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ABSTRACT

Estimating a policy’s action-values is a fundamental aspect of reinforcement learn-
ing. In this work, we study the application of TD methods for learning action-values
in an offline setting with a fixed batch of data. Motivated by recent work (Pavse
et al., 2020), we observe that a fixed batch of offline data may contain two forms of
distribution shift: the data may be collected from a different behavior policy than
the target policy (off-policy data) and the empirical distribution of the data may
differ from the sampling distribution of the data (sampling error). In this work, we
focus on the second problem by analyzing the sampling error that arises due to
variance in sampling from a finite-sized batch of data in the on-policy offline RL
setting. We study how action-value learning algorithms suffer from this sampling
error by considering their so-called certainty-equivalence estimates (Sutton, 1988;
Pavse et al., 2020). We prove that each algorithm uses its certainty-equivalence
estimates of the policy and transition dynamics to converge to its respective fixed-
point. We then empirically evaluate each algorithm’s performance by measuring
the mean-squared value error on Gridworld. Ultimately, we find that by reduc-
ing sampling error, an algorithm can produce significantly accurate action-value
estimations.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) algorithms have become prevalent in sequential-
decision making problems such as robot manipulation (Kober et al., 2013; Gu et al., 2016) and
autonomous driving (Sallab et al., 2017). Many RL algorithms learn optimal control by computing
the action-values, a function that estimates the expected return when starting in a state, taking a
particular action, and thereafter following a particular policy (Mnih et al., 2013; Rummery & Niranjan,
1994a; van Seijen et al., 2009; Watkins & Dayan, 1992). In this study, we consider three action-value
prediction algorithms and study them from the novel perspective of policy sampling error (Pavse
et al., 2020). According to Pavse et al. (2020), policy sampling error occurs when a batch algorithm
makes learning updates weighted according to the frequency of an action appearing in the batch
instead of the true frequency of that action.

Sutton (1988) and Pavse et al. (2020) showed that batch TD(0) converges to the so-called certainty-
equivalence estimate (CEE), which is the value function learned using the maximum likelihood
estimates (MLE) of the policy and transition dynamics according to the batch of data. In this work,
we prove that batch action-value TD, the prediction variant of SARSA (Rummery & Niranjan, 1994a),
converges to a version of the CEE that gives action-values for the empirical policy instead of the
desired policy. Pavse et al. (2020) call this mismatch in policy distribution policy sampling error. We
also prove that batch expected action-value TD, a prediction algorithm based on Expected SARSA
(van Seijen et al., 2009), eliminates this policy sampling error by taking an expectation over the
desired policy on the bootstrapped state. Finally, we also introduce batch PSEC action-value TD,
a novel prediction algorithm based on PSEC-TD(0) (Pavse et al., 2020), which uses importance
sampling (Precup et al., 2001) to eliminate the sampling error by correcting learning from the
empirical policy to the true desired policy. The contributions of the paper are as follows:
∗Work done while at UT Austin
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1. Derive the fixed points of the above algorithms under a fixed batch of data.

2. Analyze the sampling error of the algorithms from the derived fixed-points.

3. Empirically validate our analysis by comparing the mean-squared value error (MSVE) of
the different algorithms.

A difficulty when learning in the offline RL setting is that there are distribution mismatches due to:
1) difference in the target policy and behavior policy and 2) variance in sampling from the finite
batch of data. In this paper, we isolate the latter problem by considering the offline on-policy setting.
Understanding this problem serves as a first step towards understanding the sampling error in the
more general off-policy case.

2 BACKGROUND

This section introduces notation and formally specifies the batch action-value learning problem.

2.1 NOTATION AND DEFINITIONS

We consider a Markov decision process (MDP) with state space S , action space A, reward function,
R, transition dynamics function P , and discount factor γ (Puterman, 2014). In any state, s, an agent
selects stochastic actions according to a policy π, a ∼ π(·|s). After taking an action, a, in state s
the agent transitions to a new state s′ ∼ P (·|s, a) and receives reward R(s, a, s′). We assume S and
A to be finite. We consider the episodic, discounted, and finite horizon setting. We are concerned
with computing the action-value function, qπ : S × A → R. The action-value function estimates
the expected discounted return when starting in a state, taking a particular action, and thereafter
following a particular policy:

qπ(s, a) := Eπ

[ L∑
k=0

γkRt+k+1

∣∣∣∣ St = s,At = a

]
,∀s ∈ S,∀a ∈ A

where L is the terminal time-step and the expectation is taken over the distribution of future states,
actions, and rewards under π and P . We analyze action-value function learning in the tabular setting.

