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Abstract

Cooperative multiagent learning poses the challenge of coordinating independent
agents. A powerful method to achieve coordination is allowing agents to commu-
nicate. We present the Grounded Semantic Network, an approach for learning a
task-dependent communication protocol grounded in the observation space and
reward function of the task. We show that the grounded semantic network effec-
tively learns a communication protocol that is useful for achieving cooperation
between agents. Analyzing the messages transmitted between agents reveals that
the agents’ policies are highly influenced by the communication received from
teammates. Further analysis highlights the limitations of the grounded semantic
network, identifying the characteristics of domains that it can and cannot solve.

1 Introduction

Cooperation is the process where groups of organisms act together for mutual benefit. In human soci-
ety, communication is a key ingredient of successful cooperation. With communication, humans can
identify a problem, collectively discuss strategies for addressing that problem, and solve the problem
using a strategy that employs further communication. Through communication, human cooperation
can emerge on timescales of minutes rather than years (or millenia) required for cooperation to evolve
in nature. However, communication relies on a pre-established syntax and protocol. This paper is
concerned with the question of how multiple agents can learn a useful communication protocol that
helps them cooperate on an arbitrary task.

A communication protocol should answer two questions: First, the world around us is unfath-
omably complex. Of all the possible phenomenon that could be described, what concepts should be
communicated? Second, how should the communication protocol transform concepts into messages?

In this paper, we introduce the grounded semantic network (GSN), a neural network that learns a
task-dependent communication protocol. We demonstrate that the learned communication protocol
allows agents to cooperatively solve tasks that are otherwise inaccessible. Finally, we analyze the
learned communication protocol and show how it maps concepts to messages.

2 Background

We consider multiagent reinforcement learning tasks that are fully cooperative and partially observable.
Specifically, our experiments examine episodic two-agent tasks: at each timestep t, Agent(1) and
Agent(2) receive observations o(1)t , o

(2)
t , select actions a(1)t , a

(2)
t , sends messages m(1)

t ,m
(2)
t , and

receive rewards r(1)t , r
(2)
t respectively. Communication takes places over a continuous channel: each

agent is allowed to transmit a message m ∈ Rn where n is the number of continuous values that
may be transmitted at each timestep (e.g. bandwidth of the communication channel). Transmitted
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messages are received by the teammate in the timestep after they are sent and are concatenated with
the receiving agent’s state-observation o(1)t = o

(1)
t ⊕m

(2)
t−1.

3 Grounded Semantic Network

The grounded semantic network learns a task-dependent communication protocol that simultaneously
answers the questions of what concepts should be communicated and how they should be encoded.

The GSN (depicted in Figure 1) is a network that models the teammate’s one-step reward, conditioned
on the teammate’s action and the agent’s state-observation. The hidden-layer activations of this model
are communicated to the teammate as a message. The communication protocol learned by the GSN
is grounded in the reward function of the task and embodies a semantic mapping: a transformation
from concept to message.
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Figure 1: The Grounded Semantic Network predicts the teammate’s one-step reward r(2) condi-
tioned on the agent’s current observation o(1) and teammate’s action a(2). The message m(1) is an
intermediate layer in this network, and learns a compact representation of the current observation
that is useful for predicting teammate reward. The activations of the message layer are transmitted to
the teammate as the message. Training a GSN requires direct access to the teammate’s actions and
rewards. However, at test time, only the agent’s observations are required to generate the message.

From the perspective of Agent(1), a GSN learns a mapping from the observation o(1) and teammate
action a(2) to teammate reward r(2). The network contains two major parts: a message extractor
m(1) = M(o(1); θm) which maps the agent’s observation into a message, and a one-step reward
model r̂(2) = R(m(1), a(2); θr) that predicts the teammate’s immediate reward. Composing these
components, the the full GSN computes the following function:

r̂(2) = R
(
M

(
o(1); θm

)
, a(2); θr

)
(1)

Training. GSN training follows a supervised learning paradigm. Given experience tuple
(o(1), a(2), r(2)), the GSN is trained to regress its predictions towards the rewards of the teammate,
minimizing the following loss function:

L(θr, θm) = E(o(1),a(2),r(2))

[(
r(2) −R

(
M(o(1); θm), a(2); θr

))2
]

(2)
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GSN training happens in parallel with the updates to the learning agents. Specifically, we perform
a single update on the GSN for every update to both learning agents. Joint experience tuples
(o(1), a(2), r(2)) are drawn uniform at random from a replay queue of experience. The GSN does
not depend on the choice of policy representation for the learning agents. In this paper, the agents
use an actor-critic architecture to handle the continuous action space, but the GSN would be equally
applicable to DQN-style architectures in discrete action spaces. GSN’s only requirement is the ability
to perform updates over joint experience tuples.

