
In Plan, Activity, and Intent Recognition,
Elsevier, Philadelphia, PA, USA, 2013.

Role-Based Ad Hoc Teamwork

Katie Gentera, Noa Agmonb, Peter Stonea

aDepartment of Computer Science

The University of Texas at Austin

Austin, TX, USA

{katie,pstone}@cs.utexas.edu
bDepartment of Computer Science

Bar Ilan University1

Ramat Gan, Israel

agmon@cs.biu.ac.il

Abstract

An ad hoc team setting is one in which teammates work together to obtain
a common goal, but without any prior agreement regarding how to work
together. We introduce a role-based approach for ad hoc teamwork, in which
each teammate is inferred to be following a specialized role. In such cases, the
role an ad hoc agent should select depends on its own capabilities and on the
roles selected by its teammates. In this chapter we formally define methods
for evaluating the influence of an ad hoc agent’s role selection on the team’s
utility and show that use of these methods facilitates efficient calculation
of the role yielding maximal team utility. We examine empirically how to
choose the best suited method for role assignment and show that once an
appropriate assignment method is determined for a domain, it can be used
successfully in new tasks that the team has not encountered before. Unlike
much of the rest of the book, this chapter does not focus on methods for
recognizing the roles of the other agents. Rather, it examines the question of
how to use successful role recognition towards successful multiagent decision-
making.

Keywords: ad hoc teamwork, role-based ad hoc teamwork, multiagent
teamwork, multiagent collaboration, multiagent planning

1This work was conducted while Noa Agmon was at The University of Texas at Austin.

Preprint submitted to Plan, Activity, and Intent Recognition September 25, 2013

1. Introduction

As software and robotic agents become increasingly common, there be-
comes a need for agents to collaborate with unfamiliar teammates. Consider
a disaster situation where rescue robots from all around the world are brought
in to assist with search and rescue. Ideally, these robots would be able to col-
laborate immediately — with little to no human assistance — to divide and
conquer the necessary tasks according to their relative abilities. Some agents
would locate victims, while other agents would lift fallen debris away from
trapped victims. However, most existing agents are designed to only collab-
orate with known teammates that they were specifically pre-programmed to
work with. As such, collaborating on the fly with unknown teammates is
impossible for most current agents.

Ad hoc teamwork is a relatively new research area that examines this
exact problem — how an agent ought to act when placed on a team with other
agents such that there was no prior opportunity to coordinate behaviors. In
ad hoc teamwork situations, several agents find themselves in a situation
where they all have perfectly aligned goals, yet they have had no previous
opportunity to coordinate their teamwork [1]. This problem arises quite
often for humans, who tend to solve the problem quite naturally. However,
autonomous agents—such as robots and software agents—do not currently
handle this problem as gracefully.

Consider briefly that you recently arrived in a foreign country where you
do not speak the local language. Now assume that you come across a pickup
soccer game. After watching the game for a few minutes, some of the players
on one team motion you to join. Despite not being able to verbally com-
municate with any of your teammates, you can still contribute to the team
and work as a cohesive unit with your teammates. Through observing your
teammates, you can quickly make a rough analysis of their strengths and
weaknesses, and determine how you should play to best help the team.

Throughout this chapter we refer to the agents that make up a team
as either ad hoc agents or teammates. Ad hoc agents are agents whose be-
havior we can control. Teammates, on the other hand, are agents that we
have no control over, potentially because they were programmed by other
groups or at different times such that future collaboration with our agents
was unforeseeable.

In some team domains, such as search and rescue missions and many
team sports, the team behavior can easily be broken down into roles. Under

2

a role-based approach to ad hoc teamwork, each teammate is inferred to
be following a specialized role that accomplishes a specific task or exhibits a
particular behavior. Using this information, an ad hoc agent’s main task is to
decide which role to assume such that the team’s performance is maximized.
This decision is situation-specific: it depends on the task the team performs,
the environment in which it acts, the roles currently performed by the team
members, and the capabilities of the team members. One trivial approach is
for an ad hoc agent to assume the role at which it is most individually capable.
However, the choice of optimal role—one that results in highest team utility—
rarely depends only on the ad hoc agent, but also on the ability and behavior
of the other team members. Hence, an ad hoc agent will sometimes not adopt
the role that it performs best if adopting a different role is optimal for the
team. We examine the contribution of an ad hoc agent to the team by the
measure of marginal utility, which is the increase in a team’s utility when an
ad hoc agent is added to the team and assumes a particular role. An optimal

mapping of an ad hoc agent to a role is, therefore, one that maximizes the
marginal utility, hence maximizing the contribution of the ad hoc agent to
the team’s utility.

In this chapter, we present a role-based approach for ad hoc teamwork.
We begin by noting related work in Section 2. In Section 3, we formally
define the role-based ad hoc teamwork problem. In Section 4, we emphasize
the importance of accurate role recognition. In Section 5, we define several
methods for modeling the marginal utility of an ad hoc agent’s role selec-
tion as a function of the roles performed by the other teammates. Then
we empirically show in a foraging domain that each method is appropriate
for a different class of role-based tasks. In Section 6, we demonstrate that
use of these methods can lead to efficient calculation of the role that yields
maximal team utility. We then include an empirical examination in a more
complex Pacman Capture-the-Flag domain of how to choose the best suited
method for role assignment in a complex environment where it is not trivial
to determine the optimal role assignment. Finally, we show that the meth-
ods we describe have a predictive nature, meaning that once an appropriate
assignment method is determined for a domain, it can be used successfully
in new tasks that the team has not encountered before and for which only
limited experience is available. In Section 7 we conclude and present some
avenues for future work.

Unlike much of the rest of the book, this chapter does not focus on meth-
ods of role recognition. Instead, it examines the question of how to use

3

successful role recognition to assist in multiagent decision-making. Indeed,
this work contributes towards answering the ad hoc teamwork challenge pre-
sented by Stone, Kaminka, Kraus, and Rosenschein [1]. Specifically, this ad
hoc teamwork challenge is to “create an autonomous agent that is able to effi-

ciently and robustly collaborate with previously unknown teammates on tasks

to which they are all individually capable of contributing as team members”.
Stone, Kaminka, Kraus, and Rosenschein laid out three abstract technical
challenges. This chapter presents an approach towards solving one of these
challenges — finding theoretically optimal and/or empirically effective algo-
rithms for behavior — in role-based ad hoc teamwork settings.

