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Abstract

We propose firefly neural architecture descent, a general framework for progres-
sively and dynamically growing neural networks to jointly optimize the networks’
parameters and architectures. Our method works in a steepest descent fashion,
which iteratively finds the best network within a functional neighborhood of the
original network that includes a diverse set of candidate network structures. By
using Taylor approximation, the optimal network structure in the neighborhood
can be found with a greedy selection procedure. We show that firefly descent can
flexibly grow networks both wider and deeper, and can be applied to learn accu-
rate but resource-efficient neural architectures that avoid catastrophic forgetting in
continual learning. Empirically, firefly descent achieves promising results on both
neural architecture search and continual learning. In particular, on a challenging
continual image classification task, it learns networks that are smaller in size but
have higher average accuracy than those learned by the state-of-the-art methods.

1 Introduction

Although biological brains are developed and shaped by complex progressive growing processes, most
existing artificial deep neural networks are trained under fixed network structures (or architectures).
Efficient techniques that can progressively grow neural network structures can allow us to jointly
optimize the network parameters and structures to achieve higher accuracy and computational
efficiency, especially in dynamically changing environments. For instance, it has been shown that
accurate and energy-efficient neural network can be learned by progressively growing the network
architecture starting from a relatively small network (Liu et al., 2019; Wang et al., 2019). Moreover,
previous works also indicate that knowledge acquired from previous tasks can be transferred to
new and more complex tasks by expanding the network trained on previous tasks to a functionally-
equivalent larger network to initialize the new tasks (Chen et al., 2016; Wei et al., 2016).

In addition, dynamically growing neural network has also been proposed as a promising approach for
preventing the challenging catastrophic forgetting problem in continual learning (Rusu et al., 2016;
Yoon et al., 2017; Rosenfeld & Tsotsos, 2018; Li et al., 2019).
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Unfortunately, searching for the optimal way to grow a network leads to a challenging combinatorial
optimization problem. Most existing works use simple heuristics (Chen et al., 2016; Wei et al., 2016),
or random search (Elsken et al., 2017, 2018) to grow networks and may not fully unlock the power
of network growing. An exception is splitting steepest descent (Liu et al., 2019), which considers
growing networks by splitting the existing neurons into multiple copies, and derives a principled
functional steepest-descent approach for determining which neurons to split and how to split them.
However, the method is restricted to neuron splitting, and can not incorporate more flexible ways for
growing networks, including adding brand new neurons and introducing new layers.

In this work, we propose firefly neural architecture descent, a general and flexible framework for
progressively growing neural networks. Our method is a local descent algorithm inspired by the
typical gradient descent and splitting steepest descent. It grows a network by finding the best larger
networks in a functional neighborhood of the original network whose size is controlled by a step size
ε, which contains a rich set of networks that have various (more complex) structures, but are ε-close
to the original network in terms of the function that they represent. The key idea is that, when ε is
small, the combinatorial optimization on the functional neighborhood can be simplified to a greedy
selection, and therefore can be solved efficiently in practice.

The firefly neural architecture descent framework is highly flexible and practical and allows us to
derive general approaches for growing wider and deeper networks (Section 2.2-2.3). It can be easily
customized to address specific problems. For example, our method provides a powerful approach
for dynamic network growing in continual learning (Section 2.4), and can be applied to optimize
cell structures in cell-based neural architecture search (NAS) such as DARTS (Liu et al., 2018b)
(Section 3). Experiments show that Firefly efficiently learns accurate and resource-efficient networks
in various settings. In particular, for continual learning, our method learns more accurate and smaller
networks that can better prevent catastrophic forgetting, outperforming state-of-the-art methods such
as Learn-to-Grow (Li et al., 2019) and Compact-Pick-Grow (Hung et al., 2019a).

2 Firefly Neural Architecture Descent

In this section, we start with introducing the general framework (Section 2.1) of firefly neural
architecture descent. Then we discuss how the framework can be applied to grow a network both
wider and deeper (Section 2.2-2.3). To illustrate the flexibility of the framework, we demonstrate
how it can help tackle catastrophic forgetting in continual learning (Section 2.4).

2.1 The General Framework

We start with the general problem of jointly optimizing neural network parameters and model
structures. Let Ω be a space of neural networks with different parameters and structures (e.g.,
networks of various widths and depths). Our goal is to solve

arg min
f

{
L(f) s.t. f ∈ Ω, C(f) ≤ η

}
, (1)

where L(f) is the training loss function and C(f) is a complexity measure of the network struc-
ture that reflects the computational or memory cost. This formulation poses a highly challenging
optimization problem in a complex, hierarchically structured space.

We approach (1) with a steepest descent type algorithm that generalizes typical parametric gradient
descent and the splitting steepest descent of Liu et al. (2019), with an iterative update of the form

ft+1 = arg min
f

{
L(f) s.t. f ∈ ∂(ft, ε), C(f) ≤ C(ft) + ηt

}
, (2)

where we find the best network ft+1 in neighborhood set ∂(ft, ε) of the current network ft in Ω,
whose complexity cannot exceed that of ft by more than a threshold ηt. Here ∂(ft, ε) denotes
a neighborhood of ft of “radius” ε such that f(x) = ft(x) + O(ε) for ∀f ∈ ∂(ft, ε). ε can be
viewed as a small step size, which ensures that the network changes smoothly across iterations, and
importantly, allows us to use Taylor expansion to significantly simplify the optimization (2) to yield
practically efficient algorithms.

