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a b s t r a c t

Several factors combine to make it feasible to build computer simulations of the cerebellum and to test
them in biologically realistic ways. These simulations can be used to help understand the computational
contributions of various cerebellar components, including the relevance of the enormous number of
neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule
cells to develop new predictions and to account for various aspects of eyelid conditioning, a form ofmotor
learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to
over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that
this increase in number of granule cells requires only twice the execution time of the smaller simulation
on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic
features of conditioned eyelid responses, with a slight improvement in performance in one measure. We
also use this simulation to examine the generality of the computation properties that we have derived
from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level
of performance in a classic machine learning task, the cart–pole balancing task. These results suggest
that this parallel GPU technology can be used to build very large-scale simulations whose connectivity
ratios match those of the real cerebellum and that these simulations can be used guide future studies on
cerebellar mediated tasks and on machine learning problems.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The cerebellum is remarkable owing in part to the large num-
ber of granule cells that it contains. Estimates indicate that ap-
proximately half of the neurons in the human brain are cerebellar
granule cells. A satisfying understanding of the cerebellum must
therefore include a clear picture of the computational significance
of this vast cell layer. Several factors combine to enhance the fea-
sibility of analyzing the computational properties of the cerebel-
lum and its cellular components: (i) the synaptic organization and
synaptic physiology of the cerebellum are especially well charac-
terized (Eccles, Ito, & Szentágothai, 1967; Ito, 1984) and (ii) there
are several experimentally tractable behaviors that engage the
cerebellum relatively directly, such as eyelid conditioning and
adaptation of the vestibule-ocular reflex.

The relationship between eyelid conditioning and the cere-
bellum in particular has enabled both the construction and bi-
ologically relevant evaluation of computer simulations of the
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cerebellum. Eyelid conditioning involves the pairedpresentation of
a neutral conditioned stimulus (CS) such as a tone and a reinforcing
unconditioned stimulus (US), typically an air puff directed at the
eye or peri-orbital electrical stimulation. With many CS+US pair-
ings the CS acquires the ability to elicit a conditioned response—
the eyelids close in response to the tone. Previous work has
revealed that the CS is conveyed to the cerebellum via mossy fiber
inputs (Lewis, LoTurco, & Solomon, 1987) and the US by activation
of climbing fiber inputs (Mauk, Steinmetz, & Thompson, 1986), and
that output from the cerebellum via the anterior interpositus nu-
cleus drives the expression of the learned responses (McCormick &
Thompson, 1984). Eyelid conditioning can thus be used to evaluate
a computer simulation of the cerebellum by providing the simula-
tionwith CS-like andUS-like inputs overmossy fibers and climbing
fibers respectively. The rich repertoire of well-characterized be-
havioral properties of eyelid conditioned then serves as a stringent
test of the performance of a simulation.

We have previously shown that a biologically constrained sim-
ulation of the cerebellum containing 12,000 granule cells can
replicate many (but not all) behavioral properties of eyelid con-
ditioning (Medina, Garcia, Nores, Taylor, & Mauk, 2000). Although
this simulation has been the source of new predictions that were
born out with experimental tests it remains an open question
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which (if any) limitations of the simulation are attributable to the
relatively small number of granule cells. Toward the ability to ad-
dress such issues, we report the initial development of a much
larger simulation that contains over one million granule cells. This
expansion is made feasible by parallel implementation on mod-
ern multi-processor graphics processing units (GPUs, e.g. Nvidia
GTX580). Here, we compare the basic performance of the simu-
lation to its smaller predecessor and use the larger simulation to
begin to address the issue of task generality. While previous sim-
ulations have only been tested against the behavioral properties
of eyelid conditioning, we have tested the million-cell simulation
with eyelid conditioning and with a classic machine learning task:
balancing a pole by moving a cart (Cart–pole task). We show that
the larger simulation is able to replicate eyelid conditioning and
show that it readily learns robust performance in the cart–pole
task.