2.2 BATCH ACTION-VALUE PREDICTION

This work investigates the problem of approximating, qπ, given a batch of data, D, and a pol-
icy, π, i.e. policy evaluation. Let a single episode, τ , be defined as τ := (S0, A0, R0, S1, ...,
SLτ−1

, ALτ−1
, RLτ−1

), where Lτ is the length of the episode τ . The batch of data, D, consists of m
episodes, i.e., D := {τi}m−1i=0 . Our focus is in the offline on-policy setting, where D is generated by
π.

In batch action-value prediction, an action-value function learning algorithm uses a fixed batch of
data to learn an estimate, q̂π , that approximates the true action-value function, qπ .

The error of the predicted value function, q̂π , with respect to the true value function, qπ , is measured
by calculating the mean squared value error between qπ(s, a) and q̂π(s, a) ∀s ∈ S,∀a ∈ A weighted
by the proportion of time spent in each state-action pair under policy π, dπ(s, a). Thus, we seek to
find q̂π that minimizes: ∑

s∈S,a∈A

dπ(s, a)

(
qπ(s, a)− q̂π(s, a)

)2

(1)

3 CONVERGENCE OF BATCH ACTION-VALUE PREDICTION ALGORITHMS

In this section, we do the following: 1) introduce the three batch action-value learning algorithms, 2)
give theorems stating the fixed-point that each of these algorithms converge to, and 3) relate these to
the certainty-equivalence (Sutton, 1988; Pavse et al., 2020) and give remarks on their policy sampling
errors when estimating the action-value function.
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First, we introduce additional notation. Let Ŝ be the set of states and Â be the set of actions that
appear in D and let R̄(s, a) be the mean reward observed in state s upon taking action a in the batch
D. If the notation includes a hat (ˆ), it is the maximum-likelihood estimate (MLE) according to
D. We also refer to the MLE policy as the empirical policy. For example, P̂ is the MLE of P . Let
ĉ(s) be the number of occurrences of s in D. βn(s, a) = αĉ(s) is a suitable step-size according
to the stochastic approximation conditions (see Appendix A). The certainty-equivalence estimates
of action-values are the estimates learned using the empirical policy and MLE transition dynamics
according to the batch of data.

We note that batch action-value TD and batch expected action-value TD are similar to SARSA
(Rummery & Niranjan, 1994a) and Expected SARSA (van Seijen et al., 2009) respectively with
the exception that the former pair are batch algorithms and are policy evaluation algorithms i.e.
they evaluate action-values for a fixed policy. In batch action-value prediction, the algorithms first
accumulate all their respective errors for each transition in the batch and then make an aggregated
update to the action-value. Due to space constraints, we include Algorithm 1 in Appendix B, which
gives pseudo-code for the batch action-value TD and batch expected action-value TD.

3.1 BATCH ACTION-VALUE TD

For batch action-value TD, we have the following batch update rule when processing the batch for
the n+ 1th iteration:

q(s, a)n+1 ← q(s, a)n+βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)
[
R̄(s, a) + γq(s′, a′)n − q(s, a)n

]
(2)

Given the certainty-equivalence estimates of the policy and transition dynamics, we then have the
following fixed-point given by the Bellman equation:

qAV-TD(s, a) = R̄(s, a) + γ
∑
s′∈Ŝ

P̂ (s′|s, a)
∑
a′∈Â

π̂(a′|s, a, s′)qAV-TD(s′, a′) (3)

Given Equation (2) and (3), we have the following theorem (refer to Appendix A for proof details):
Theorem 1 (Batch Action-Value TD Convergence). Batch action-value TD, as defined by update (2),
converges to the action-value function given by (3) when the following assumptions hold:

1. S and A are finite.

2.
∑
n βn(s, a) =∞,

∑
n(βn(s, a))2 <∞.

3. The reward function is bounded.

From Theorem 1, for a finite batch of data, batch action-value TD computes the action-value function
for empirical policy and MLE transition dynamics instead of the true policy and transition dynamics,
resulting in policy and transition dynamics sampling error.