The update rule in (2) is highly flexible and reduces to different algorithms with different choices
of ηt and ∂(ft, ε). In particular, when ε is infinitesimal, by taking ηt = 0 and ∂(ft, ε) the typical
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Algorithm 1 Firefly Neural Architecture Descent
Input: Loss function L(f); initial small network f0; search neighborhood ∂(f, ε); maximum
increase of size {ηt}.
Repeat: At the t-th growing phase:
1. Optimize the parameter of ft with fixed structure using a typical optimizer for several epochs.
2. Minimize L(f) in f ∈ ∂(f, ε) without the complexity constraint (see e.g., (4)) to get a large
“over-grown” network f̃t+1 by performing gradient descent.
3. Select the top ηt neurons in f̃t+1 with the highest importance measures to get ft+1 (see (5)).

Euclidean ball on the parameters, (2) reduces to standard gradient descent which updates the network
parameters with architecture fixed. However, by taking ηt > 0 and ∂(ft, ε) a rich set of neural
networks with different, larger network structures than ft, we obtain novel architecture descent rules
that allow us to incrementally grow networks.

In practice, we alternate between parametric descent and architecture descent according to a user-
defined schedule (see Algorithm 2.1). Because architecture descent increases the network size,
it is called less frequently (e.g., only when a parametric local optimum is reached). From the
optimization perspective, performing architecture descent allows us to lift the optimization into
a higher dimensional space with more parameters, and hence escape local optima that cannot be
escaped in the lower dimensional space (of the smaller models).

In the sequel, we instantiate the neighborhood ∂(ft, ε) for growing wider and deeper networks, and
for continual learning, and discuss how to solve the optimization in (2) efficiently in practice.

2.2 Growing Network Width

We discuss how to define ∂(ft, ε) to progressively build increasingly wider networks, and then
introduce how to efficiently solve the optimization in practice. We illustrate the idea with two-layer
networks, but extension to multiple layers works straightforwardly. Assume ft is a two-layer neural
network (with one hidden layer) of the form ft(x) =

∑m
i=1 σ(x, θi), where σ(x, θi) denotes its

i-th neuron with parameter θi and m is the number of neurons (a.k.a. width). There are two ways
to introduce new neurons to build a wider network, including splitting existing neurons in ft and
introducing brand new neurons; see Figure 1.

Splitting Existing Neurons Following Liu et al. (2019), an essential approach to growing neural
networks is to split the neurons into a linear combination of multiple similar neurons. Formally,
splitting a neuron θi2 into a set of neurons {θi`} with weights {wi`} amounts to replacing σ(x, θi)
in ft with

∑
` wi`σ(x, θi`). We shall require that

∑
` wi` = 1 and ‖θi` − θ‖2 ≤ ε, ∀` so that the

new network is ε-close to the original network. As argued in Liu et al. (2019), when ft reaches a
parametric local optimum and wi` ≥ 0, it is sufficient to consider a simple binary splitting scheme,
which splits a neuron θi into two equally weighted copies along opposite update directions, that is,
σ(x, θi)⇒ 1

2

(
σ(x, θi + εδi) + σ(x, θi − εδi)

)
, where δi denotes the update direction.

Growing New Neurons Splitting the existing neurons yields a “local” change because the param-
eters of the new neurons are close to that of the original neurons. A way to introduce “non-local”
updates is to add brand new neurons with arbitrary parameters far away from the existing neurons.
This is achieved by replacing ft with ft(x) + εσ(x, δ), where δ now denotes a trainable parameter of
the new neuron and the neuron is multiplied by ε to ensure the new network is close to ft in function.

Overall, to grow ft(x) =
∑
i σ(x; θi) wider, the neighborhood set ∂(ft, ε) can include functions of

the form

fε,δ(x) =

m∑
i=1

1

2

(
σ(x, θi + εiδi) + σ(x, θi − εiδi)

)
+

m+m′∑
i=m+1

εiσ(x, δi),

where we can potentially split all the neurons in ft and add upto m′ new non-local neurons (m′
is a hyperparameter). Whether each new neuron will eventually be added is controlled by an

2A neuron is determined by both σ and θ. But since σ is fixed under our discussion, we abuse the notation
and use θ to represent a neuron.
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Figure 1: An illustration of three different growing methods within firefly neural architecture descent.
Both δ and h are trainable perturbations.

individual step-size εi that satisfies |εi| ≤ ε. If εi = 0, it means the corresponding new neuron
is not introduced. Therefore, the number of new neurons introduced in fε,δ equals the `0 norm
‖ε‖0 :=

∑m+m′

i=1 I(εi = 0). Here ε = [εi]
m+m′

i=1 and δ = [δi]
m+m′

i=1 .