2. Related Work

Although there has been much work in the field of multiagent teamwork,
there has been little work towards getting agents to collaborate towards a
common goal without pre-coordination. In this section, we review some
selected work that is related to the role-based ad hoc teamwork approach
presented in this chapter. Specifically, we consider work related to multiagent
teamwork, multiagent plan recognition, and our two experimental domains.

2.1. Multiagent Teamwork

Most prior multiagent teamwork research requires explicit coordination
protocols or communication protocols. Three popular protocols for communi-
cation and coordination — SharedPlans [2], Shell for TEAMwork (STEAM)
[3], and Generalized Partial Global Planning (GPGP) [4] — all provide col-
laborative planning or teamwork models to each team member. Each of these
protocols work well when all agents know and follow the protocol. However,
in ad hoc teamwork settings we do not assume that any protocol is known
by all agents, so protocols such as these cannot be successfully used.

Some multiagent teams are even designed to work specifically with their
teammates in pre-defined ways, such as via “locker-room agreements” [5].
Specifically, a “locker-room agreement” is formed when there is a team syn-
chronization period during which a team can coordinate their teamwork
structure and communication protocols. This work divides the task space
via the use of roles like we do, but our work differs in that we do not assume
the availability of a team synchronization period.

Liemhetcharat and Veloso formally defined a weighted synergy graph that
models the capabilities of robots in different roles and how different role as-

4

signments affect the overall team value [6]. They presented a team formation
algorithm that can approximate the optimal role assignment policy given a
set of teammates to choose from and a task. They applied this algorithm
to simulated robots in the RoboCup Rescue domain and to real robots in a
foraging task, and found that the resulting role assignments outperformed
other existing algorithms. This work determines how to best form a team
when given many agents to choose from, while our work determines how a
particular agent should behave to best assist a preexisting team.

Wu, Zilberstein, and Chen present an online planning algorithm for ad
hoc team settings [7]. Their algorithm constructs and solves a series of stage
games, and then uses biased adaptive play to choose actions. They test their
algorithm in three domains: cooperative box pushing, meeting in a 3 × 3
grid, and multi-channel broadcast. In these tests, they show they are able to
perform well when paired with suboptimal teammates. Their work is different
than ours in that we choose the best suited role assignment method and then
assign the ad hoc agent to perform a role using the chosen role assignment
method, whereas in their work they optimize each individual action taken by
the ad hoc agent.

Bowling and McCracken examined the concept of “pick-up” teams in sim-
ulated robot soccer [8]. Similarly to us, they propose coordination techniques
for a single agent that wants to join a previously unknown team of existing
agents. However, they take a different approach to the problem in that they
provide the single agent with a play book from which it selects the play most
similar to the current behaviors of its teammates. The agent then selects a
role to perform in the presumed current play.

Jones, Browning, Dias, Argall, Veloso and Stentz perform an empirical
study of dynamically formed teams of heterogeneous robots in a multirobot
treasure hunt domain [9]. They assume that all of the robots know they
are working as a team and that all of the robots can communicate with one
another, whereas in our work we do not assume that the ad hoc agent and
the teammates share a communication protocol.

Han, Li and Guo study how one agent can influence the direction in
which an entire flock of agents is moving [10]. They use soft control in a
flocking model where each agent follows a simple control rule based on its
neighbors. They present a simple model that works well in cases where the
agents reflexively determine their behaviors in response to a larger team.
However, it is not clear how well this work would apply to more complex
role-based tasks such as those studied and discussed in our work.

5

2.2. Multiagent Plan Recognition

An ad hoc team player must observe the actions of its teammates and
determine what plan or policy its teammates are using before determining
what behavior it should adopt. In this work, we assume that the ad hoc agent
is given the policy of each teammate so as to focus on the role selection
problem. However, in many situations this is not a valid assumption, so
recognizing the plan or policy of each teammate is an important part of
solving the ad hoc teamwork challenge.

Barrett and Stone present an empirical evaluation of various ad hoc team-
work strategies [11]. In their work they show that efficient planning is pos-
sible using Monte Carlo Tree Search. Additionally, they show that an ad
hoc agent can differentiate between its possible teammates on the fly when
given a set of known starting models, even if these models are imperfect or
incomplete. Finally, they show that models can be learned for previously
unknown teammates. Unlike our work, this work does not take a role-based
approach to solving the ad hoc teamwork problem. Instead, they evaluate
the ability of various algorithms at generating ad hoc agent behaviors in an
on-line fashion.

Sukthankar and Sycara present two approaches for recognizing team poli-
cies from observation logs, where a team policy is a collection of individual
agent policies along with an assignment of individual agents to policies [12].
Each of their approaches — one model-based and one data-driven — seem
generally well suited for application to the ad hoc teamwork challenge. Specif-
ically, their approaches would be best suited for ad hoc teamwork settings
that (1) are turn-based tasks, (2) do not require analysis of observation logs
in real-time, and (3) do not require excessive amounts of training data to
avoid over-fitting.

Zhuo and Li provide a new approach for recognizing multiagent team
plans from partial team traces and team plans [13]. Specifically, given a
team trace and a library of team plans, their approach is to first create a set
of constraints and then solve these constraints using a weighted MAX-SAT
solver. The required library of team plans might be difficult to obtain in
some ad hoc teamwork settings though, so this approach is not well-suited
for all ad hoc teamwork settings.

2.3. Experimental Domains

In this chapter we use two experimental domains: a Capture-the-Flag
domain and a foraging domain. There has been previous research on mul-

6

tiagent teamwork in both the Capture-the-Flag domain and the foraging
domain, and we discuss a few examples below. However, most of this work
focuses on coordination between all teammates instead of coordination of one
or more ad hoc agents with existing teammates, and hence does not address
the ad hoc teamwork problem.