2. Methods

The new simulation is based on the original simulation of
Buonomano and Mauk (1994) as modified later by Kalmbach,
Voicu, Ohyama, andMauk (2011), Medina et al. (2000) andMedina
and Mauk (1999). The principle change is the nearly 100 fold
increase in the number of granule cells, from 12,000 to 1,048,567.
Consequently the divergence/convergence ratios of granule cell
connectivity could be modified to more closely approximate the
ratios observed in the cerebellum (Eccles et al., 1967; Ito, 1984).

2.1. Simulation connectivity

Fig. 1A shows the synaptic relationship among the cells in the
cerebellumas implemented in the simulation. Aswith the previous
simulation, the connectivity of the present simulation attempts
to capture not only the numerical, divergence and convergence
ratios, but also the known spatial relationships between the cell
types. The algorithm that converts these constraints to the actual
cell-by-cell connectivity of the network is identical to that in the
previous simulation (Buonomano & Mauk, 1994; Medina et al.,
2000). The only difference in connectivity between the 2 networks
is the different connectivity ratios provided to the algorithm,which
is discussed below.

The increase of granule cell population from 12,000 to
1,048,576 in the simulation enabled the observed numeric ratios
of granule cell connectivity to be more closely approximated
than was possible in the previous simulation. Fig. 1B compares
the convergence–divergence ratios of connectivity between the
previous simulation, the expanded simulation, and the observed
ratios in cerebellum (Palkovits, Magyar, & Szentágothai, 1971a,
1971b).Most notably, the increase in granule cell numbers enabled
much closer convergence ratio of granule cell to Purkinje cell
synapses.Whereas the previous simulation can only achieve 1/160
of the observed ratio, the expanded simulation achieves 1/3 of
the observed ratio. The same is true for convergence ratios of
granule cell to basket cell connectivity. In addition, the expanded
granule cell population allowed for much closer approximation of
connectivity ratios between granule cells, Golgi cells, and mossy
fibers. Most notably, the expanded simulation was able to achieve
1/2 of the divergence ratio of Golgi cell output to granule cells.
The previous simulation suggested that the connectivity among
these 3 types of cells is necessary to produce behaviors that
require the cerebellum, thus it is crucial that we are able to closely
approximate these ratios observed in the cerebellum.

The expansion of number of granule cells allowed us to more
closely approximate the convergence ratio of granule cell–Purkinje
cells. The simulation modeled a single strip of 32 Purkinje cells
without overlapping dendrites, thus each Purkinje cell received a

Fig. 1. Connectivity of cells in the cerebellum. A. Synaptic connections among cells.
The mossy fibers are thought to carry information about the state of the world
and climbing fibers are thought to carry teaching signals. MF: mossy fibers, GO:
Golgi cells, GR: granule cells, SC: stellate cells, BC: basket cells, PC: Purkinje cells,
IO: inferior olivary cells, NC: nucleus cells, CF: climbing fibers. Arrows indicate
excitatory connections and round ends indicate inhibitory connections. B. Ratios
of granule cell connectivity. Presyn:postsyn: presynaptic cell to post synaptic
cell connectivity. Mauk 2000: previous smaller simulation. Expanded: expanded
simulation discussed here. Actual: connectivity ratios observed in the cerebellum,
with blank fields indicating unknown. The ratios are listed as convergent: divergent.
For example, for mossy fiber output to granule cells observed in the cerebellum,
each granule cell receives 4.2 mossy fiber inputs on average and each mossy fiber
connects to 400–1800 granule cells.

unique set of 32,768 granule cell inputs. We decided to only model
a single layer of Purkinje cells because it captured inputs from
all granule cells and was more computationally efficient. We also
modeled a strip of 128 basket cells and a strip of 512 stellate cells
in the samemanner as the Purkinje cells. Thus, each granule cell in
our simulation output to exactly one Purkinje cell, one basket cell,
and one stellate cell.