3.2 BATCH EXPECTED ACTION-VALUE TD

Taking the same approach as above, we have the batch update for batch expected action-value TD
when processing the batch for the n+ 1th iteration:

q(s, a)n+1 ← q(s, a)n+βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)

[
R̄(s, a) + γ

∑
a′∈A

π(a′|s′)q(s′, a′)n − q(s, a)n

]
(4)

Given the certainty-equivalence estimates of the transition dynamics, we then have the fixed-point
given by the Bellman equation:

qEXP-AV-TD(s, a) = R̄(s, a) + γ
∑
s′∈Ŝ

P̂ (s′|s, a)
∑
a′∈A

π(a′|s′)qEXP-AV-TD(s′, a′) (5)

Given Equations (4) and (5), we have the following theorem (refer to Appendix A for proof details):
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Theorem 2 (Batch expected action-value TD Convergence). Batch expected action-value TD(0),
as defined by update (4), converges to the action-value function given by (5) when the following
assumptions hold:

1. S and A are finite.

2.
∑
n βn(s, a) =∞,

∑
n(βn(s, a))2 <∞.

3. The reward function is bounded.

From Theorem 2, we see that batch expected action-value TD computes the action-value function for
the MLE transition dynamics instead of the true dynamics. However, it computes a more accurate
action-value than batch action-value TD since by computing the action-value for the true desired
policy the former reduces sampling error.

3.3 BATCH PSEC ACTION-VALUE TD

PSEC-TD(0) (Pavse et al., 2020) was introduced as an algorithm to correct for the same policy
sampling error in batch TD(0). Similarly, we view the convergence of batch action-value TD as
an off-policy problem since it evaluates action-values for the empirical instead of true policy. As
introduced by Pavse et al. (2020), this type of problem can be corrected for by estimating the empirical
policy and then using importance sampling to correct learning from the empirical policy to the true
policy. We call the policy sampling error corrected batch action-value TD algorithm as batch PSEC
action-value TD. We have the batch PSEC action-value TD update on the n+1 iteration of processing
the batch as follows:

q(s, a)n+1 ← q(s, a)n+βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)
∑
a′∈Â

π(a′|s′)
π̂(a′|s, a, s′)

π̂(a′|s, a, s′)
[
R̄(s, a) + γq(s′, a′)n − q(s, a)n

]
(6)

where π(a′|s′)
π̂(a′|s,a,s′) is the PSEC weight to correct learning from π̂ to π. Given the certainty-equivalence

estimates of the transition dynamics, we then have the fixed-point given by the Bellman equation:

q(s, a)PSEC-AV-TD = R̄(s, a) + γ
∑
s′∈Ŝ

P̂ (s′|s, a)
∑
a′∈Â

π(a′|s′)qPSEC-AV-TD(s′, a′) (7)

Given Equations (6) and (7), we have the following theorem (refer to Appendix A for proof details):
Theorem 3 (Batch PSEC action-value TD Convergence). Batch PSEC action-value TD, as defined
by update (6), converges to the action-value function given by (7) when the following assumptions
hold:

1. S and A are finite.

2.
∑
n βn(s, a) =∞,

∑
n(βn(s, a))2 <∞.

3. The reward function is bounded.

From Theorem 3, we see that batch PSEC action-value TD is similar to batch expected action-value
TD in that it also computes the action-value function for the MLE transition dynamics and true desired
policy. However, Equation (7) computes the expectation over available actions in the batch, whereas
Equation (4) computes the expectation over all possible actions. Thus, batch PSEC action-value TD
converges to same certainty-equivalence estimate as batch expected action-value TD under an action
visitation condition.

3.4 REMARKS ON POLICY SAMPLING ERROR

From Theorems 1, 2, and 3, we see that batch expected action-value TD and batch PSEC action-value
TD correct for the policy sampling error while batch action-value TD does not since the former
two evaluate action-values for the true policy. This correction is also reflected in our empirical
results (Section 4). Between the two, we find that batch expected action-value TD is better suited for
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action-value learning than batch PSEC action-value TD since: 1) it achieves better performance with
less data (Section 4) and 2) it does not incur the MLE computational cost, which can be O(|S||A|),
where |S| and |A| are the number of states and actions respectively.