Blake, Sorensen, Archibald, and Beard present their Capture-the-Flag
domain, which they implemented both physically and in simulation [14].
In their work, they focus on effective path planning for their robots as they
navigate through a maze-like environment. Although similar to our Capture-
the-Flag domain, their domain is different than ours because they assume
that target coordinates will be communicated to the ground robots from an
overhead flying robot. This communication might not be possible in an ad
hoc teamwork setting because we can not assume that the teammates and
the ad hoc agent will be able to communicate and exchange data.

Sadilek and Kautz used a real-world game of Capture-the-Flag to validate
their ability to understand human interactions, attempted interactions, and
intentions from noisy sensor data in a well defined multiagent setting [15].
Our work currently assumes that the actual behaviors of the teammates are
provided to us, such that we can focus on determining the best behavior for
the ad hoc agent. However, work such as Sadilek and Kautz’s that focuses
on recognizing interactions and inferring their intentions will be necessary to
solve the complete ad hoc teamwork problem.

Mataric introduced the multiagent foraging domain, and focused on teach-
ing agents social behaviors in this foraging domain [16]. Specifically, the for-
aging agents learned yielding and information sharing behaviors. In Mataric’s
work she assumed that all of the foraging robots are capable of communi-
cating with each other. However, in our work we do not assume that the
foraging robots share a communication protocol.

Lerman, Jones, Galstyan, and Mataric considered the problem of dynamic
task allocation in a multiagent foraging environment [17]. They designed a
mathematical model of a general dynamic task allocation mechanism. As
long as all the agents use this mechanism, a desirable task division can be
obtained in the absence of explicit communication and global knowledge.
However, such an approach does not work in ad hoc teamwork settings be-
cause we can not assume that the ad hoc agent will be able to use the same
mechanism as its teammates.

7

3. Problem Definition

In this chapter we introduce the role-based ad hoc teamwork problem,
which is one that requires or benefits from dividing the task at hand into
roles. Throughout this chapter we refer to the agents that make up a team
as either ad hoc agents or teammates. Ad hoc agents are agents whose be-
havior we can control. Teammates, on the other hand, are agents that we
have no control over, potentially because they were programmed by other
groups or at different times such that future collaboration with our agents
was unforeseeable.

Under a role-based ad hoc teamwork approach, the ad hoc agent first must
infer the role of each teammate and then decide what role to assume such that
the team’s performance is maximized. The teammates do not need to believe
or understand that they are performing a role. Indeed, the classification of
teammates into roles is merely done so that the ad hoc agent can determine
the best role for itself. Using the pickup soccer example presented in Section
1, under a role-based ad hoc teamwork approach you might determine what
positions your teammates are playing and then adopt a position accordingly.
You might adopt the most important position that is unfilled or the position
that you are best at that is unfilled — or more likely you would adopt a
position based on a function of these two factors.

Each teammate’s role will be readily apparent to the ad hoc agent in
many domains. For example, the goalie in a pickup soccer game is immedi-
ately apparent due to her proximity to her team’s goal. However, in some
domains it may take more extended observations for the ad hoc agent to
determine the actual role of each teammate. In such domains, the role of
each teammate may be determined with increasing certainty as observations
are made regarding the agent’s behavior and the areas of the environment it
explores.

We assume that different roles have different inherent values to the team,
and that each agent has some ability to perform each role. As such, an ad
hoc agent must take into account both the needs of the team and its own
abilities when determining what role to adopt. A team receives a score when
it performs a task. Therefore, the goal of an ad hoc agent is to choose a role
that maximizes the team score and hence maximizes the marginal utility of
adding itself to the team. Hence, an ad hoc agent will sometimes not adopt
the role that it performs best if adopting a different role is optimal for the
team. Using the pickup soccer example, if your team is in dire need of a

8

goalie, it may be best for the team if you play goalie even if you are better
at other positions.

3.1. Formal Problem Definition

In this section, we define our problem more formally and introduce the
notation that we use throughout the chapter.

Let a task d be drawn from domain D, where task d has m roles R(d) =
{r0, ..., rm−1}. Each role ri has an associated relative importance value vi,
where rx is more critical to team utility than ry if vx > vy. Each vi is constant
for a particular task d and set of potential roles R(d), but might change if
d or R(d) were different. Let A = {a0, ..., an−1} be the set of ad hoc agents
and B = {b0, ..., bk−1} be the set of teammates such that T = A ∪ B is the
team that is to perform task d. Each agent tj ∈ T has a utility u(tj, ri) ≥ 0
for performing each role ri ∈ R(d). This utility u(tj, ri) represents player tj’s
ability at role ri in task d.

Using the pickup soccer example, let domain D = {soccer}, task d =
{game against a local boys high school team}, and R(d) = {goalie, sweeper,
stopper, outside back, center midfield, outside midfield, striker}. If A =
{Katie} and B = {Jake, Noa, Peter, Sam, Todd}, then T = A∪B = {Jake,
Katie, Noa, Peter, Sam, Todd}.

Let mapping P : B → R(d) be the mapping of the teammates in B

to roles {r0, ..., rm−1} such that the teammates associated with role ri are
BP

i , where |BP
i | = mP

i and BP
0 ⊕ BP

1 ⊕ ... ⊕ BP
m−1 = B. Without loss of

generality, the agents in each BP
i are ordered such that u(bj, ri) ≥ u(bj+1, ri).

In the pickup soccer example, assume BP
0 = {Todd}, BP

4 = {Sam, Jake},
and BP

6 = {Peter, Noa}. This assumption means that Todd is playing goalie
under mapping P , Sam and Jake are playing center midfield under mapping P

(where Sam’s utility for playing center midfield is greater than Jake’s utility
for playing center midfield), and Noa and Peter are playing striker under
mapping P (where Peter’s utility for playing striker is greater than Noa’s
utility for playing striker). Mapping P may be given fully or probabilistically,
or it may need to be inferred via observation. However, it is important to
note that ad hoc agents can not alter P by commanding the teammates to
perform particular roles. For simplicity, we assume in this work that the ad
hoc agents have perfect knowledge of mapping P .

Let mapping S : A → R(d) be the mapping of the ad hoc agents in A

to roles {r0, ..., rm−1} such that the ad hoc agents performing role ri are AS
i ,

where |AS
i | = mS

i and AS
0 ⊕ AS

1 ⊕ ... ⊕ AS
m−1 = A. In the pickup soccer

9

example, if AS
6 = {Katie}, then Katie is playing striker under mapping S.