2.2. Representation of neurons

The cells in the simulation are implemented identically to
that in the previous simulation, with the exception that instances
where there are now a greater number of synaptic inputs required
rescaling the synaptic inputs (decreasing the maximum synap-
tic conductance). Briefly, the cells are implemented using a single
compartment leaky integrate and fire representation (Buonomano
& Mauk, 1994; Medina et al., 2000). In this representation, mem-
brane potential is calculated from synaptic conductances, leak
conductances and membrane capacitance. These individual con-
ductances aremodeled based on knownphysiological data for each
cell types. The leaky integrate-and-fire representation gains a great
deal of computational efficiency by omitting explicit calculation of
active (voltage-dependent) conductances. Instead, the influence of
these conductances is approximated by (1) action potentials oc-
cur when the calculated membrane potential exceeds threshold—
these spikes are broadcast as output to the appropriate follower
neurons, and (2) threshold increases when an action potential oc-
curs to emulate the absolute and relative refractory periods. After
these spike-initiated increases, the threshold decays exponentially
back to its normal level. In addition, the synaptic delay is modeled
at one millisecond in the simulation. This representation can give
rise to a phenomenological model that can be fine-tuned to match
published physiological properties of each neuron type. This pro-
cedure yields representations that are highly computationally effi-
cient and are suitable for studying the emerging network behavior.
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2.3. Mossy fiber–granule–Golgi input network

Mossy fibers provide one of the twomajor inputs into the cere-
bellum. The mossy fibers are thought to carry information about
the internal and external state of the world, such as limb positions,
commands from motor and premotor cortices, tone stimuli, etc..
The mossy fibers diverge extensively onto the granule cell popula-
tion in the cerebellar cortex. The granule cells then connect to Purk-
inje cells. Thus, signals frommossy fibers indirectly affect Purkinje
cell activity. In addition, the granule cells excite Golgi cells and re-
ceive inhibitory inputs from Golgi cells, thus forming a recurrent
feedback loop. It is thought that this mossy fiber–granule–Golgi
input network performs input pattern separation and timing (Bul-
lock, Fiala, & Grossberg, 1994; Fujita, 1982; Maex & De Schutter,
1998; Marr, 1969; Medina & Mauk, 2000; Moore & Choi, 1997). As
discussed previously, the increase in the number of granule cells in
the simulation enabled amuch closer approximation of the conver-
gence–divergence ratios observed among the three types of cells.

2.4. Climbing fiber inputs

The other major input to the cerebellar cortex is climbing fibers
from inferior olivary cells. The climbing fibers make extensive
synaptic connection to the Purkinje cell dendrites. Compared to the
massive convergence (80,000:1) ratio of granule cell to Purkinje
cell synapses, each Purkinje cell only receives input from one
climbing fiber. The climbing fiber activity has been shown to be
the signal that induces plasticity in the granule to Purkinje cell
synapses (Ito, 1989; Ito & Kano, 1982; Lev-Ram, Mehta, Kleinfeld,
& Tsien, 2003; Medina, Nores, &Mauk, 2002; Simpson,Wylie, & De
Zeeuw, 2011).

2.5. Relationship between eyelid conditioning and cerebellum

The cerebellum is necessary for several well-characterized
types of motor learning such as eyelid conditioning (Garcia, Steele,
& Mauk, 1999; Mauk & Thompson, 1987; Perrett, Ruiz, & Mauk,
1993; Raymond, Lisberger, & Mauk, 1996), adaptation of the
vestibular ocular reflex (DuLac, Raymond, Sejnowski, & Lisberger,
1995; Lisberger, 1988), and learning smooth pursuit eye move-
ments (Li & Lisberger, 2011; Lisberger, 2010; Lisberger, Morris,
& Tychsen, 1987). In eyelid conditioning, the animal is presented
with a conditioning stimulus (CS, e.g., tone) for a fixed duration,
and at the end of the tone a reinforcing unconditioned stimulus
(US) such as a puff of air into eye or peri-orbital electrical stimu-
lation is presented. After repeated presentation of the CS and US,
the animal learns to close its eyelid prior to the onset of the US.
What makes this learning useful for testing the performance of
cerebellar simulations is the relationship between these stimuli
and the inputs to the cerebellum. The presentation of the tone CS
is conveyed to the cerebellum via the mossy fiber inputs—that is,
mossy fiber inputs are necessary and sufficient to convey the CS
(Lewis et al., 1987; Steinmetz, Lavond, & Thompson, 1989). Simi-
larly, activation of climbing fiber inputs to the cerebellum is nec-
essary and sufficient to convey the US (Mauk et al., 1986; Türker
& Miles, 1986). In addition, recording studies have revealed how
mossy fibers and climbing fibers respond to the CS and US, respec-
tively (Aitkin & Boyd, 1978; Sears & Steinmetz, 1991). On the out-
put side, previous work demonstrates that cerebellar output via
activity of neurons in the anterior interpositus nucleus is neces-
sary and sufficient to drive the expression of the learned eyelid re-
sponses (McCormick & Thompson, 1984). Combined, these factors
reveal that cerebellar simulations can be rigorously tested with
eyelid-conditioning-like inputs over themossy fibers and climbing
fibers. The well-characterized behavioral properties of eyelid con-
ditioning then serve as the test bed for simulation performance.