4 EMPIRICAL RESULTS

In this section, we empirically study the performance of the batch action-value prediction algorithms
as a function of data size.
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Figure 1: Deterministic Gridworld. Both axes of Figure 1(a) and x-axis of Figure 1(b) are log-scaled. Figure
1(a) shows errors against the true action-values. Figure 1(b) shows ratio of unvisited transition tuples as a
function of data size. All metrics are computed over 30 trials with 95% confidence intervals.

Figure 1(a) illustrates the performance of the three algorithms against the true action-values on a
deterministic gridworld. We see that for a given batch size, batch expected action-value TD and batch
PSEC action-value TD perform better than batch action-value TD. We find that batch expected action-
value TD and batch PSEC action-value TD improve in performance as more (s, a, s′) and (s, a, s′, a′)
tuples are visited respectively. This finding aligns with Figure 1(b), which shows the unvisited tuple
ratio as a function of batch size. As the unvisited ratio of both these types of tuples goes to 0, both
algorithms correct for more policy sampling error and converge to the same certainty-equivalence
(Equations (5) and (7)). However, we can see that batch PSEC action-value TD requires more data to
converge to the same CEE as batch expected action-value TD. Note that in deterministic Gridworld,
there is no transition dynamics sampling error; thus, these algorithms are able to achieve 0 MSVE.

5 RELATED WORK

In this section, we discuss the related literature.

Many works avoid policy sampling error by performing analytic computations. Expected SARSA
(van Seijen et al., 2009) was introduced as a lower variance algorithm to SARSA (Rummery &
Niranjan, 1994a) in order to achieve faster learning. The Tree-backup algorithm (Precup et al., 2000)
extends Expected SARSA to a multi-step algorithm. Q(σ) (Asis et al., 2017) unifies SARSA (Sutton,
1996; Rummery & Niranjan, 1994b), Expected SARSA, and Tree-backups, to find a balance between
sampling and analytic expectation computation. Our work is distinct from these in the following
ways: 1) we focus on policy evaluation of the action-values for a fixed policy and 2) we study the
relation between the policy sampling error in these action-value prediction algorithms and their
certainty-equivalence estimate.

Batch PSEC action-value TD is an extension to PSEC-TD(0) (Pavse et al., 2020), an algorithm for
batch state-value learning. Batch PSEC action-value TD’s technique of estimating the policy from the
batch and then using importance sampling has also been well-studied for policy evaluation (Hanna
et al., 2019), policy gradient learning (Hanna & Stone, 2019), multi-armed bandits (Li et al., 2015;
Narita et al., 2018; Xie et al., 2018), causal inference (Hirano et al., 2003; Rosenbaum, 1987), and

5



Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Monte Carlo integration (Henmi et al., 2007; Delyon & Portier, 2016). To the best of our knowledge,
this technique has not been studied for on-policy action-value prediction.

6 SUMMARY

In this work, we isolated one type of distribution shift that arises in the offline RL setting where the
empirical distribution of data may differ from the sampling distribution of the data by focusing on the
on-policy offline RL setting. We studied three batch action-value prediction algorithms from the novel
perspective of understanding their policy sampling error and relating them to the certainty-equivalence
estimate (CEE). We proved that batch action-value TD evaluates the empirical policy instead of the
desired true policy. We then proved that batch expected action-value TD and batch PSEC action-value
TD, on the other hand, compute the action-values for the desired policy. We proved that batch
expected action-value TD and batch PSEC action-value TD converge to the same CEE (under a
transition tuple visitation condition). We reached these conclusions through convergence proofs and
an empirical analysis. An important line of future work will be to incorporate the second source of
distribution mismatch between the behavior policy and target policy i.e. the off-policy setting.
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A CONVERGENCE PROOFS

In proving Theorems 1, 2, and 3, we used Lemma 1 from Singh et al. (2000) (also used by van Seijen
et al. (2009); Jaakkola et al. (1993)), which states the following:
Lemma 4. Consider a stochastic process (ζt,∆t, Ft), where ζt,∆t, Ft : X → R satisfies the
equation:

∆t+1(x) = (1− ζt(x))∆t(x) + ζt(x)Ft(x)

where x ∈ X and t = 0, 1, 2.... Assume that the following hold:

1. the set X is finite.