GSN follows a centralized training procedure with decentralized execution: during training, GSN
requires direct access to the teammate’s actions and rewards. Direct access breaks the standard
boundaries between independent agents. However, at execution time, only the agent’s current
observation is required to generate a message. This paradigm is similar to a team sport – at practice,
team members experiment with different strategies and compare notes about what each player did and
how well the strategy worked. At competition, there is only time to execute the practiced strategies.

Stability. In the context of deep reinforcement learning, experience tuples are generated from
interactions with the environment, stored in a replay queue, and sampled randomly for updates.
Unlike standard supervised learning from a fixed dataset, there is a dangerous loop in which the
policies of the agents affect the messages generated by the GSN, which, in turn, affect the policies
of the agents. Without care, such a loop can result in instability or collapse of the communication
protocol and the agents’ policies. To alleviate this danger, we train the GSN with a learning rate of
10−6, an order of magnitude smaller than the learning rate used to train the agents’ policies. This
reduced learning rate encourages slow changes to the GSN and allows the agents to smoothly adapt
to alterations in the communication protocol1. GSN is trained using the Adam optimizer and updated
once for each update to the agent.

Relation to Reward Models. The GSN is similar to a one-step teammate reward model. The GSN
differs from a standard reward model r̂(2) = R(o(2), a(2)) by replacing the teammate’s observation
o(2) with a message m(1) generated through an encoderM conditioned on the agent’s state observa-
tion o(1). In this sense, the message encoder can be understood as trying to reconstruct elements of
o(2) that are predictive of r(2).

Limitations. Intuitively, the GSN combats partial observability of the multiagent environment by
learning a transformation of the agent’s observation that is relevant for predicting the teammate’s
reward. In essence, if there is information available in Agent(1)’s observations that could help
Agent(2)’s performance, the GSN will learn to extract and communicate this information. However,
the GSN is not conditioned on Agent(1)’s policy and cannot extract the intentions of Agent(1). The
abilities and limitations of the GSN are explored further in the experiments below.

4 Related Literature

There is an extensive body of literature on communication between reinforcement learning agents
[7, 5, 8].

Similar to the blind soccer experiments in Section 6.1, Stroupe et al. [6] show that a blindfolded
robot is able to track a moving soccer ball by using the observation of two sighted teammates. This
work reinforces the idea that multiple agents can overcome partial observability by fusing distributed
sensor readings. However, these robots rely on a pre-established rather than learned communication
protocol.

Learned communication in the context of deep reinforcement learning has been studied by Foerster et
al. [1], who presents two approaches: Reinforced Inter-Agent Learning (RIAL) and Differentiable
Inter-Agent Learning (DIAL). Due to the importance of these approaches we discuss them in more
detail below:

Reinforced Inter-Agent Learning (RIAL) is a decentralized procedure which treats communication
the same way as normal action: both agents independently learn communication actions that max-
imize personal reward. In other words, communication is the same as an extended action space,
with communication actions having a direct effect on the teammate’s observations rather than the

1No systematic stability gains were observed from using target networks or reducing the ratio of GSN updates
versus policy updates.
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environment. While RIAL has the capability of learning a communication protocol, there is no
mechanism to encourage stable or meaningful transmissions. As such, RIAL serves as a baseline.

Differentiable Inter-Agent Learning (DIAL), is a more sophisticated approach that allows each agent
to alter the teammate’s message by applying a gradient to the teammate’s communication actions. In
continuous action space there are different possible ways to realize DIAL. The next section presents
one method of sharing gradients between agents. Since this implementation is only one way DIAL
may be realized in continuous space, we refer to the method as Teammate Communication Gradients
rather than DIAL.