Additionally, let mapping SP : T → R(d) be the combination of mappings
S and P . As such, agents T SP

i = BP
i ∪ AS

i are performing role ri and
T SP

0 ⊕T SP
1 ⊕...⊕T SP

m−1 = T . In other words, mapping SP is the association of
all team members to the roles they are performing. Without loss of generality,
the agents in each T SP

i are ordered such that u(tj, ri) ≥ u(tj+1, ri). In the
pickup soccer example, if T SP

6 ={Peter, Katie, Noa}, then Peter, Katie and
Noa are all playing striker under mapping SP and Peter’s utility for playing
striker is greater than Katie’s utility for playing striker, which is greater than
Noa’s utility for playing striker. A team score U(W, d, T) results when the set
of agents T perform a task d, with each tj ∈ T fulfilling some role ri ∈ R(d)
under mapping W . Team score U is a function of individual agent utilities,
but its precise definition is tied to the particular domain D and the specific
task d ∈ D. For example, in the pickup soccer example, the team score
might be the goal differential after ninety minutes of play. The marginal
utility MU(S, P) obtained by mapping S, assuming P is the mapping of the
teammates in B to roles, is the score improvement obtained when each ad
hoc agent aj ∈ A chooses role rS(aj) under mapping S. Assuming that either
B can perform the task or that U(P, d,B) = 0 when B cannot complete the
task, marginal utility MU(S, P) = U(SP, d, T) − U(P, d,B)2. Going back
to the pickup soccer example, the marginal utility obtained by mapping S is
the difference in the expected score differential when B mapped by P plays
a local boys high school team and the expected score differential when T

mapped by SP plays a local boys high school team.
Given that mapping P is fixed, the role-based ad hoc team problem is to

find a mapping S that maximizes marginal utility. The problem definition
and notation provided above are valid for any number of ad hoc team agents.
Hence, although for the remainder of this chapter we focus our attention on
the case where there is only one ad hoc agent such that A = {a0}, our general
theoretical contributions can be applied in teams to which multiple ad hoc
agents are added. For example, multiple ad hoc agents could coordinate
and work together as a single “agent” and the theoretical results presented
below would still hold. Note that multiple ad hoc agents could not each
individually determine a mapping to a role that maximizes marginal utility

2MU is actually a function of d,B, T, P , and S, however throughout this chapter we
use this more compact notation.

10

using the approach presented below, since each ad hoc agent would merely
choose the role that would be optimal were it the only ad hoc agent to join
the team. These mappings would not be guaranteed to collectively maximize
marginal utility.

4. Importance of Role Recognition

The work presented in this chapter concerns how an ad hoc agent should
select a role in order to maximize the team’s marginal utility. However, in
order to do that using the role-based ad hoc teamwork we present, the roles
of the teammates must be correctly identified. This need for accurate role
recognition is what ties this chapter to the other chapters in this book.

We do not focus on how to do role recognition in this chapter. Indeed,
we assume that the ad hoc agents have complete knowledge concerning the
roles of the teammates. As such, accurate role recognition is an important
prerequisite for our work. Role recognition might be easy in some situations,
but extremely difficult in others. However, role recognition always becomes
easier as time passes and more experience is gained. For example, in the pick-
up soccer example presented in Sections 1 and 3, it might be easy to recognize
that a player positioned in the goal is playing the goalie role. However, a
player positioned around midfield could be playing a variety of roles; one
might be able to better determine his role as time passes and play continues.

If the ad hoc agents have imperfect or noisy knowledge of the mapping of
the teammates to roles — in other words, if the role recognition is imperfect
— the general processes presented in this chapter can still be useful. How-
ever, the resulting mapping of the ad hoc agents to roles may not maximize
marginal utility when role recognition is imperfect. Such uncertainty can be
dealt with formally if the agents have probabilistic knowledge of the map-
ping of the teammates to roles. Given a prior probability distribution over
roles, a Bayesian approach could be used to modify the ad hoc agent’s beliefs
over time and to enable it to act optimally given its uncertain knowledge
— including acting specifically so as to reduce uncertainty using a value of
information approach.

In this work we assume that the roles of the agents remain fixed through-
out the task. If the roles were to change, the ad hoc agent would first need
a new process to identify such changes, perhaps by noticing that the team-
mates’ observable behavior has changed. After detecting the change, the

11

processes described in this chapter could be used to find a new mapping of
the ad hoc agents to roles that maximizes marginal utility.

5. Models for Choosing a Role

The gold standard way for an ad hoc agent to determine the marginal
utility from selecting a particular role, and hence determine its optimal role,
is to determine U(SP, d, T) for each possible role it could adopt. However,
in practice, the ad hoc agent may only select one role to adopt. Hence, the
ad hoc agent must predict its marginal utility for all possible roles and then
select just one role to adopt. In this section we lay out three possible models
with which the ad hoc agent could do this prediction based on the roles its
teammates are currently filling. We also empirically verify that each model is
appropriate for a different class of role-based tasks in the multiagent foraging
domain described below.

In this foraging domain, a team of agents is required to travel inside a
given area, detecting targets and returning them to a preset station [16]. We
use a 50 × 50 cell map in our experiments, but an example 10× 10 cell map
can be seen in Figure 1. Each target can be acquired by a single agent that
enters the target’s cell as long as the agent is not already carrying a target
and has the capability to collect targets of that type. To avoid random
wandering when no collectable targets are visible, we assume that each agent
has perfect information regarding target locations. Additionally, we allow
multiple agents and targets to occupy the same cell simultaneously.

The goal of each agent is for the team to collect as many targets as
possible, as quickly as possible. We consider a special case of the foraging
problem in which targets are divided into two groups: red targets to the
North and blue targets to the South, where the blue targets are worth twice
as much to the team as the red targets. As such, the blue targets and agents
that collect blue targets are randomly initialized on the lower half of the
map, while the red targets and agents that collect red targets are randomly
initialized on the upper half of the map.

As each model is presented, we also describe a foraging task in which
the model has been empirically shown to be most appropriate using the
methods described later in this chapter. Results of each model on each task
are presented in Table 1 after all three models have been introduced.