Under this setting, the optimization in (2) can be framed as

min
ε,δ

{
L(fε,δ) s.t. ‖ε‖0 ≤ ηt, ‖ε‖∞ ≤ ε, ‖δ‖2,∞ ≤ 1

}
, (3)

where ‖δ‖2,∞ = maxi ‖δi‖2, which is constructed to prevent ‖δi‖2 from becoming arbitrarily large.

Optimization It remains to solve the optimization in (3), which is challenging due to the `0
constraint on ε. However, when the step size ε is small, we can solve it approximately with a simple
two-step method: we first optimize δ and ε while dropping the `0 constraint, and then re-optimize ε
with Taylor approximation on the loss, which amounts to simply picking the new neurons with the
largest contribution to the decrease of loss, measured by the gradient magnitude.

Step One. Optimizing δ and ε without the sparsity constraint ‖ε‖0 ≤ ηt, that is,

[ε̃, δ̃] = arg min
ε,δ

{
L(fε,δ) s.t. ‖ε‖∞ ≤ ε, ‖δ‖2,∞ ≤ 1

}
. (4)

In practice, we solve the optimization with gradient descent by turning the constraint into a penalty.
Because ε is small, we only need to perform a small number of gradient descent steps.

Step Two. Re-optimizing ε with Taylor approximation on the loss. To do so, note that when ε is small,
we have by Taylor expansion:

L(fε,δ̃) = L(f) +

m+m′∑
i=1

εisi + O(ε2), si =
1

ε̃i

∫ ε̃i

0

∇ζiL(f[ε̃¬i,ζi],δ̃
)dζi,

where [ε̃¬i, ζi] denotes replacing the i-th element of ε̃ with ζi, and si is an integrated gradient
that measures the contribution of turning on the i-th new neuron. In practice, we approximate the
integration in si by discrete sampling: si ≈ 1

n

∑n
z=1∇czL(f[ε̃¬i,cz ],δ̃

) with cz = (2z − 1)/2nε̃i

and n a small integer (e.g., 3). Therefore, optimizing ε with fixed δ = δ̃ can be approximated by

ε̂ = arg min
ε

{m+m′∑
i=1

εisi s.t. ‖ε‖0 ≤ ηt, ‖ε‖∞ ≤ ε
}
. (5)

It is easy to see that finding the optimal solution reduces to selecting the neurons with the largest
gradient magnitude |si|. Precisely, we have ε̂i = −ε I(|si| ≥ |s(ηt)|) sign(si), where |s(1)| ≤
|s(2)| ≤ · · · is the increasing ordering of {|si|}. Finally, we take ft+1 = fε̂,δ̃.

It is possible to further re-optimize δ with fixed ε and repeat the alternating optimization iteratively.
However, performing the two steps above is computationally efficient and already solves the problem
reasonably well as we observe in practice.

Remark When we include only neural splitting in ∂(ft, ε), our method is equivalent to splitting
steepest descent (Liu et al., 2019), but with a simpler and more direct gradient-based optimization
rather than solving the eigen-problem in Liu et al. (2019); Wang et al. (2019).
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2.3 Growing New Layers

We now introduce how to grow new layers under our framework. The idea is to include in ∂(ft, ε)
deeper networks with extra trainable residual layers and to select the layers (and their neurons) that
contribute the most to decreasing the loss using the similar two-step method described in Section 2.2.

Assume ft is a d-layer deep neural network of form ft = gd ◦ · · · ◦ g1, where ◦ denotes function
composition. In order to grow new layers, we include in ∂(ft, ε) functions of the form

fε,δ = gd ◦ (I + hd−1) · · · (I + h2) ◦ g2 ◦ (I + h1) ◦ g1, with h`(·) =

m′∑
i=1

ε`iσ(·, δ`i),

in which we insert new residual layers of form I + h`; here I is the identity map, and h` is a
layer that can consist of upto m′ newly introduced neurons. Each neuron in h` is associated with a
trainable parameter δ`i and multiplied by ε`i ∈ [−ε, ε]. As before, the (`i)-th neuron is turned off
if ε`i = 0, and the whole layer h` is turned off if ε`i = 0 for all i ∈ [1,m′]. Therefore, the number
of new neurons introduced in fε,δ equals ‖ε‖0 :=

∑
i` I(εi` 6= 0), and the number of new layers

added equals ‖ε‖∞,0 :=
∑
` I(maxi |ε`i| 6= 0). Because adding new neurons and new layers have

different costs, they can be controlled by two separate budget constraints (denoted by ηηt,0 and ηt,1,
respectively). Then the optimization of the new network can be framed as

min
ε,δ

{
L(fε,δ) s.t. ‖ε‖0 ≤ ηt,0, ‖ε‖∞,0 ≤ ηt,1, ‖ε‖∞ ≤ ε, ‖δ‖2,∞ ≤ 1

}
,

where ‖δ‖2,∞ = max`,i ‖δ`i‖2. This optimization can be solved with a similar two-step method to
the one for growing width, as described in Section 2.2: we first find the optimal [ε̃, δ̃] without the
complexity constraints (including ‖ε‖0 ≤ ηt,0, ‖ε‖0,∞ ≤ ηt,1), and then re-optimize ε with a Taylor
approximation of the objective:

min
ε

{∑
`i

ε`is`i s.t. ‖ε‖0 ≤ ηt,0, ‖ε‖∞,0 ≤ ηt,1
}
, where s`i =

1

ε̃`i

∫ ε̃`i

0

∇ζ`iL(f[ε̃¬`i,ζ`i],δ̃
)dζ`i.