5 Teammate Communication Gradients

Teammate Communication Gradients (TCG) allows each agent to alter the teammate’s message by
applying a gradient to the teammate’s communication actions. Implemented in the DDPG framework,
each agent’s communication actions are updated according to the following gradients:

∇θµµ(1)(o(1)) = ∇m(1)Q(2)(o(2), a(2)|θQ)∇θµµ(1)(o(1)|θµ)

where µ(1), parameterized by θµ, is Agent-1’s actor network, and Q(2) parameterized by θQ, is
Agent-2’s critic network.

Essentially these gradients serve as a way for each agent to shape the messages that are sent by the
teammate. TCG is end-to-end trainable across agents, and follows the paradigm of centralized training
and decentralized execution. By allowing each agent to alter the messages sent by its teammate, each
agent can push the teammate towards a stable communicate protocol.

RIAL and TCG are validated on several partially observed cooperative domains, and results show TCG
is able to reach high performance faster than RIAL, indicating that fully-differentiable communication
benefits cooperative multiagent learning. The experiments in the next section compare RIAL and
TCG to GSN.

6 Experiments

We evaluate RIAL, TCG, and GSN on two domains: the first features rewards generated from the
environment, and communication is not directly rewarded. In contrast, the second domain features a
reward signal that stems directly from the content of the communicated messages. In the first domain,
communication is only a means to achieve cooperation, whereas in the second, it is an end in and of
itself.

Setup. Both domains are implemented within the Half-Field-Offense (HFO) simulated 2D soccer
framework [2]. HFO features a continuous observation space (o ∈ R66) that consists of angles and
distances to salient soccer objects such as the ball, goal, and teammate. Agents use a parameterized-
continuous action space (a ∈ R10) in which an agent must choose between dashing, turning, or
kicking, and then select continuous parameters to accompany that action. For example, if the agent
decides to turn, it must specify a continuous value corresponding to the desired degrees to turn. For
more information on the Half-Field-Offense environment see [2].

The learning agents used in this paper extend prior work on deep reinforcement learning in parame-
terized action space [3]. Specifically, the actor-critic architecture employed by the DDPG algorithm
[4] enables learning in HFO’s parameterized-continuous action space. For more information on the
network architecture and updates used for learning, see [3].

Agents are modified with a variable number of continuous communication actions. Each commu-
nication action transmits a single floating point value. In RIAL, communication actions are treated
identically to all other continuous actions and are learned by following gradients generated by the
critic network. In TCG, gradients for communication actions are generated in the same fashion, but
swapped with the teammate. In this way, each agent directly influences the messages communicated
by its teammate. Finally, using a GSN, there are no communication actions and messages are
generated directly from the GSN.
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6.1 Blind Soccer

The objective of the blind soccer task is to steer a blind agent towards the soccer ball using communi-
cation. This task features asymmetric information: the blind agent (Agentblind) cannot see anything
on the field: its state features are present but constantly zeroed. However, it can still hear incoming
communication messages. The blind agent’s teammate (Agentsight) has normal sight but cannot move2.

Both agents are rewarded for minimizing the distance between the blind agent and the ball: rt =
−∆d(Agentblind,Ball), where d(·, ·) is Euclidean distance. Episodes start with the blind agent,
teammate, and ball initialized randomly on the field and end when the blind agent reaches the ball or
100 timesteps pass. To solve this task, Agentsight must learn a stable protocol for directing Agentblind

to the ball. It is impossible for either agent to solve the task alone or without communication.

Experiments compare RIAL, TCG, and GSN using a communication channel of size four. Results in
Figure 2 show that only GSN successfully solves the task3.

(a) RIAL (b) TCG (c) GSN

Figure 2: Blind Soccer: Performance of RIAL, TCG, and GSN. The maximum achievable reward is
.6. Note the variance of rewards is high because total reward is proportional to the distance between
Agentblind and the ball. Random initialization of agents and ball results in high variance of reward
even for a perfect agent.

To further understand these results, it is necessary to recognize that TCG’s use of communication
gradients is not grounded in reality: Agentblind uses the shared communication gradients to shape
Agentsight’s communication into messages it wants to hear, but the messages it wants to heard don’t
necessarily reflect reality. For example, Agentblind wants to hear that the ball is directly ahead, because
it can easily dash forward and obtain reward. In essence, Agentblind’s use of shared gradients is
detached from reality in the sense that the ball may or may not actually be ahead of Agentblind. In
contrast, GSN learns a model that maps from observation to teammate reward. Thus, communication
remains grounded by the actual state of the environment.