For all of the models, except the Unlimited Role Mapping model, we as-
sume that the ad hoc agent a0 knows the utilities u(bj, ri),∀bj ∈ B, ri ∈ R(d)

12

 R1

 R1

 R1 R1

 B2

 B2 B2

B2 B2

 B2

Figure 1: A sample 10 × 10 cell map of our foraging environment. Each target
occupies one cell — blue targets are represented by B2 and red targets are rep-
resented by R1, where the subscript denotes the target’s point value. Agents are
represented by gray boxes, occupy only one cell at a time, and can move up, down,
left, or right one cell each time step, as long as the move does not carry them off
the board. The station to which targets should be delivered is shown as a black
box.

and the mapping P : B → R(d). Additionally, when considering the follow-
ing three models, note that the marginal utility of agent aj choosing to fulfill
role ri under mapping S is often given by an algorithm MU-X (Algorithms
1, 2). In these cases, MU-X(aj, ri, P) = U(SP, d, T SP

i) − U(P, d,BP
i).

5.1. Unlimited Role Mapping Model:

Consider the multiagent foraging example presented above. Assume there
are 100 red targets and 5000 blue targets in a constrained area with limited
time (50 time steps) for the agents to collect targets. This example is Task A
in Table 1. Due to the ample amount of valuable blue targets and the limited
time, it would never be optimal for an agent to collect red targets instead of
blue targets: the blue targets will be surrounding the base after the agent
delivers its first target, and hence easy to collect and deliver quickly, whereas
the red targets will be less numerous and likely farther from the base and
slower to collect and deliver. Hence, in tasks such as this one, the benefit the
team receives for an agent performing a role does not depend on the roles
fulfilled by its teammates.

In such a case, the contribution to the team of an agent tj performing
role ri is simply the agent’s utility u(tj, ri) at role ri multiplied by the value

13

of the role vi. As such, the team utility can be modeled as

U(SP, d, T) =
m−1
∑

i=0

rsi ∗ vi (1)

where
rsi =

∑

tj∈T SP
i

u(tj, ri) (2)

Note that in this model, agent utility u(tj, ri) for performing each role ri and
the importance vi of each role ri are parameters that can be tuned to match
the characteristics of a particular task.

Theorem 1 describes the optimal role mapping under this model.

Theorem 1. In Unlimited Role Mapping tasks, mapping S, under which a0

chooses the role ri that obtains argmax
0≤i≤m−1

(u(a0, ri) ∗ vi), maximizes marginal

utility such that ∀S ′ 6= S MU(S ′, P) ≤ MU(S, P).

5.2. Limited Role Mapping Model:

Returning to the multiagent foraging example, assume that there are 1000
red targets and 5000 blue targets in a constrained environment with limited
time (50 time steps) for the agents to collect the targets. Also assume that
there are rules prohibiting an agent from collecting the valuable blue targets
if there is not at least one other agent also collecting blue targets or if more
than three other agents are already collecting blue targets. This task is Task
B in Table 1. Due to the ample amount of valuable blue targets, the ad hoc
agent should collect blue targets if the conditions for being able to collect
blue targets are satisfied. However, if the conditions are not satisfied, the ad
hoc agent should default to collecting the less valuable red targets.

In tasks such as this, each role ri has an associated rmin
i value and rmax

i

value that represent the minimum and maximum number of agents that
should perform role ri. For all i, let 0 ≤ rmin

i ≤ rmax
i ≤ n. If the number

of agents performing role ri is less than rmin
i , then the team gains no score

from their actions. On the other hand, if the number of agents performing
role ri is greater than rmax

i , then only the rmax
i agents with highest utility,

T SP
i [rmax

i], will be taken into account when calculating the team score. As
such, the team utility for Limited Role Mapping tasks can be modeled as

U(SP, d, T) =
m−1
∑

i=0

rsi ∗ vi (3)

14

where

rsi =

∑

tj∈T SP
i

u(tj , ri) if rmin
i ≤ mSP

i ≤ rmax
i

∑

tk∈T SP
i [rmax

i]

u(tk, ri) if mSP
i > rmax

i

0 if mSP
i < rmin

i

The function MU-1(aj, ri, P) displayed in Algorithm 1 gives the marginal
utility obtained from the ad hoc agent aj choosing to perform role ri, where
the current mapping of teammates to roles is described by P . In this model,
agent utility u(tj, ri) for performing each role ri, the importance vi of each role
ri, and the minimum and maximum number of agents that should perform
each role ri are all tunable model parameters.

Function MU-1(aj, ri, P) uses some special notation. Specifically, let
posB(aj, ri) denote the 0-indexed position in T SP

i that the ad hoc agent
aj occupies. Additionally, let TW

i (num) denote the agent that is performing
role ri under mapping W with the num highest utility on role ri. For exam-
ple, if agents A, B, C, and D are performing role R under mapping Y with
the following utilities for role R: A = 1, B = 2, C = 3, and D = 4, then
T T

R (0) = D, T T
R (1) = C, and T T

R (2) = B.

Algorithm 1 MU-1(aj, ri, P)

1: if mP
i + 1 < rmin

i then
2: return 0
3: else
4: if mP

i + 1 = rmin
i then

5: return
∑

tj∈T SP
i

u(tj , ri) ∗ vi

6: else
7: if rmax

i < mP
i + 1 then

8: if posB(aj , ri) ≤ rmax
i then

9: return u(aj , ri) ∗ vi − u(TP
i (rmax

i), ri) ∗ vi

10: else
11: return 0
12: else
13: return u(aj , ri) ∗ vi

Theorem 2 describes the optimal role mapping for the ad hoc agent under
this model.

15

Theorem 2. In Limited Role Mapping tasks, mapping S, under which a0

chooses the role ri that obtains argmax
0≤i≤m−1

MU-1(a0, ri, P), maximizes marginal

utility such that ∀S ′ 6= S MU(S ′, P) ≤ MU(S, P).