2.6. Cerebellar plasticity involved in eyelid conditioning

Two sites of plasticity in the cerebellum are known to be in-
volved in eyelid conditioning: climbing fibers control the induc-
tion of plasticity at granule cell to Purkinje cell synapses (Gilbert &
Thach, 1977; Ito, 1989; Ito & Kano, 1982; Wang, Denk, & Häusser,
2000), and Purkinje cells appear to control the induction of plastic-
ity atmossy fiber to nucleus synapses (Garcia &Mauk, 1998; Garcia
et al., 1999; Kalmbach et al., 2010; Medina, Garcia, & Mauk, 2001;
Medina & Mauk, 1999; Ohyama, Nores, Medina, Riusech, & Mauk,
2006; Perrett & Mauk, 1995; Pugh & Raman, 2006, 2008). The im-
plementation of these rules for plasticity for the expanded simula-
tion is identical to the previous simulation.

2.7. Parallel implementation

Owing to the expanded granule cell numbers, we found that
a traditional single threaded implementation took around 600 s
to process five seconds of simulated time with one-millisecond
time steps, which would limit the simulation’s usefulness. In
order to exploit the modern multi-core processors, we switched
our implementation to C++. This allowed us to use multi-
threading with OpenMP. We tested this implementation on an
eight core Intel Xeonworkstation. However, we could only achieve
a 2× speed up, instead of 6–8× we were hoping for. By profiling
the simulation to determine the performance-limiting factor we
realized that memory bandwidth is a significant issue. We tallied
the amount of data for granule cells, and found that each granule
cell required 128 bytes of data, which meant 128 MB of data for a
million granule cells. During each time step, all 128MBof data have
to be either read and/or written to. Thus, the memory bandwidth
required for the simulation to compute in real time would be
128 GB/s.

On the other hand, we realized that calculating the granule
cell activities mostly involved applying identical instructions to
large arrays of data. This computation pattern matches the single
instructionmultiple data (SIMD) pattern particularly well. Modern
vector processors such as the Nvidia graphics processing units
(GPU) being developed for general computation purposes should
excel at this computation. The GPU we used at the time (GTX275)
had more than 150 GB/s of memory bandwidth and 240 cores.
Utilizing the CUDA C programming extensions we were able to
accelerate the simulation to 30 s for five seconds of simulation
time, which is in the realm of the runtime we were aiming for. The
final challenge was updating the activity of the cells according to
their connectivity patterns. This is especially problematic because
the connectivity among mossy fibers, Golgi cells, and granule cells
is highly random. Consequently, the memory access patterns for
these interactions are also very random, and memory latency
becomes the primary limiting factor. Fortunately, there is no
communication among granule cells, only the large divergence and
convergence from mossy fibers and Golgi cells. In addition, there
are only 1024 mossy fibers and Golgi cells, so that their action
potentials can be stored entirely in the L1 cache of the GPU that
has the low latency we needed. Currently, using an Nvidia Fermi
GTX580 GPU with the above optimizations, our simulation takes
9 s to run five seconds of simulation time. We also tested how
well the simulation scales across multiple GPUs by comparing
the performance of the simulation on 1 GTX470 and 2 GTX470
GPUs. We found that 2 GTX470 GPUs were able to accelerate the
simulation run time from 12 to 6 s for five seconds of simulation
time, which was almost scaling linearly. Finally, we tested how
well the performance of the algorithmwould scalewith fewer cells.
We found that, on theGTX580, a 16 thousand cells simulation takes
0.5 s to perform five seconds of simulation time. However, if the
scaling were linear, the 16 thousand cells simulation should only
take 0.14 s. The sublinear scaling suggests that the performance is
CPU bound for small number of cells.
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Fig. 2. A comparison of eyelid conditioning performance of the smaller (12,000 granule cell) simulation and the larger (1,048,576 granule cell) simulation. Each sweep is the
eyelid response predicted by the output of the simulation, as conveyed by its deep nucleus neurons. Each panel shows 100 trials from well-trained simulations, where each
upward deflection is the predicted (learned) closure of the eyelid. The black portion of each sweep indicates the time overwhich themossy fiber inputswere active tomimic a
conditioned stimulus and thus the upward deflection of the traces in the black portions shows a learned response by the simulation. A. Performance of the smaller simulation
trained using inter-stimulus intervals ranging from 250 to 1150 ms. Robust conditioned responding is predicted by the simulation for the 250 and 750 ms intervals. Very
poor responding is seen at the 1000 ms interval and essential no learning is evident at 1150 ms. B. By comparison, performance of the larger simulation over a similar range
of inter-stimulus intervals. Like eyelid conditioning results from rabbits and the smaller simulation (data not shown) the larger simulation does not learn with an interval
of 100 ms. Like rabbits and the smaller simulation, the larger simulation shows robust and well timed responses for 250 and 750 ms intervals. The larger simulation shows
more robust learning at the 1000 ms interval than does its smaller predecessor, but falls short of rabbit performance by showing no learning at all at an interval of 1150 ms.