7 Analysis

We perform an ablation analysis on policies learned in the Blind Soccer task by disabling communica-
tion and running each of the learned policies. Policies learned by RIAL and TCG remain unchanged
when communication is disabled, indicating that communicated messages are not actively used by
Agentblind. In contrast, GSN’s policy is adversely affected by a lack of communication: without
guidance from Agentsight, Agentblind walks directly forward regardless of the location of the ball.4

In order to analyze the communication protocol learned by GSN on the blind soccer task, Figure 3
visualizes the space of messages. There is a strong correlation between the content of the message
and the action selected by the teammate in the next timestep. This correlation illustrates that messages
contain information that is used by the blind agent to decide whether it should dash or turn.

2Specifically, Agentsight can turn but cannot dash.
3https://www.cs.utexas.edu/~mhauskn/eln/dqn-hfo/blind_move_to_ball/2016-10-17/

SemanticMTB_NoTanh.mp4
4http://www.cs.utexas.edu/~larg/hausknecht_thesis/SemanticMTB_NoTanh_DisabledComm.

mp4
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Figure 3: t-SNE Visualization: Two dimensional projection of 4-dimensional messages sent by
Agentsight while performing 10 episodes of the blind soccer task. Each message is colored according
to the action taken by Agentblind in the next timestep: black dots correspond to Dash actions and white
dots are Turn actions. The content of the Agentsight’s messages influences the actions selected by
Agentblind.

7.1 Guess My Number

Guess My Number is a two-player game in which each agent is assigned a secret number, represented
by a single floating point value. The goal is for each agent to help its teammate correctly guess
its hidden number. This domain uses a single communication action, so each agent is allowed to
send one floating point value every timestep. Both agents are rewarded for minimizing the distance
between the teammate’s message m ∈ R1 and their own hidden value h(i). Specifically, reward
for Agent(1) is r(1)t = α/eβ(h

(1)−m(2)
t−1)

2

, where α = .1 and β = 50 are constants controlling the
magnitude and decay of reward. Reward is symmetric for Agent(2).

To solve this game, each agent must convince its teammate to communicate a message resembling
its own hidden number. As shown in Figure 4, only TCG successfully solves the task by shaping
the teammate’s messages in a way that maximizes personal reward. Since RIAL has no control
of the teammate’s messages, neither agent can find a way to maximize personal reward. Likewise,
GSN cannot solve this task because the network is trained to predict rather than maximize teammate
reward: the messages learned by GSN only correlate with teammate reward and have no incentive to
converge towards the teammate’s hidden number.

Guess My Number is an instance of a class of domains in which rewards correspond only to content
of communicated messages, rather than interactions with the environment. These domains highlight
a limitation of GSN: the inability to directly alter communication following a reward gradient. In
such domains, TCG remains the method of choice since it can directly alter the content of messages
in the direction of higher rewards.

8 Future Work and Conclusion

This paper presented the Grounded Semantic Network, a trainable model that learns a task-dependent
communication protocol for solving cooperative multiagent tasks. We introduced and evaluated the
GSN on two domains - the Guess My Number task rewarded optimizing the content of messages,
and the Blind Soccer task used communication as a means to solve a guide a blind agent to a
soccer ball. GSN outperforms existing algorithms on Blind Soccer task in which communication
is used to achieve a goal in the environment. Analyzing the communicated messages shows that
the communication protocol is highly correlated to the actions selected by the blind teammate. In
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(a) RIAL (b) TCG (c) GSN

Figure 4: Guess My Number: Performance of RIAL, TCG, and GSN. The maximum achievable
reward is 10.

general, these results highlight the ability of communication to overcome partial observability and
help facilitate cooperation between independent agents.

Comparing GSN to communication learning approaches that directly optimize the content of com-
municated messages, we see that direct optimization of message content (TCG) is most effective on
domains in which reward stems directly from the communicated message and the messages don’t
need to reflect the state of the environment. GSN works better in domains in which communication
is used as a means to accomplish some objective in the environment. In such cases, the learned
communication protocol remains grounded in reality.

An interesting possibility for extending the GSN: it would be desirable to have a grounded communi-
cation learning method that optimized the content of messages towards higher rewards, a method
would be able to solve both tasks examined in this paper. One approach would be to perform updates
on the GSN that alternated between predicting and maximizing teammates rewards. In such a way,
the learned messages would be both grounded and optimized to maximize teammate reward.
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