2. ζt(x) ∈ [0, 1]
∑
t ζt(x) =∞, ζ2t (x) <∞, w.p. 1.

3. ||E[Ft|Pt]|| ≤ κ||∆t||+ ct, where κ ∈ [0, 1) and ct converges to 0 w.p. 1.

4. Var[Ft(x)|Pt] ≤ K(1 + κ||∆t||2), for some constant, K.

Here Pt = {∆t,∆t−1, ..., Fn−1, ..., ζt−1...} stands for the past at step t. Ft and ζt are allowed to
depend on the past insofar as the above conditions remain valid. ||.|| denotes the maximum norm.
Then ∆t converges to 0 w.p. 1.

In our proofs below, we apply Lemma 4 with X = Ŝ × Â. We now include the full proof details for
each theorem.
Theorem 1 (Batch Action-Value TD Convergence). Batch action-value TD, as defined by update (2),
converges to the action-value function given by (3) when the following assumptions hold:

1. S and A are finite.

2.
∑
n βn(s, a) =∞,

∑
n(βn(s, a))2 <∞.

3. The reward function is bounded.

Proof. The proof strategy is as follows: we want to apply Lemma 4 to show convergence to Equation
(3). In order to apply Lemma 4, the four conditions need to be met. The first and second conditions
of Lemma 4 are met by the first two assumptions of the theorem. We discuss meeting the fourth
condition at the end of the proof. For the third condition of Lemma 4, we must adapt Equation
(2) so that is applicable. We define ĉ(s, a, s′, a′) as the number of occurrences of transition tuple
(s, a, s′, a′). Notice that ĉ(s, a, s′, a′) = ĉ(s)π̂(a|s)P̂ (s′|s, a)π̂(a′|s, a, s′).

Consider the update rule of batch action-value TD for policy evaluation on the n+ 1th iteration of
processing the batch of data:

qn+1(s, a) = qn(s, a) + α
∑
s′∈Ŝ

∑
a′∈Â

ĉ(s, a, s′, a′)
[
R̄(s, a) + γqn(s′, a′)− qn(s, a)

]
= qn(s, a) + αĉ(s, a)

∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qn(s, a)]

= qn(s, a) + βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qn(s, a)]

where βn(s, a) = αĉ(s, a). We now subtract qAV-TD(s, a) (Equation (3)) from both sides.

qn+1(s, a)− qAV-TD(s, a) = qn(s, a)− qAV-TD(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qn(s, a)]

Then adding and subtracting βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π̂(a′|s, a, s′)qAV-TD(s, a) on RHS. We

also define ∆n(s, a) = qn(s, a)− qAV-TD(s, a).

8
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∆n+1(s, a) = ∆n(s, a) + βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qn(s, a)]

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)qAV-TD(s, a)− βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)qAV-TD(s, a)

= (1− βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′))∆n(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qAV-TD(s, a)]

∆n+1(s, a) = (1− βn(s, a))∆n(s, a) + βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qAV-TD(s, a)]

where
∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π̂(a′|s, a, s′) = 1.

Then by comparing ∆n+1(s, a) with Lemma 4, we have ζt = βn and Ft =∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π̂(a′|s, a, s′)[R̄(s, a) + γqn(s′, a′)− qAV-TD(s, a)]. Then for the third con-

dition of Lemma 4,

||E[Ft|Pt]|| = ||E[R̄(s, a) + γq(s′, a′)− qAV-TD(s, a)]||
= ||E[R̄(s, a) + γqn(s′, a′)− R̄(s, a)− γqAV-TD(s′, a′)]||
≤ γmax

s
max
a
|qn(s, a)− qAV-TD(s, a)|

= γ||∆n(s, a)||

which is of the form of the third condition of Lemma 4 where κ = γ and ct = 0 for all t, which
results in meeting the third condition of Lemma 4. Finally, the fourth condition of Lemma 4,
Var[Ft(x)|Pt] ≤ K(1 + κ||∆t||2), for some constant, K, is met since Ft depends at most linearly on
qn(s, a), which in turn depends on the bounded reward function (according to our third assumption
of the theorem) (Jaakkola et al., 1993). Meeting this last condition allows us to apply Lemma 4,
which shows that the batch action-value TD update rule given by Equation (2) will converge to the
fixed-point given by Equation (3)

Theorem 2 (Batch expected action-value TD Convergence). Batch expected action-value TD(0),
as defined by update (4), converges to the action-value function given by (5) when the following
assumptions hold:

1. S and A are finite.

2.
∑
n βn(s, a) =∞,

∑
n(βn(s, a))2 <∞.