3. Results

3.1. Eyelid conditioning

To examine simulation performance,we tested its ability to em-
ulate proper learning and response timing for eyelid conditioning.
We compared the performance of the large simulation to the small
simulation to examine the timing performance (Fig. 2). To mimic
presentation of a tone CS a small subset of mossy fibers was made
to fire in a way that is consistent with published peri-stimulus
histograms of mossy fiber responses to auditory stimuli (Aitkin &
Boyd, 1978). Briefly 20 of the 1024mossy fibers had a tonic increase
in activity in the presence of the tone CS and 30 of the 1024 mossy
fibers had a phasic increase in activity during the ‘‘tone’’ CS. To im-
plement the US input, each climbing fiber underwent a small depo-
larization sufficient to elicit a spike from the inferior olivary cells
on most presentations. The summed output of the 8 deep nucleus
cells, integrated over a time span of five mswas used at the ‘‘eyelid
response’’ output of the simulation.

As a preliminary test, we first examinedwhether the simulation
is capable of acquiring eyelid responses. Fig. 2B (left panel) shows
that the large simulation was able to respond robustly to a CS–US
interval of 250 ms. To test the ability of the larger simulation to
mimic the learned timing of the responses, we next trained it using
CS–US intervals of either 750 ms or 1000 ms. The simulation’s
response after learning a 750 ms interval was delayed compared
to the 250ms interval response, but less delayed than the 1000ms
interval response (Fig. 2B). This data generally captures the timing
behavior of animals, where the onset of the learned response is
delayed depending on the CS–US interval.

Finally, we tested the large simulation on two long intervals at
1150 (Fig. 2B) and 1500ms (data not shown). The simulation could
not learn to either of the two intervals, which is not consistentwith
the rabbit data. These results are generally consistent with the re-
sults from the previous smaller simulation,with one exception: the
smaller simulation shows learning with the 750 ms interval and
unreliable responses with the 1000 ms interval whereas the larger
simulation is capable of more robust responses with the 1000 ms
interval. Thus, the expanded simulation shows similar behavior to
the previous simulation, with an apparent improvement in its abil-
ity tomimic the rabbit data in terms of longer CS–US intervals. Sub-
sequent work will focus on the differences in the simulations that
make this improvement possible.

