulumHeavy Pendulum mass 4.89 100.0
HopperHeavy Torso Mass 3.53 6.0

HopperHighFriction Foot Friction 2.0 2.2
HalfCheetahHeavy Total Mass 14 20

WalkerHeavy Torso Mass 3.534 10.0
Ant Gravity -4.91 -9.81

Minitaur [44] Torque vs. Current linear non-linear

Table 3: Details of the Modified target environments for benchmarking GARAT against other black-box
transfer algorithms.

C.1 Modified environments

We evaluate GARAT against several algorithms in the domains shown in Figure 3. Table 3 shows
the source environment along with the specific properties of the environment/agent modified. We
modified the values such that a policy trained in the sim environment is unable to achieve similar
returns in the modified environment. By modifying an environment, we incur the risk that the
environment may become too hard for the agent to solve. We ensure this is not the case by training a
policy πt directly in the target environment and verifying that it solves the task.

C.2 Source Environment Grounding Experimental Details

In Section 6.1, we show results which validate our hypothesis that GARAT learns an action transforma-
tion policy which grounds the source environment better than GAT. Here we detail our experiments
for Figure 1.

In Figure 1a, we plot the average error in transitions in source environments grounded with GARAT
and GAT with different amounts of target environment data, collected by deploying π in the target
environment. The per step transition error is calculated by resetting the source environment state to
states seen in the target environment, taking the same action, and then measuring the error in the
L2-norm with respect to target environment transitions. Figure 1a shows that with a single trajectory
from the target environment, GARAT learns an action transformation that has similar average error in
transitions compared to GAT with 100 trajectories of target environment data to learn from.

In Figure 1b, we compare GARAT and GAT more qualitatively. We deploy the agent policy π from the
same start state in the target environment, the source environment, GAT-grounded source environment,
and GARAT-grounded source environment. Their resultant trajectories in one of the domain features
(angular position of the pendulum) is plotted in Figure 1b. The trajectories in GARAT-grounded source

Figure 4: Policies trained in target environment, GAT-grounded source environment, and GARAT-
grounded source environment deployed in the target environment from the same starting state
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environment keeps close to the target environment, which neither the ungrounded source environment
nor the GAT-grounded source environment manage. The trajectory in the GAT-grounded source
environment can be seen close to the one in the target environment initially, but since it disregards the
sequential nature of the problem, the compounding errors cause the episode to terminate prematurely.

An additional experiment we conducted was to compare the policies trained in the target environment,
GAT-grounded source environment and GARAT-grounded source environment. This comparison is
done by deploying them in the target environment from the same initial state. As we can see in
Figure 4, the policies trained in the target environment and the GARAT-grounded source environment
behave similarly, while the one trained in the GAT-grounded source environment acts differently. This
comparison is another qualitative one. How well these policies perform in w.r.t. the task at hand is
explored in detail in Section 6.2.
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