The solution can be obtained by sorting |sti| in descending order and selecting the top-ranked neurons
until the complexity constraint is violated.

Remark In practice, we can apply all methods above to simultaneously grow the network wider and
deeper. Firefly descent can also be extended to various other growing settings without case-by-case
mathematical derivation. Moreover, the space complexity to store all the intermediate variables is
O(N +m′), where N is the size of the sub-network we consider expanding and m′ is the number of
new neuron candidates.3

2.4 Growing Networks in Continual Learning

Continual learning (CL) studies the problem of learning a sequence of different tasks (datasets) that
arrive in a temporal order, so that whenever the agent is presented with a new task, it no longer has
access to the previous tasks. As a result, one major difficulty of CL is to avoid catastrophic forgetting,
in that learning the new tasks severely interferes with the knowledge learned previously and causes
the agent to “forget” how to do previous tasks. One branch of approaches in CL consider dynamically
growing networks to avoid catastrophic forgetting (Rusu et al., 2016; Li & Hoiem, 2017; Yoon et al.,
2017; Li et al., 2019; Hung et al., 2019a). However, most existing growing-based CL methods use
hand-crafted rules to expand the networks (e.g. uniformly expanding each layer) and do not explicitly
seek for the best growing approach under a principled optimization framework. We address this
challenge with the Firefly architecture descent framework.

Let Dt be the dataset appearing at time t and ft be the network trained for Dt. At each step t, we
maintain a master network f1:t consisting of the union of all the previous networks {fs}ts=1, such
that each fs can be retrieved by applying a proper binary mask. When a new task Dt+1 arrives,
we construct ft+1 by leveraging the existing neurons in f1:t as much as possible, while adding a
controlled number of new neurons to capture the new information in Dt+1.

3Because all we need to store is the gradient, which is of the same size as the original parameters.
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if cannot solve task t+1
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Figure 2: Illustration of how Firefly grows networks in continual learning.

Specifically, we design ft+1 to include three types of neurons (see Figure 2): 1) Old neurons from
f1:t, whose parameters are locked during the training of ft+1 on the new task Dt+1. This does not
introduce extra memory cost. 2) Old neurons from ft, whose parameters are unlocked and updated
during the training of ft+1 on Dt+1. This introduces new neurons and hence increases the memory
size. It is similar to network splitting in Section 2.2 in that the new neurons are evolved from an old
neuron, but only one copy is generated and the original neuron is not discarded. 3) New neurons
introduced in the same way as in Section 2.2,4 which also increases the memory cost. Overall,
assuming f1:t(x) =

∑m
i=1 σ(x; θi), possible candidates of ft+1 indexed by ε, δ are of the form:

fε,δ(x) =

m∑
i=1

σ(x; θi + εiδi) +

m+m′∑
i=m+1

εiσ(x; δi),

where εi ∈ [−ε, ε] again controls if the corresponding neuron is locked or unlocked (for i ∈ [m]), or
if the new neuron should be introduced (for i > m). The new neurons introduced into the memory
are ‖ε‖0 =

∑m+m′

i=1 I(ε 6= 0). The optimization of ft+1 can be framed as

ft+1 = arg min
ε,δ

{
L(fε,δ; Dt+1) s.t. ‖ε‖0 ≤ ηt, ‖ε‖∞ ≤ ε, ‖δ‖2,∞ ≤ 1

}
,

where L(f ;Dt+1) denotes the training loss on dataset Dt+1. The same two-step method in Section
2.2 can be applied to solve the optimization. After ft+1 is constructed, the new master network
f1:t+1 is constructed by merging f1:t and ft+1 and the binary masks of the previous tasks are updated
accordingly. See Appendix A for the detailed algorithm.

3 Empirical Results

We conduct four sets of experiments to verify the effectiveness of firefly neural architecture descent.
In particular, we first demonstrate the importance of introducing additional growing operations
beyond neuron splitting (Liu et al., 2019) and then apply the firefly descent to both neural architecture
search and continual learning problems. In both applications, firefly descent finds competitive but
more compact networks in a relatively shorter time compared to state-of-the-art approaches.