3.2. Cart–pole balancing

In order to examine the generalization of our simulation to
other tasks, we choose to apply the simulation to a classic inverted
pendulum balancing task (Anderson, 1989). The inverted pendu-
lum rests on a cart that can move on a one dimensional track.
The objective is to balance the inverted pendulum for as long as
possible by applying forces that move the cart left or right. This
task is analogous to balancing tasks that require the cerebellum
(Morton & Bastian, 2004). The task involves the coordination of
multiple forces to achieve a single task, which is very distinct from
eyelid conditioning where there is only a single force (closure of
the eyelid) to control. Thus, this was an excellent problem to test
the generality of our simulation.

We have connected the simulation to the cart–pole domain
as illustrated by Fig. 3A. The state of the cart–pole world, such
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as pole angle (Fig. 3B) and pole velocity is transmitted by mossy
fibers to the simulation. The parallel fibers from the input network
(granule cell axons) then connect to two independent output
networks. Each network is identical to the network used in eyelid
conditioning, containing a full set of Purkinje, basket, and stellate
cells that receive input from the entire granule cell population.
Each network also contains the full complement of nucleus cells
and inferior olivary cells. Each network has identical parallel
fiber–Purkinje cell and mossy fiber–Nucleus cell plasticity rules
as that used in eyelid conditioning. Each output network controls
pushing the cart in a single direction. The force of the output is
simply extracted as the voltage of a leaky integrate model that
received all nucleus cell spikes without any delay (as long as the
scaling factors are appropriate the actual kinetics of the model had
no significant impact). The forces from both output networks are
subtracted from each other to yield the net force acting on the cart
(Fig. 3C and D, bottom panel). Finally, the error signals about the
failure of maintaining pole balance are transmitted back to the
inferior olivary cells of each output network without any delay.
The output network that is responsible for pushing the cart to
the left receives an error when the pole falls to the left, and vice
versa. Thus, we assume no explicit communication between the
two output networks. With this setup, we explored the various
encoding schemes to examine if the simulation can perform this
task without tuning the simulation itself.

We first assumed a very simple binary firing rate encoding
scheme for the cart–pole world to explore if the simulation can
learn appropriately by tweaking the error signals. We chose to
encode 3 variables: pole angular position, angular velocity, and
angular acceleration. For simplicity we did not place any physical
limits on the velocity or the position of the cart, thus we did not
encode these variables. We randomly chose 30 mossy fibers to
encode each of the pole variables, out of 1024 mossy fibers. For
example, the 30 mossy fibers for pole position are divided into
3 groups of 10. Each of the 3 groups has a preferred pole angle
range from the upward midline. Each group has two firing rates: a
baseline rate and a response rate that is higher than baseline.When
the pole is in the preferred angle range of that group the mossy
fibers fire at the response rate. Otherwise the mossy fibers in the
group fire at baseline rate. The preferred angle ranges are divided
into 3 parts: left, right, andmiddle, corresponding towhen the pole
angle is less than −.0025 radians, between −.0025 and .0025 rad,
and greater than .0025 radians. The pole angular velocity and
angular acceleration are encoded similarly. Using this scheme, we
next explored the timing of the error signal onset.

Considering that there is a finite limit on the forces that can
be generated to push the cart, the physics of the system defines
a certain pole angle (symmetrical to the upward midline on each
side) where the pole is no longer recoverable. We examined the
timing of the error signal relative to this point of no return. We
discovered that when the error signal is given after the point of
no return, the simulation was able to learn initially to balance
the pole. As shown in Fig. 4A, the simulation was able to learn to
balance the pole in the 3rd trial, where the pole stayed close to
vertical throughout the trial. However, after that successful trial,
the simulation fails to retain its performance. After a few more
trials, the simulation is able to learn again to balance the pole, but
again fails to retain its performance. This appeared to be similar to
extinctionwe observed in eyelid conditioning.Whenwe examined
the output network again, we realized that after learning, the
nucleus cells increase their firing rate during a successful balancing
trial. However, this increase in nucleus cell activity inhibits the
inferior olivary cells, and disrupts their equilibrium firing rates,
which is a signal to extinguish the responses (Medina et al., 2002).
The failure of this system suggested that the inferior olivary cells
mustmaintain a certain a level activity evenwhen the nucleus cells
are responding appropriately.