5.3. Incremental Value Model:

Continuing the multiagent foraging example, consider a task in which
there are 500 blue targets and 5000 red targets in a constrained environment
with limited time (50 time steps) for the agents to collect the targets. This
example is Task C in Table 1. Since the time to collect targets is limited
and there are more red targets than blue targets, the optimal role will some-
times be one that collects less plentiful but more valuable blue targets and
sometimes be one that collects less valuable but more plentiful red targets.
Collecting the less valuable red targets may be optimal if there are many
other agents collecting blue targets and few other agents collecting red tar-
gets. This is because if there are many other agents collecting blue targets,
the blue targets close to the base will be quickly collected, which forces all
of the agents collecting blue targets to venture farther away from the base
in order to collect blue targets. In such a case, collecting less valuable red
targets may prove to be optimal since competition for them is less fierce and
hence they can be collected and returned to the station more frequently.

In tasks like this, the value added by agents performing a role may not
be linearly correlated with the number of agents performing that role. As
such, the team utility in incremental value tasks can be modeled as

U(SP, d, T) =
m−1
∑

i=0

rsi ∗ vi (4)

where
rsi =

∑

tj∈T SP
i

u(tj, ri) ∗ F (i, j) (5)

In particular, we consider the following three functions F—each with two
parameters that can be tuned to match the characteristics of a particular
task—that describe how the value added to the team by each subsequent
agent performing a role incrementally increases or decreases as more agents
perform that role.

Logarithmic Function F (i, j) = logj+1(xi) + ki, where ki represents the
amount added to the role score rsi for each agent performing role ri

16

and xi sets the pace at which the function decays for agents performing
ri.

Exponential Function F (i, j) = g
(j/ti)
i , where gi is the growth factor and

ti is the time required for the value to decrease by a factor of gi—both
for each agent performing role ri.

Sigmoidal Function F (i, j) = 1
1+esi∗(j+bi)

where si determines the sharp-
ness of the curve and bi dictates the x-offset of the sigmoid from the
origin for each agent performing role ri.

The function MU-2(aj, ri, P) displayed in Algorithm 2 gives the marginal
utility obtained when an ad hoc agent aj chooses to perform role ri, where
the current mapping of teammates to roles is described by P . Remember
from function MU-1(aj, ri, P) that posB(aj, ri) denotes the 0-indexed posi-
tion in T SP

i that the ad hoc agent aj occupies. In this model, agent utility
u(tj, ri) for performing each role ri, the importance vi of each role ri, and
the parameters used in function F are all tunable parameters. Note that
although we generally assume benefit is obtained as additional agents join
a team, our models can also handle the case where additional agents add
penalty as they join the team.

Algorithm 2 MU-2(aj, ri, P)

1: if mP
i = 0 then

2: return vi ∗ (u(aj , ri) ∗ F (j, 1))
3: else
4: if posB(aj , ri) = mP

i then
5: return vi ∗ u(aj , ri) ∗ F (j, mP

i + 1)
6: else

7: return vi ∗ u(aj , ri) ∗ F (j, posB(aj , ri) + 1) −

mP
i −1
∑

y=bposB(aj,ri)

(u(by, ri) ∗ vi ∗

F (j, posB(by, ri) + 1) − u(by, ri) ∗ vi ∗ F (j, posB(by, ri) + 2))

Theorem 3 describes the optimal role mapping for the ad hoc agent under
this model.

Theorem 3. In Incremental Value tasks, mapping S, under which a0 chooses

the role ri that obtains argmax
0≤i≤m−1

MU-2(a0, ri, P), maximizes marginal utility

such that ∀S ′ 6= S MU(S ′, P) ≤ MU(S, P).

17

5.4. Empirical Validation of Models

As each model was presented, a foraging task in which the model has
been empirically shown to be most appropriate was also described. Results
of each model on each task are presented in Table 1. Task D — a task
with 5000 blue targets, 5000 red targets, limited time (50 time steps), and
crowding penalties that only let one agent move from each cell in a time step
— is also included to represent a case where the limited model and two of
the incremental models do poorly.

Model Task A Task B Task C Task D
Unlimited 0/36 1/18 14/22 0/36
Limited 3/33 1/26 6/30 9/27
Incremental w/ Logarithmic 0/36 1/19 3/33 8/27
Incremental w/ Exponential 0/36 1/20 2/34 8/27
Incremental w/ Sigmoidal 0/36 1/18 14/22 0/36

Table 1: The number of statistically significant incorrect/correct decisions made
by an ad hoc agent agent under each model in four different tasks presented
throughout Section 5.

Throughout this chapter, we evaluate models based on how often they
lead an ad hoc agent to make the “correct” decision about which role to
assume. An ad hoc agent’s decision to perform role r1 instead of r2 is “cor-
rect” if empirical data shows that performing r1 yields a team score that is
better by a statistically significant margin than the team score obtained by
performing r2. Likewise, an ad hoc agent’s decision to perform role r1 instead
of r2 is “incorrect” if empirical data shows that performing r1 yields a team
score that is worse by a statistically significant margin than the team score
obtained by performing r2. If the margin is not statistically significant, then
the decision is not counted as correct or incorrect. We determine statistical
significance by running a two-tailed Student’s t-Test assuming two-sample
unequal variance.

As seen in Table 1, each model presented earlier in this section is indeed
appropriate for some task. Interestingly enough, no model is best — or worst
— for all tasks. In fact, each model performs poorly in at least one task.
Hence, this experiment serves to show that each of the models presented is
worth considering. Tasks C and D of this experiment also serve to highlight
the differences between the incremental model with sigmoidal function and
the incremental model with logarithmic and exponential functions.

18

6. Model Evaluation

The role-based ad hoc teamwork problem lies in determining what role
an ad hoc agent should select when faced with a novel teamwork situation.
Hence, the main questions in terms of role selection are: given a task in a
particular environment, how should the correct model be selected? Addition-
ally, once a model is selected, how should we determine reasonable parameters
for the model given limited gold standard data? Answering these questions
makes substantial progress towards solving the role-based ad hoc teamwork
problem. Hence, in this section we examine both of these questions in the
Pacman Capture-the-Flag environment.

6.1. Pacman Capture-the-Flag Environment

We empirically examine each of the three models described above in a
Capture-the-Flag style variant of Pacman designed by John DeNero and
Dan Klein[18]. The foraging domain used earlier in the paper was a simple
and easily configurable domain. However, we move to the Pacman domain
now both as an example of a more complex domain and to validate that our
approach works in multiple domains.