Toy RBF Network We start with growing a toy single-layer network to demonstrate the importance
of introducing brand new neurons over pure neuron splitting. In addition, we show the local greedy
selection in firefly descent is efficient by comparing it against random search. Specifically, we
adopt a simple two-layer radial-basis function (RBF) network with one-dimensional input and
compare various methods that grow the network gradually from 1 to 10 neurons. The training
data consists of 1000 data points from a randomly generated RBF network. We consider the
following methods: Firefly: firefly descent for growing wider by splitting neuron and adding
upto m′ = 5 brand new neurons; Firefly (split): firefly descent for growing wider with only
neuron splitting (e.g., m′ = 0); Splitting: the steepest splitting descent of Liu et al. (2019);
RandSearch (split): randomly selecting one neuron and splitting in a random direction, repeated
k times to pick the best as the actual split; we take k = 3 to match the time cost with our method;

4It is also possible to introduce new layers for continual learning, which we leave as an interesting direction
for future work.
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Figure 3: (a) Average training loss of different growing methods versus the number of grown neurons.
(b) Firefly descent with different numbers of new neuron candidates.

RandSearch (split+new): the same as RandSearch (split) but with 5 randomly initialized
brand new neurons in the candidate during the random selecting; Scratch: training networks with
fixed structures starting from scratch. We repeat each experiment 20 times with different ground-truth
RBF networks and report the mean training loss in Figure 3(a).

As shown in Figure 3 (a), the methods with pure neuron splitting (without adding brand new neurons)
can easily get stuck at a relatively large training loss and splitting further does not help escape the
local minimum. In comparison, all methods that introduce additional brand new neurons can optimize
the training loss to zero. Moreover, Firefly grows neural network the better than random search
under the same candidate set of growing operations.

We also conduct a parameter sensitivity analysis on m′ in Figure 3(b), which shows the result of
Firefly as we change the number m′ of the brand new neurons. We can see that the performance
improves significantly by even just adding one brand new neuron in this case, and the improvement
saturates when m′ is sufficiently large (m′ = 5 in this case).

Growing Wider and Deeper Networks We test the effectiveness of firefly descent for both grow-
ing network width and depth. We use VGG-19 (Simonyan & Zisserman, 2014) as the backbone
network structure and compare our method with splitting steepest descent (Liu et al., 2019), Net2Net
(Chen et al., 2016) which grows networks uniformly by randomly selecting the existing neurons in
each layer, and neural architecture search by hill-climbing (NASH) (Elsken et al., 2017), which is a
random sampling search method using network morphism on CIFAR-10. For Net2Net, the network is
initialized as a thinner version of VGG-19, whose layers are 0.125× the original sizes. For splitting
steepest descent, NASH, and our method, we initialize the VGG-19 with 16 channels in each layer.
For firefly descent, we grow a network by both splitting existing neurons and adding brand new
neurons for widening the network; we add m′ = 50 brand new neurons and set the budget to grow
the size by 30% at each step of our method. See Appendix B.2 for more information on the setting.
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Figure 4: (a) Results of growing increasingly wider networks on CIFAR-10; VGG-19 is used as the
backbone. (b) Computation time spent on growing for different methods.

Figure 4 (a) shows the test accuracy, where the x-axis is the percentage of the grown model’s size over
the standard VGG-19. We can see that the proposed method clearly outperforms the splittting steepest
descent and Net2Net. In particular, we achieve comparable test accuracy as the full model with only
4% of the full model’s size. Figure 4(b) shows the average time cost of each growing method for one
step, we can see that Firefly performs much faster than splitting the steepest descent and NASH.
We also applied our method to gradually grow new layers in neural networks, we compare our method
with NASH (Elsken et al., 2017) and AutoGrow (Wen et al., 2019). Due to the page limit, we defer
the detailed results to Appendix B.2.

Cell-Based Neural Architecture Search Next, we apply our method as a new way for improving
cell-based Neural Architecture Search (NAS) (e.g. Zoph et al., 2018; Liu et al., 2018a; Real et al.,
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Figure 5: (a) Average accuracy on 10-way split of CIFAR-100 under different model size. We compare
against Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Dynamic Expandable Network
(DEN) (Yoon et al., 2017), Reinforced Continual Learning (RCL) (Xu & Zhu, 2018) and Compact-
Pick-Grow (CPG) (Hung et al., 2019a). (b) Average accuracy on 20-way split of CIFAR-100 dataset
over 3 runs. Individual means train each task from scratch using the Full VGG-16.

2019). The idea of cell-based NAS is to learn optimal neural network modules (called cells), from a
predefined search space, such that they serve as good building blocks to composite complex neural
networks. Previous works mainly focus on using reinforcement learning or gradient based methods
to learn a sparse cell structure from a predefined parametric template. Our method instead gradually
grows a small parametric template during training and obtains the final network structure according
to the growing pattern.

Following the setting in DARTS (Liu et al., 2018b), we build up the cells as computational graphs
whose structure is the directed DAG with 7 nodes. The edges between the nodes are linear combina-
tions of different computational operations (SepConv and DilConv of different sizes) and the identity
map. To grow the cells, we apply firefly descent to grow the number of channels in each operation by
both splitting existing neurons and adding brand new neurons. During search, we compose a network
by stacking 5 cells sequentially to evaluate the quality of the cell structures. We train 100 epochs in
total for searching, and grow the cells every 10 epochs. After training, the operation with the largest
number of channels on edge is selected into the final cell structure. In addition, if the operations on
the same edge all only grow a small amount of channels compared with the initial setting, we select
the Identity operation instead. The network that we use in the final evaluation is a larger network
consisting of 20 sequentially stacked cells. More details of the experimental setup can be found in
Appendix B.3.