Fig. 3. The simulation setup as applied to the cart–pole balancing problem. A.
Schematic of the simulation setup for cart–pole balancing. Information about the
pole is encoded as mossy fiber inputs (MF). The mossy fibers indirectly connect to
Purkinje cells (PC) through granule cells (GR). Unlike in eyelid conditioning, there
are two sets of Purkinje cells, nucleus cells (NC), and inferior olivary cells (IO). The
output of nucleus cells in each set is responsible for pushing the cart in one direction
(FR: force right, FL: force left). When the pole exceeds a certain position threshold
(gray lines on either side of the pole), error signals (ER, error right, EL, error left)
are sent to the associated inferior olivary cells. B. Pole angle population mossy fiber
firing rate evolution over time for pole position of a failed train as in (C). Scale bar
is in Hz. The mossy fibers shown are using the Gaussian encoding (see Fig. 4 and
results). C. Evolution of pole states and simulation output over time for a single trial.
Top: angle difference in degrees between the pole and upright. Positive is toward
the left and negative is toward the right. Middle: d(angle)/d(t) in degrees/second.
Same signs as pole angle. Bottom: the output forces on the cart from the two output
networks from the simulation. Left: force pushing the cart to the left, Right: force
pushing the cart to the right, Net: the left and right forces are subtracted from each
other to arrive at the actual net force acting on the cart. D. Same as in (C), for a
successful trial. Note the difference in scales.
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Fig. 4. The simulation is generalizable from eyelid conditioning to cart–pole balancing.
A. Pole balance performance where the error is only sent after point of no return.
Pole position relative to upright is plotted against time. Each line represents a
trial, which terminates at the point of failure, or exceeding 10 s. B. Pole balance
performance where the error rate is proportional to pole position deviation from
upright. C. Pole balance performance for 3 mossy fiber encoding schemes. Top:
success percentage as a function of trial number for 10 repetitions. Success is
defined as keeping the pole balanced for 10 s. Bottom: average angular deviation
of pole from upright for each trial. Standard: binary encoding of pole position, pole
velocity, and pole acceleration. Gaussian: Gaussian encoding of the same variables.
No theta: Gaussian encoding of pole velocity, acceleration, and a linear combination
of pole velocity and acceleration, see Section 3.2 for more details.

Thus, we tried to encode the error signal as proportional to
the pole angle. Specifically, the probability that the inferior olivary
cells are stimulated is proportional to the pole angle relative to
midline. This ensured that even during successful trials where the
pole is balanced by the nucleus cell output, inferior olivary cells
could still be active to prevent extinction. Fig. 4B illustrates that
this encoding scheme was able to retain the ability to balance the
pole.

We next explored the encoding schemes for the world state
variables. We first explored Gaussian encoding of the pole angular
position (Fig. 3B), angular velocity, and angular acceleration. Again,
we use pole angular position as an example to illustrate the
encoding scheme. Each of the 30 mossy fibers for angular position
was assigned a preferred angle where the firing rate is maximal.
The actual firing rate of the mossy fiber is then dependent on
how far the angular position of the pole is from the preferred
angle, transformed with the Gaussian function. We find that the

simulation could learn robustly in the presence of both binary
rate encoding and Gaussian rate encoding (Fig. 4C). We also
explored an encoding scheme similar to that observed in VOR
(Lisberger & Pavelko, 1986), where pole angular velocity, angular
acceleration, and an angular pulse velocity (linear combination of
velocity and acceleration) was encoded. The pole angular position
was not encoded in this scheme. As shown in Fig. 3D (no theta),
the simulation could not learn very robustly with this encoding
scheme. This would indicate that our knowledge about how
the cerebellum achieves coordination between multiple output
networks is still incomplete.