The Pacman map is divided into two halves and two teams compete by
attempting to eat the food on the opponent’s side of the map while defending
the food on their side. A team wins by eating all but two of the food pellets
on the opponent’s side or by eating more pellets than the opponent before
three thousand moves have been made. When a player is captured, it restarts
at its starting point.

The result of each game is the difference between the number of pellets
protected by the team and the number of pellets protected by the opponent—
we refer to this as the score differential. Wins result in positive score dif-
ferentials, ties result in zero score differentials, and losses result in negative
score differentials. High positive score differentials indicate that the team
dominated the opponent, while score differentials closer to zero indicate that
the two teams were well matched. We mainly care whether we win or lose,
so we transform each score differential using a sigmoid function in order to
emphasize differences in score differentials close to zero. We input the score
differential from each game into the sigmoid function 1

1+e−0.13∗scoreDifferential to
obtain gold standard data. We examined different values for the multiplicand
and found that 0.13 yielded the most representative score differential spreads
in the three tasks presented below.

19

In each experiment we consider two roles that could be performed:
R ={offense, defense}. Offensive players move toward the closest food on the
opponent’s side, making no effort to avoid being captured. Defensive players
wander randomly on their own side and chase any invaders they see. These
offensive and defensive behaviors are deliberately suboptimal, as we focus
solely on role decisions given whatever behaviors the agents execute when
performing their roles.

We consider the opponents and map to be fixed and part of the environ-
ment for each experiment. Half of the opponents perform defensive behaviors
and half perform offensive behaviors. Additionally, all of the agents run ei-
ther the offensive or defensive behavior just described. As such, all agents
performing a particular role have the same ability for performing that role. In
other words, for agents T SP

i performing role ri, u(t0, ri) = . . . = u(tmP
i −1, ri).

6.2. Determining the Best-Suited Model

We use three tasks to determine which of the models best represents the
marginal utility of a role selection for the Pacman Capture-the-Flag envi-
ronment. In particular, a task is defined by the number of opponents and
the map. The first task “vs-2” is against two opponents on the “Basic”
map shown in Figure 2(a), the second task “vs-6” is against six opponents
on the “Basic” map, and the third task “vs-2-SmallDefense” is against two
opponents on the “SmallDefense” map shown in Figure 2(b).

(a) “Basic” Map (b) “SmallDefense” Map

Figure 2: Maps used to determine which of the models best represents the
marginal utility of a role selection for the Pacman Capture-the-Flag environment.

In order to decide which of the models is most representative of the
marginal utility of a role selection in the Pacman Capture-the-Flag envi-
ronment, we first gather full sets of gold standard data. In particular, in each

20

task we gather scores over one thousand games for each team of zero to six
offensive agents and zero to six defensive agents (i.e., 49 teams). Then we
calculate the gold standard data for each team by putting the score differ-
ential from each of the one thousand games through the sigmoidal function
given above and then averaging the results. The gold standard data from
the “vs-2” environment is shown in Table 2. Note that 0.09 is the worst pos-
sible gold standard performance, and corresponds to obtaining 0 pellets and
losing all 18 pellets to the opponent. Likewise, 0.88 is the best possible gold
standard performance, and corresponds to obtaining 18 pellets and losing no
pellets to the opponent.

We then use the gold standard data to determine the gold standard de-

cision of whether an ad hoc agent should perform an offensive role or a
defensive role on any team composed of zero to five offensive agents and zero
to five defensive agents in each of the three tasks. To determine the gold
standard decision of whether it is better for the ad hoc agent to perform
an offensive or defensive role when added to a particular team we look at
whether the gold standard data is higher for the team with one extra de-
fensive player or the team with one extra offensive player. If the former is
true, then the gold standard decision is for the ad hoc agent to play defense.
Likewise, if the latter is true, then the gold standard decision is for the ad
hoc agent to play defense offense. We determine whether a gold standard
decision is statistically significant by running a two-tailed Student’s t-Test
assuming two-sample unequal variance.

As an example, consider the gold standard data from the “vs-2” environ-
ment that is shown in Table 2. The gold standard decision of whether an
ad hoc agent should perform an offensive role or a defensive role on a team
composed of two offensive agents and one defensive agent can be determined
by considering whether the gold standard data for a team with two offensive
agents and two defensive agents is greater than or less than the gold stan-
dard data for a team with three offensive agents and one defensive agent.
By looking at the gold standard data from the “vs-2” environment shown in
Table 2, we can see that the gold standard data for a team with two offensive
agents and two defensive agents is 0.75, while the gold standard data for a
team with three offensive agents and one defensive agent is 0.71. Since the
gold standard data for a team with two offensive agents and two defensive
agents is greater than the gold standard data for a team with three offensive
agents and one defensive agent, the gold standard decision regarding a team
composed of two offensive agents and one defensive agent is to perform a

21

defensive role.

0d 1d 2d 3d 4d 5d 6d
0o 0.09 (+o) 0.09 (+o) 0.09 (+o) 0.13 (+o) 0.23 (+o) 0.31 (+o) 0.36
1o 0.29 (+d) 0.49 (X) 0.64 (+o) 0.74 (+o) 0.79 (+o) 0.81 (+o) 0.82
2o 0.42 (+d) 0.63 (+d) 0.75 (+d) 0.81 (+d) 0.83 (X) 0.85 (X) 0.86
3o 0.54 (+d) 0.71 (+d) 0.80 (+d) 0.83 (+d) 0.85 (X) 0.85 (X) 0.86
4o 0.56 (+d) 0.74 (+d) 0.81 (+d) 0.84 (+d) 0.85 (+d) 0.87 (X) 0.87
5o 0.61 (+d) 0.75 (+d) 0.83 (+d) 0.84 (+d) 0.86 (X) 0.87 (+d) 0.88
6o 0.64 0.79 0.83 0.86 0.87 0.88 0.88

Table 2: Rounded gold standard data and decisions from the “vs-2” environment.
The rows represent the 0...6 agents performing an offensive role, while the columns
represent the 0...6 agents performing a defensive role. A ‘+o’ (‘+d’) decision means
that the ad hoc agent should adopt an offensive (defensive) role if added to a team
with teammates performing the roles indicated by the row and column. An ‘X’
decision means that the decision of which role to perform was not statistically
significant at p = 0.05.