Table 1 reports the results comparing Firefly with several NAS baselines. Our method achieves
a similar or better performance comparing with those RL-based and gradient-based methods like
ENAS or DARTS, but with higher computational efficiency in terms of the total search time.

Method Search Time (GPU Days) Param (M) Error
NASNet-A (Zoph et al., 2018) 2000 3.1 2.83

ENAS (Pham et al., 2018) 4 4.2 2.91
Random Search 4 3.2 3.29± 0.15

DARTS (first order) (Liu et al., 2018b) 1.5 3.3 3.00± 0.14
DARTS (second order) (Liu et al., 2018b) 4 3.3 2.76± 0.09

Firefly 1.5 3.3 2.78± 0.05

Table 1: Performance compared with several NAS baseline

Continual Learning Finally, we apply our method to grow networks for continual learning (CL),
and compare with two state-of-the-art methods, Compact-Pick-Grow (CPG) (Hung et al., 2019a) and
Learn-to-grow (Li et al., 2019), both of which also progressively grow neural networks for learning
new tasks. For our method, we grow the networks starting from a thin variant of the original VGG-16
without fully connected layers.

Following the setting in Learn-to-Grow, we construct 10 tasks by randomly partitioning CIFAR-100
into 10 subsets. Figure 5(a) shows the average accuracy and size of models at the end of the 10
tasks learned by firefly descent, Learn-to-Grow, CPG and other CL baselines. We can see that firefly
descent learns smaller networks with higher accuracy. To further compare with CPG, we follow the
setting of their original paper (Hung et al., 2019a) and randomly partition CIFAR-100 to 20 subsets
of 5 classes to construct 20 tasks. Table 2 shows the average accuracy and size learned at the end
of 20 tasks. Extra growing epochs refers to the epochs used for selecting the neurons for the next
upcoming tasks, and Individual refers to training a different model for each task. We can see that
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firefly descent learns the smallest network that achieves the best performance among all methods.
Moreover, it is more computationally efficient than CPG when growing and picking the neurons
for the new tasks. Figure 5(b) shows the average accuracy over seen tasks on the fly. Again, firefly
descent outperforms CPG by a significant margin.

Method Param (M) Extra Growing Epochs Avg. Accuracy (20 tasks)
Individual 2565 - 88.85

CPG 289 420 90.75
CPG w/o FC 5 28 420 90.58

Firefly 26 80 91.03

Table 2: 20-way split continual image classification on CIFAR-100.

4 Related Works

In this section, we briefly review previous works that grow neural networks in a general purpose and
then discuss existing works that apply network growing to tackle continual learning.

Growing for general purpose Previous works have investigated ways of knowledge transfer by
expanding the network architecture. One of the approaches, called Net2Net (Wei et al., 2016),
provides growing operations for widening and deepening the network with the same output. So
whenever the network is applied to learn a new task, it will be initialized as a functional equivalent
but larger network for more learning capacity. Network Morphism (Wei et al., 2016) extends the
Net2Net to a broader concept, which defines more operations that change a network’s architecture but
maintains its functional representation. Although the growing methods are similar to ours, in these
works, they randomly or adopt simple heuristic to select which neurons to grow and in what direction.
As a result, they failed to guarantee that the growing procedure can finally reach a better architecture
every time. (Elsken et al., 2017) solve this problem by growing several neighboring networks and
choose the best one after some training and evaluation on them. However, this requires comparing
multiple candidate networks simultaneously.

On the other hand, recently, (Liu et al., 2019) introduces the Splitting Steepest Descent, the first
principled approach that determines which neurons to split and to where. By forming the splitting
procedure into an optimization problem, the method finds the eigen direction of a local second-order
approximation as the optimal splitting direction. However, the method is restricted to only splitting
neurons. Generalizing it to special network structure requires case-by-case derivation and it is in
general hard to directly apply it on other ways of growing. Moreover, since the method evaluates the
second-order information at each splitting step, it is both time and space inefficient.

Growing for continual learning continual learning is a natural downstream application of growing
neural networks. ProgressiveNet (Rusu et al., 2016) was one of the earliest to expand the neural
network for learning new tasks while fixing the weights learned from previous tasks to avoid forgetting.
LwF (Li & Hoiem, 2017) divides the network into the shared and the task-specific parts, where the
latter keeps branching for new tasks. Dynamic-expansion Net (Yoon et al., 2017) further applies
sparse regularization to make each expansion compact. Along this direction, Hung et al. (2019b,a)
adopt pruning methods to better ensure the compactness of the grown model. All of these works use
heuristics to expand the networks. By contrast, Firefly is developed as a more principled growing
approach. We believe future works can build theoretical analysis on top of the Firefly framework.