3. The reward function is bounded.

Proof. The proof strategy is as follows: we want to apply Lemma 4 to show convergence to Equation
(5). In order to apply Lemma 4, the four conditions need to be met. The first and second conditions
of Lemma 4 are met by the first two assumptions of the theorem. We discuss meeting the fourth
condition at the end of the proof. For the third condition of Lemma 4, we must adapt Equation (4)
so that is applicable. We define ĉ(s, a, s′) as the number of occurrences of transition tuple (s, a, s′).
Notice that ĉ(s, a, s′) = ĉ(s)π̂(a|s)P̂ (s′|s, a).

9
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Consider the update rule of batch expected action-value TD for policy evaluation on the n + 1th

iteration of processing the batch of data:

qn+1(s, a) = qn(s, a) + α
∑
s′∈Ŝ

ĉ(s, a, s′)[R̄(s, a) + γ
∑
a′∈A

π(a′|s′)qn(s′, a′)− qn(s, a)]

= qn(s, a) + αĉ(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)[R̄(s, a) + γ
∑
a′∈A

π(a′|s′)qn(s′, a′)− qn(s, a)]

= qn(s, a) + βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)[R̄(s, a) +
∑
a′∈A

π(a′|s′)qn(s′, a′)− qn(s, a)] βn(s, a) = αĉ(s, a)

where βn(s, a) = αĉ(s, a). We now subtract qEXP-AV-TD(s, a) (Equation (5)) from both sides.

qn+1(s, a)− qEXP-AV-TD(s, a) = qn(s, a)− qEXP-AV-TD(s, a)

+ βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)[R̄(s, a) +
∑
a′∈A

π(a′|s′)qn(s′, a′)− qn(s, a)]

Then adding and subtracting βn(s, a)
∑
s′∈Ŝ P̂ (s′|s, a)qEXP-AV-TD(s, a) on RHS. We also define

∆n(s, a) = qn(s, a)− qEXP-AV-TD(s, a).

∆n+1(s, a) = ∆n(s, a) + βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)[R̄(s, a) +
∑
a′∈A

π(a′|s′)qn(s′, a′)− qn(s, a)]

+ βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)qEXP-AV-TD(s, a)− βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)qEXP-AV-TD(s, a)

= (1− βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a))∆n(s, a)

+ βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)[R̄(s, a) +
∑
a′∈A

π(a′|s′)qn(s′, a′)− qEXP-AV-TD(s, a)]

∆n+1(s, a) = (1− βn(s, a))∆n(s, a) + βn(s, a)
∑
s′∈Ŝ

P̂ (s′|s, a)[R̄(s, a) +
∑
a′∈A

π(a′|s′)qn(s′, a′)− qEXP-AV-TD(s, a)]

where
∑
s′∈Ŝ P̂ (s′|s, a) = 1.

Then by comparing ∆n+1(s, a) with Lemma 4, we have ζt = βn and Ft =∑
s′∈Ŝ P̂ (s′|s, a)[R̄(s, a) + γ

∑
a′∈A π(a′|s′)qn(s′, a′)− qEXP-AV-TD(s, a)]. Then for the third con-

dition of Lemma 4,

||E[Ft|Pt]|| = ||E[R̄(s, a) + γ
∑
a′∈A

π(a′|s′)qn(s′, a′)− qEXP-AV-TD(s, a)]||

= ||E[R̄(s, a) + γ
∑
a′∈A

π(a′|s′)qn(s′, a′)− R̄(s, a)− γ
∑
a′∈A

π(a′|s′)qEXP-AV-TD(s′, a′)]||

≤ γmax
s

max
a
|qn(s, a)− qEXP-AV-TD(s, a)|

= γ||∆n(s, a)||

which is of the form of the third condition of Lemma 4 where κ = γ and ct = 0 for all t, which
results in meeting the third condition of Lemma 4. Finally, the fourth condition of Lemma 4,
Var[Ft(x)|Pt] ≤ K(1 + κ||∆t||2), for some constant, K, is met since Ft depends at most linearly on
qn(s, a), which in turn depends on the bounded reward function (according to our third assumption
of the theorem) (Jaakkola et al., 1993). Meeting this last condition allows us to apply Lemma 4,
which shows that the batch expected action-value TD update rule given by Equation (4) will converge
to the fixed-point given by Equation (5)

