BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach

*Bo Liu¹

*Mao Ye¹ Ste

¹ The University of Texas at Austin, ² University of Wisconsin, * indicates equal contribution

Conference on Neural Information Processing Systems (NeurIPS), 2022

Stephen Wright² Peter Stone^{1,3}

Qiang Liu¹

³ Sony Al

Problem

We consider the bilevel optimization (BO) problem:

$$\underbrace{\min_{v,\theta} f(v,\theta)}_{\text{outer problem}} \text{ s.t. } \theta \in \underset{\theta'}{\arg\min_{\theta'} g(v,\theta')}_{\text{inner problem}}$$

Example (Hyper-parameter Tuning)

$$\min_{v,\theta} L_{\rm val}(v,\theta) \quad \text{s.t.}$$

In machine learning, we often want to choose the right hyper-parameters v such that the model parameter θ achieves the best performance.

$$\theta \in \arg\min_{\theta'} L_{\mathrm{train}}(v,\theta)$$

Problem

We consider the bilevel optimization (BO) problem:

$$\underbrace{\min_{v,\theta} f(v,\theta)}_{v,\theta} \text{ s.t}$$

outer problem

Challenges in prior approaches:

t. $\theta \in \arg\min_{\theta'} g(v, \theta')$ inner problem

Scalability: often require computing 2nd order gradient each iteration.

Problem

We consider the bilevel optimization (BO) problem:

$$\underbrace{\min_{v,\theta} f(v,\theta)}_{\text{outer problem}} \text{ s.t. } \theta \in \underset{\theta'}{\arg\min_{\theta'} g(v,\theta')}_{\text{inner problem}}$$

Challenges in prior approaches:

Scalability: often require computing 2nd order gradient each iteration.

• Theory: lack convergence result when f, g are non-convex w.r.t. v, θ .

BOME! Method

$\min_{v,\theta} f(v,\theta) \quad s.t. \quad \theta \in \argmin_{\theta'} g(v,\theta'),$ **BO objective:**

the given v). In other words,

Optimize the outer problem s.t. the **optimality gap** for inner problem is 0

General Idea Convert BO into a constrained optimization problem, in which g is required to be less than a certain threshold (ideally its optimal value for

BOME! Method

BO objective: $\min_{v,\theta} f(v,\theta)$ s

Step 1: Compute the value function (the optimality gap of the inner problem for g)

$$q(v,\theta) := g(v,\theta) - g^*(v)$$

approximate value function $\hat{q}(v, \theta) = g(v, \theta) - g(v, \theta_k^{(T)})$

> Obtained by T-step of gradient, then **stop-gradient**

$\min_{v,\theta} f(v,\theta) \quad s.t. \quad \theta \in \argmin_{\theta'} g(v,\theta'),$

$$g^*(v) := \min_{\theta} g(v, \theta)$$

Unknown

BOME! Method

BO objective: $\min_{v,\theta} f(v,\theta)$ s

Step 2: Descent on the outer s.t. the inner also improves

 (v_{k+1}, θ_{k+1})

where $\delta_k = \arg \min_{\delta} \underbrace{||\nabla f - \delta||^2}_{\text{descend } f}$ s.t. $\underbrace{\langle \nabla \hat{q}, \delta \rangle \ge \phi \ge 0}_{\hat{q} \text{ does not ascend}}$ Find an update close to ∇_f The update shares a positive angle with $\nabla \hat{q}$

$\min_{v,\theta} f(v,\theta) \quad s.t. \quad \theta \in \argmin_{\theta'} g(v,\theta'),$

$$(v_k, \theta_k) - \xi \delta_k$$

General Idea Analyze BO from a constrained optimization perspective

Optimality Measure (KKT loss) $\mathcal{K}(v, \theta) = \min_{\lambda \ge 0} \bigcup \nabla f(v, \theta)$

$$\frac{\theta) + \lambda \nabla q(v,\theta) ||^2}{|\mathbf{y}|^2} + \underbrace{q(v,\theta)}_{\text{forsibility}}$$

local improvement

reasibility

Key Contribution: we analyze how KKT loss decreases w.r.t. # updates

BOME! Theory

For smooth and non-convex inner and outer objectives, we have:

Theorem 2. Consider Algorithm 1 with $\xi, \alpha \leq 1/L, \phi_k = \eta \|\nabla \hat{q}(v_k, \theta_k)\|^2$, and $\eta > 0$. Suppose that Assumptions 2, 3, and 4 hold and that q^{\diamond} is differentiable on (v_k, θ_k) at every iteration $k \geq 0$. Then there exists a constant c depending on α, κ, η, L , such that when $T \ge c$, we have

$$\min_{k \leq K} \mathcal{K}^{\diamond}(v_k, \theta_k) = O\left(\sqrt{\xi} + \sqrt{\frac{1}{\xi K}} + \exp(-bT)\right),$$

where b is a positive constant depending on κ , L, and α .

Remark:

- •
- lacksquare

As the inner objective is **non-convex**, the above achieves a rate of $O(K^{-1/4} + \exp(-bT))$ When inner objective is **convex**, the rate can be improved to $O(K^{-1/3} + \exp(-bT))$

Improved Scalability

BOME! is a purely 1st-order method

Good Performance

Simplicity

- Easy to implement
- Fewer hyper parameters than prior methods, and is robust to them

Better/comparable accuracy/speed compared with SOTA BO methods

BOME! Experiment

Experiments

- We conduct experiments on 3 toy examples and 3 BO benchmarks.
- For simplicity, we show result on a toy example.

The Coreset Problem

$$\begin{split} & \min_{v,\theta} ||\theta - x_0||^2, \text{ s.t. } \theta \in \arg\min_{\theta'} ||\theta' - X\sigma(v)||^2 \\ & \sigma(v) = \exp(v) / \sum_{i=1}^4 \exp(v_i) \quad (\text{ i.e., find the closest point ir} \\ & \text{ the convex hull of } X \text{ to } x_0 \text{)} \end{split}$$

10

examples and 3 BO benchmarks. a toy example.

Thank you!

*Mao Ye¹ Step

*Bo Liu¹

¹ The University of Texas at Austin, ² University of Wisconsin, ³ Sony Al * indicates equal contribution

Conference on Neural Information Processing Systems (NeurIPS), 2022

11

Stephen Wright² Peter Stone^{1,3}

Qiang Liu¹

Code Link:

https://github.com/Cranial-XIX/BOME