5 Conclusion

In this work, we present a simple but highly flexible framework for progressively growing neural
networks in a principled steepest descent fashion. Our framework allows us to incorporate various
mechanisms for growing networks (both in width and depth). Furthermore, we demonstrate the
effectiveness of our method on both growing networks on both single tasks and continual learning
problems, in which our method consistently achieves the best results. Future work can investigate
various other growing methods for specific applications under the general framework.

4CPG without fully connected layers is to align the model structure and model size with Firefly.
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Broader Impact

This work develops a new framework that can grow neural networks simply and efficiently, which
can be generally used in various applications that using neural networks and positively enhance their
capacity and performance. In particular, we anticipate it can be applied on devices which have hard
memory/computation constraint, i.e. mobile devices or robots. Our work does not have any negative
societal impacts.
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A Detailed Algorithm for Continual Learning

Algorithm 2 summarizes the pipeline of applying firefly descent on growing neural architectures for
continual learning problems.

Algorithm 2 Firefly Steepest Descent for Continual Learning
Input : A stream of datasets {D1,D2, . . . ,DT };
for task t = 1 : T do

if t = 1 then
Train f1 on D1 for several epochs until convergence.
Set mask m1 to all 1 vector over f1.

else
Denote ft ← f1:t−1 and lock its weights.
Train a binary mask mt over ft on Dt for several epochs until convergence.

end if
ft = ft[mt] // ft is re-initialized as the selected old neurons from f1:t−1 with their weights fixed.
while ft can not solve task t sufficiently well do

if t = 1 then
Grow ft by splitting existing neurons and growing new neurons.

else
Grow ft by unlocking existing neurons and growing new neurons.

end if
Train ft on Dt

end while
Update mt as the binary mask over ft.
Record the network mask mt, f1:t = f1:1−t ∪ ft.

end for

B Experiment Detail

B.1 Toy RBF Network

We construct a following one-dimensional two-layer radial-basis function (RBF) neural network with
one-dimensional inputs,

f(x) =

m∑
i=1

wiσ(θi1x+ θi2), where σ(t) = exp

(
− t

2

2

)
, x ∈ R, (6)

where wi ∈ R and θi = [θ1i, θ2i] are the input and output weights of the i-th neuron, respectively. We
generate our true function by drawingm = 15 neurons with wi and θi i.i.d. fromN (0, 3). For dataset
{x(`), y(`)}1000`=1 , we generate them with x(`) drawing from Uniform([−5, 5]) and let y(`) = f(x(`)).
We apply various growing methods to grow the network from one single neuron all the way up to 12
neurons.

For the new initialized neurons introduce during the growing in RandSearch and Firefly, we draw
the neruons from N(0, 0.1). For RandSearch, we finetune all the randomly grow networks for 100
iterations. For Firefly, we also train the expanded network for 100 iterations before calculating
the score and picking the neurons. Further, We update 10,000 iterations between two consecutive
growing.

B.2 Growing Wider and Deeper Networks

Setting for Growing Wider Networks For all the experiment including Net2Net, splitting steepest
descent, NASH and our firefly descent, we grow 30% more neurons each time. Between two
consecutive grows, we finetune the network for 160 epochs.

For splitting steepest descent, we follow exactly the same setting as in Liu et al. (2019).
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For NASH, we only apply “Network morphism Type II” operation described in Elsken et al. (2017),
which is equivalent to growing the network width by randomly splitting the existing neurons.. During
the search phase, we follow the original paper’s setting, sample 8 neighbour networks, train each of
them for 17 epochs and choose the best one as the grow result.

For firefly descent, we grow a network by both splitting existing neurons and adding brand new
neurons for widening the network; When growing, we split all the existing neurons and add m′ = 50
brand new neurons draw from N(0, 0.1). We will also train the expanded network for 1 epoch before
calculating the score and picking the neurons.

Growing Wider MobileNet V1 We also compare firefly with other growing method on MobileNet
V1 using CIFAR-100 dataset. Same as Wu et al. (2020), we start from a thinner MobilNet V1 with
32 channels in each layer. We grow 35% more neurons each time, the other settings are same as the
previous growing wider networks’ setting.
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Figure 6: Results and time consumption of growing increasingly wider networks on CIFAR-100
using MobileNet V1 backbone

Figure 6 again shows that firefly splitting can out perform various of growing baseline on the same
backbone network. Meanwhile, its time cost is much smaller than splitting and NASH algorithm.

Growing Deeper Networks We test firefly descent for growing network depth. We build a network
with 4 blocks. Each block contains numbers of convolution layers with kernel size 3. The first
convolution layer in each block is stride two. For a simple and clear explanation, we mark the number
of layers in these 4 blocks as 12-12-12-12, for example, which means each block contains 12 layers.
Begin from 1-1-1-1, we grow the network using firefly descent on MNIST, FashionMNIST, SVHN,
and compare it with AutoGrow Wen et al. (2019) and NASH Elsken et al. (2017).