10
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Theorem 3 (Batch PSEC action-value TD Convergence). Batch PSEC action-value TD, as defined
by update (6), converges to the action-value function given by (7) when the following assumptions
hold:

1. S and A are finite.

2.
∑
n βn(s, a) =∞,

∑
n(βn(s, a))2 <∞.

3. The reward function is bounded.

Proof. The proof strategy is as follows: we want to apply Lemma 4 to show convergence to Equation
(7). In order to apply Lemma 4, the four conditions need to be met. The first and second conditions
of Lemma 4 are met by the first two assumptions of the theorem. We discuss meeting the fourth
condition at the end of the proof. For the third condition of Lemma 4, we must adapt Equation
(6) so that is applicable. We define ĉ(s, a, s′, a′) as the number of occurrences of transition tuple
(s, a, s′, a′). Notice that ĉ(s, a, s′, a′) = ĉ(s)π̂(a|s)P̂ (s′|s, a)π̂(a′|s, a, s′). Let π(a′|s′)

π̂(a′|s,a,s′) be the
PSEC correction ratio. For this theorem, we make the assumption that all (s, a, s′, a′) transition
tuples have been visited.

Consider the update rule of batch PSEC action-value TD for policy evaluation on the n+ 1th iteration
of processing the batch of data:

qn+1(s, a) = qn(s, a) + α
∑
s′∈Ŝ

∑
a′∈Â

ĉ(s, a, s′, a′)[
π(a′|s′)

π̂(a′|s, a, s′)
(R̄(s, a) + γqn(s′, a′))− qn(s, a)]

= qn(s, a)

+ αĉ(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[ π(a′|s′)
π̂(a′|s, a, s′)

(R̄(s, a) + γqn(s′, a′))− qn(s, a)]

= qn(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[ π(a′|s′)
π̂(a′|s, a, s′)

(R̄(s, a) + γqn(s′, a′))− qn(s, a)]

where βn(s, a) = αĉ(s, a). We now subtract qPSEC-AV-TD(s, a) (Equation (7)) from both sides.

qn+1(s, a)− qPSEC-AV-TD(s, a) = qn(s, a)− qPSEC-AV-TD(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[ π(a′|s′)
π̂(a′|s, a, s′)

(R̄(s, a) + γqn(s′, a′))− qn(s, a)]

Then adding and subtracting βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π(a′|s′)qPSEC-AV-TD(s, a) on RHS.

We also define ∆n(s, a) = qn(s, a)− qPSEC-AV-TD(s, a).

11
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∆n+1(s, a) = ∆n(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π̂(a′|s, a, s′)[ π(a′|s′)
π̂(a′|s, a, s′)

(R̄(s, a) + γqn(s′, a′))− qn(s, a)]

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)qPSEC-AV-TD(s, a)

− βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)qPSEC-AV-TD(s, a)

= ∆n(s, a)− βn(s, a)qn(s, a) + βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)(R̄(s, a) + γqn(s′, a′))

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)qPSEC-AV-TD(s, a)

− βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)qPSEC-AV-TD(s, a)

= (1− βn(s, a))∆n(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)[R̄(s, a) + γqn(s′, a′)− qPSEC-AV-TD(s, a)] Note below

∆n+1(s, a) = (1− βn(s, a))∆n(s, a)

+ βn(s, a)
∑
s′∈Ŝ

∑
a′∈Â

P̂ (s′|s, a)π(a′|s′)[R̄(s, a) + γqn(s′, a′)− qPSEC-AV-TD(s, a)]

Note that above, we used the fact that
∑
s′∈Ŝ P̂ (s′|s, a)

∑
a′∈Â π(a′|s′) = 1 when all (s, a, s′, a′)

tuples have been visited and
∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π̂(a′|s, a, s′) = 1.