4. Discussion

Wehavedemonstrated the ability to increase the scale of awell-
characterized computer simulation of the cerebellum. Through
the application of GPU parallel processing the number of granule
cells in this simulation can be increased from 12,000 to over one
million. In doing so, the execution speed has been maintained
at a level that permits sensible analysis and progress. On a high
performance workstation the smaller simulation runs at real time
or slightly better—four seconds of execution to simulate five
seconds. Although the larger simulation that we characterized
here implements almost 100-fold more granule cells, it requires
approximately twice the execution time using the Nvidia Fermi
GTX580GPU.Moreover, in the currentworkwe find that execution
time decreases proportionallywith 2 GPU boards.With this scaling
factor we estimate that a simulation that implements 10 million
granule cells can run at 0.5× to 1× real time on a standard
workstation computer with eight next generation GPUs, if we are
to assume that the scaling can be maintained for 8 GPUs, that the
next generation GPUs are faster than the currentmodels, and there
are no additional overhead when dealing with 10 million granule
cells. If we are to take that a para-saggitalmodule of the cerebellum
involves around 150 million granule cells, it is imaginable that
we will be able to build such a simulation within the next 2–4
generations of computer hardware. These advances highlight that
it is now possible to address with computer simulations the
question of the computational value of the cerebellum’s enormous
layer of granule cells.

The ability to expand the number of granule cells by 100 fold
over the original simulation has the important advantage of al-
lowing a closer approximation of the connectivity ratios observed
in the real cerebellum. The motivation for better approximating
connectivity ratios is to begin exploring the question of the compu-
tational properties of the unique connectivity observed with cere-
bellar granule cells. Given that the cerebellar granule cells account
for over 50% of all neurons in the entire human central nervous
system, and that this characteristic of very large numbers is re-
markably well conserved in evolution, it is conceivable that there
are underlying characteristic computational functions behind such
connectivity. In fact, Marr (1969) in the first coherent theory about
the cerebellar cortical computation, hypothesized about the role of
this connectivity in mossy fiber input pattern separation. Under-
standing the computational functions of this connectivity will be a
significant step forward in our understanding of how the cerebel-
lum functions.

As a first result, the expanded simulation’s ability to learnmore
robustly to longer inter-stimulus intervals could be due increase in
reliability of having a larger granule population output to Purkinje
cells, On the other hand, the lack of improvement in the timing
response to both 750 and 1000 ms intervals also points to the
possibility that there are features in the connectivity of the input
network that we do not yet fully appreciate.

We have also used this larger cerebellar simulation to begin
to explore the issue of task generality. The different areas of the
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cerebellumare known toperformdifferentmotor functions such as
balance and fine movements (Ito, 1984). The network architecture
of the cerebellum is remarkably uniform throughout its entire
structure (Eccles et al., 1967; Ito, 1984). In addition, the network
connectivity is evolutionarily well conserved in mammals, and the
principal features of parallel fibers, Purkinje cells, climbing fibers
are observed in the cerebellum of other vertebrates. This suggests
that this particular network architecture performs a characteristic
computation that can be applied to a variety of tasks. However, it is
certainly not obvious thatwe could elucidate this computation, if it
exists, by studying eyelid conditioning. Considering that cart–pole
balancing is arguably a completely different task from eyelid
conditioning, it was not expected that our simulation—that was
constructed entirely from understanding eyelid condition—could
work for cart–pole balancing. The fact that the simulation, without
tuning its intrinsic parameters, succeeded in performing this task
suggests that such a characteristic computation for the cerebellar
network architecture exists. This common computation could be
determining the timing and the amplitude (Kreider & Mauk, 2010)
of the commands necessary for correct motor output. In addition,
this computation would need to include mechanisms to adapt to
newmotor tasks aswell as fluctuations in themotor output system.
The success of the simulation suggests that we can study this
computation with eyelid conditioning.

Applying the simulation to cart–pole balancing also let us to be-
gin to address a feature of more complex motor movements that
is missing in eyelid conditioning: multiple muscle coordination. It
is known that the cerebellum is necessary for smooth coordination
between multiple muscles. It is thought that each muscle is driven
by a specific part of the cerebellum (Ito, 1984). We examined this
coordination issue in the simulation with cart–pole by starting
with a naïve assumption, that there is no explicit communication
between the two output networks that control the two forces on
the cart. The simulation’s success at cart–pole suggests that this
naïve assumption is sufficient for this particular task. This does not
exclude the possibility that such communication might make the
simulation perform better in this task, and that such communica-
tion might be necessary for more complex coordination tasks. The
expanded simulation provides us with the tool to explore further
into this question, as well as the computational properties of large
granule cell populations and their network connectivity.
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