For our method, we start from a 1-1-1-1 network with 16 channels in each layer. We also insert 11
identity layers in each block, which roughly match the final number of layers in AutoGrow. We apply
our growing layer strategy described in Section 2.3 for growing new layers and apply both splitting
existing neurons and adding brand new neurons for widening the existing layers. When growing
new layers, we introduce m′ = 20 new neurons in each Identity map layers, when increasing the
width of the existing layers, we split all the existing neurons and add m′ = 20 new neurons. After
expanding the network, we train the network for 1 epoch before calculating the score. If the Identity
layer remains 2 or more new neurons after selection, we add this Identity layers in the network and
train with the existing network together. Otherwise, we will remove all the new neurons and keep this
layer as an Identity map. For the existing neurons, we grow 25% of the total width.

For NASH, we apply “Network morphism Type I” and “Network morphism Type II” together, which
represent growing depth by randomly insert identity layer and growing width by randomly splitting
the existing neurons. During the search phase, we follow the original paper’s setting, sample 8
neighbor networks, train each of them for 17 epochs and choose the best one as the growing result.
Each time when sampling the neighbour networks, we grow the total width of the existing layers by
25% and then randomly insert one layer in each blocks.

For both our method and NASH, we grow 11 steps and finetune 40 epochs after each grow step. We
also retrain the searched network for 200 epochs after the last grow to get the final performance on
each dataset.

For AutoGrow, we use the result report in the original paper.

Table B.2 shows the result. We can see our method can grow a smaller network to achieve the
AutoGrow’s performance and outperform the network searched with NASH.
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Dataset Method Structure Param (M) Accuracy

MNIST
AutoGrow Wen et al. (2019) 13-12-12-12 2.3 99.57
NASH Elsken et al. (2017) 12-12-12-12 2.0 99.50

Firefly 12-12-12-12 1.9 99.59

FashionMNIST
AutoGrow Wen et al. (2019) 13-13-13-13 2.3 94.47
NASH Elsken et al. (2017) 12-12-12-12 2.2 94.34

Firefly 12-12-12-12 2.1 94.48

SVHN
AutoGrow Wen et al. (2019) 12-12-12-11 2.2 97.08
NASH Elsken et al. (2017) 12-12-12-12 2.0 96.90

Firefly 12-12-12-12 1.9 97.08
Table 3: Result on growing Depth comparing with two baselines

B.3 Application on Neural Architecture Search

Following the setting in DARTS (Liu et al., 2018b), we separate half of the CIFAR-10 training set as
the validation set for growing. We start with a stacked 5 cell network for searching, the second and
the fourth cell are reduction cells, which means all the operations next to the input of the cells are set
to stride two. In each cell, we build the SepConv and DilConv operation blocks following DARTS
(Liu et al., 2018b). To apply our firefly descent, we grow the last convolution layer in each block and
add a linear transform layer with the same output channels to ensure all the operations on the same
edge can sum up in the same size as the output. The number of channels of the operations in each cell
is set to 4-8-8-16-16, which is 0.25× of that in the original Darts. The last linear transform layer in
each cell has channels 16-32-32-64-64. We grow the network by both splitting existing neurons and
adding brand new neurons, and each time we sequentially select one cell to grow. We repeat growing
the whole 5 cells twice, which means we apply our firefly descent for 10 times in total. Each time, we
split all the existing neurons in the chosen cell and add 4, 8, 8, 16, 16 brand new neurons differently
for the 5 cells. We then train the expanded network for 5 epochs and select 25% neurons to grow. As
a result, we search the network structure for 100 epochs in total. All other training hyperparameters
are set to the same values as in DARTS (Liu et al., 2018b).

After searching, we select the operation with the largest width in each edge as the final operation.
Besides, if all operations on the same edge grow less than 20% comparing to the initial width, we
assign this edge as Identity map in the final structure. We only keep the type of operations in the cell
as our final search result because we need to increase the channel width to match the model size with
the baselines.

For the final evaluation, we sequentially stack a 20 cell network and mark those cells as 1-20. We
apply the search result of the first, second, third, fourth, and the fifth cell in the 5 stacked search
network to cell 1-6, cell 7, cell 8-13, cell 14, and cell 15-20 of the final evaluation network accordingly.
We increase the initial channel to 40 to match the model size with other baselines. The other training
settings are kept the same as in DARTS (Liu et al., 2018b). Our result is averaged over 5 runs from
our final evaluation model.

B.4 Continual Learning

For both 10-way split CIFAR-100 and 20-way split CIFAR-100, we repeat the experiment 3 times
with 3 different task splits. We apply both the copy-exist-neuron and grow-new-neuron strategies to
tackle the CL problem. During each growing iteration, we add 15 brand new neurons for each layer
as candidates for growing. After expanding the network, we finetune the network for 50 epochs on
the new task. During the selection phase, for 20-way split CIFAR-100, we select out the top 256
neurons among all the copied neurons and new neurons. For 10-way split CIFAR-100, we select the
top 32, 128, 196, 256, 320, 384, 448, 512 neurons each time to test our performance under different
model size. After selecting the neurons, we finetune the expanded network on the new task for 100
epochs.
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