Then by comparing ∆n+1(s, a) with Lemma 4, we have ζt = βn and Ft =∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π(a′|s′)[R̄(s, a) + γqn(s′, a′) − qPSEC-AV-TD(s, a)] = R̄(s, a) −

qPSEC-AV-TD(s, a) + γ
∑
s′∈Ŝ

∑
a′∈Â P̂ (s′|s, a)π(a′|s′)qn(s′, a′), where again, we assume that all

(s, a, s′, a′) tuples have been visited. Then for the third condition of Lemma 4,

||E[Ft|Pt]|| = ||E[R̄(s, a) + γ
∑
a′∈Â

π(a′|s′)q(s′, a′)− qPSEC-AV-TD(s, a)]||

= ||E[R̄(s, a) + γ
∑
a′∈Â

π(a′|s′)qn(s′, a′)− R̄(s, a)− γ
∑
a′∈Â

π(a′|s′)qPSEC-AV-TD(s′, a′)]||

≤ γmax
s

max
a
|qn(s, a)− qPSEC-AV-TD(s, a)|

= γ||∆n(s, a)||

which is of the form of the third condition of Lemma 4 where κ = γ and ct = 0 for all t, which
results in meeting the third condition of Lemma 4. Finally, the fourth condition of Lemma 4,
Var[Ft(x)|Pt] ≤ K(1 + κ||∆t||2), for some constant, K, is met since Ft depends at most linearly on
qn(s, a), which in turn depends on the bounded reward function (according to our third assumption
of the theorem) (Jaakkola et al., 1993). Meeting this last condition allows us to apply Lemma 4,
which shows that the batch PSEC action-value TD update rule given by Equation (6) will converge to
the fixed-point given by Equation (7)
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B BATCH ACTION-VALUE TD AND BATCH EXPECTED ACTION-VALUE TD
PSEUDOCODE

Algorithm 1 Batch action-value TD and Batch expected action-value TD to estimate qπ

1: Input: policy to evaluate π, batch D, step-size α > 0, convergence threshold ε > 0
2: Initialize: q(s, a) arbitrarily ∀s ∈ S,∀a ∈ A, aggregation of action-values, u(s, a) := 0,∀s ∈
S,∀a ∈ A, batch process counter, i = 0

3: while |qi+1 − qi| ≥ ε1 do
4: for each transition, (S,A,R, S′, A′) ∈ D do
5: if expected action-value TD then
6: y ← R+ γ

∑
a′∈A π(a′|S)q(S′, a′)

7: else
8: y ← R+ γq(S′, A′)
9: end if

10: u(S,A)← u(S,A) + [y − q(S,A)]
11: end for
12: qi+1 ← qi + αU {batch update}
13: u(s, a) := 0,∀s ∈ S,∀a ∈ A {clear aggregation}
14: i← i+ 1 {update batch process counter}
15: end while

C EXTENDED EMPIRICAL DESCRIPTION

In this appendix we provide additional details for our empirical evaluation.

C.1 GRIDWORLD

Figure 2: The Gridworld environment. Start at top left, bottom right is terminal state, discrete action
space consists of the cardinal directions, and discrete state space is the location in the grid. This
specific image was taken from this link.

This domain is a 4× 4 grid, where an agent starts at (0, 0) and tries to navigate to (3, 3). The states
are the discrete positions in the grid and actions are the 4 cardinal directions. The reward function is
100 for reaching (3, 3), −10 for reaching (1, 1), 1 for reaching (1, 3), and −1 for reaching all other
states. If an agent takes an action that hits a wall, the agent stays in the same location. The transition
dynamics are controlled by a parameter, p, where with probability p, an agent takes the intended
action, else it takes an adjacent action with probability (1− p)/2. All policies use a softmax action
selection distribution with value θsa, for each state, s, and action a. The probability of taking action a
in state s is given by:
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π(a|s) =
eθsa∑

a′∈A e
θsa′

The fixed policy used was an equiprobable policy in each cardinal direction.

For the comparisons of batch action-value TD, batch expected action-value TD, and batch PSEC
action-value TD, we conducted a parameter sweep of the learning rates for the varying batch sizes. The
parameter sweep was over: {5e−3, 1e−3, 5e−2, 1e−2, 5e−1}. We used a action-value convergence
threshold of 1e−5.
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