Once we calculate the gold standard decisions for the ad hoc agent in each
of the three tasks, we can determine which of the three models best captures
the actual marginal utility of role selection in each task. First, we input
the gold standard data and the model function into Matlab’s lsqcurvefit
algorithm (which uses the trust region reflexive least squares curve fitting
algorithm) and obtain fitted parameters for the model function. The fitted
parameters vary in type and number for each of the three models, but always
include the role importance value vi, the agent’s utility u(aj, ri) at performing
role vi, and parameters of the model function—all for each role ri ∈ R(d).
The obtained fitted parameters for each of the models in the “vs-2”, “vs-
6”, and “vs-2-SmallDefense” tasks can be found in Tables 3, 4, 5, 6, and
7. We use the fitted parameters to calculate fitted results for teams of zero
to six offensive agents and zero to six defensive agents. Lastly, we translate
these fitted results into fitted decisions using the same methodology used to
translate the gold standard score differentials into gold standard decisions.

Now that we have gold standard decisions for each of the three tasks and
fitted decisions for all three models in the three tasks, we compare the num-
ber of times the gold standard decision (for example, ‘+o’) is statistically
significant but does not match the fitted decision for a particular team ar-
rangement (for example, ‘+d’)—in other words, the number of times the ad
hoc agent made an incorrect decision.

22

Parameter Initial vs-2 vs-6 vs-2-SmallDefense
u(∗, offense) 1 0.3456 0.2277 0.3508
u(∗, defense) 1 0.3010 0.2918 0.2827
voffense 1 0.3456 0.2277 0.3508
vdefense 1 0.3010 0.2918 0.2827

Table 3: Obtained fitted parameters for the Unlimited Role Mapping Model.

Parameter Initial vs-2 vs-6 vs-2-SmallDefense
u(∗, offense) 1 0.6764 0.2937 0.5437
u(∗, defense) 1 0.2924 0.2926 0.2849
voffense 1 0.6764 0.2937 0.5437
vdefense 1 0.2924 0.2926 0.2849
rmin
offense 1 1 1 1

rmin
defense 1 1 1 1

rmax
offense 3 1.2876 3.1476 2.0388

rmax
defense 3 3.3742 4.7504 3.2672

Table 4: Obtained fitted parameters for the Limited Role Mapping Model.

As is apparent from Table 8, all three incremental model functions per-
form rather well. Unfortunately we have yet to discover any clear insight as to
when each of the incremental model functions are most appropriate. Hence,
for now, it seems to be something that must be determined empirically for
each new domain using gold standard data.

In this Pacman domain, as can be seen in Table 8, the exponential and sig-
moidal functions of the incremental model make the fewest incorrect decisions
across the three tasks. Hence, we conclude that in the Pacman Capture-the-

Parameter Initial vs-2 vs-6 vs-2-SmallDefense
u(∗, offense) 1 0.5916 1.5926 0.4655
u(∗, defense) 1 0.5650 0.5630 0.5164
voffense 1 0.8081 0.1355 1.7277
vdefense 1 0.3675 0.1322 0.6257
koffense 1 -0.5163 -0.3232 -0.1447
kdefense 1 -0.2510 0.4069 -0.0622
xoffense 1 2.4560 1.6866 1.7287
xdefense 1 1.9180 1.4599 1.3864

Table 5: Obtained fitted parameters for the Logarithmic Incremental Value
Model.

23

Parameter Initial vs-2 vs-6 vs-2-SmallDefense
u(∗, offense) 1 1.1761 0.3837 1.0742
u(∗, defense) 1 0.3398 0.8327 0.1804
voffense 1 1.3387 0.4658 1.2690
vdefense 1 0.5712 0.1280 0.8254
goffense 1 0.9123 0.6285 0.2809
gdefense 1 0.5510 0.8831 0.7534
toffense 1 0.0706 0.9366 1.0924
tdefense 1 1.3116 1.1912 0.6606

Table 6: Obtained fitted parameters for the Exponential Incremental Value
Model.

Parameter Initial vs-2 vs-6 vs-2-SmallDefense
u(∗, offense) 1 1.8120 0.7068 1.9380
u(∗, defense) 1 1.7941 0.5136 0.6841
voffense 1 1.7544 0.6969 1.6301
vdefense 1 0.2533 0.4558 0.5369
soffense 1 1.3934 0.5801 1.2311
sdefense 1 0.5263 0.1577 0.4917
boffense 1 0.3318 1.1634 0.5131
bdefense 1 0.9327 1.3573 1.1455

Table 7: Obtained fitted parameters for the Sigmoidal Incremental Value Model.

Flag domain, at least on the maps and opponents we studied, the incremental
model using either an exponential function or a sigmoidal function most ac-
curately models team utility. However, to conclude this we generated a full
set of gold standard data for each of the three tasks, amounting to 49,000
games per task and used this data to fit the parameters of the model. Next
we consider how to use the chosen model for predictive modeling when sub-
stantially less gold standard data is available.

6.3. Predictive Modeling

The main research problem in role-based ad hoc teamwork is how to
choose a role for the ad hoc agent that maximizes marginal utility. This
problem is particularly important when the ad hoc agent is placed in a situ-
ation it has never encountered before.

Once a model type has been selected for a domain, the ad hoc agent can
use this model to predict the marginal utility of role selection on new tasks
in this domain for which we have limited gold standard data. Essentially

24

Model vs-2 vs-6 vs-2-Small
Defense

Unlimited Role Mapping 19/10 8/21 14/16
Limited Role Mapping 3/26 10/19 3/27
Logarithmic Incremental Value 3/26 2/27 1/29
Exponential Incremental Value 1/28 1/28 1/29
Sigmoidal Incremental Value 0/29 1/28 2/28

Table 8: The number of statistically significant incorrect/correct decisions made
by the ad hoc agent in each of the three tasks. Fewer incorrect and greater correct
decisions is desirable.

we want to be able to determine how the ad hoc agent should behave in
a new task—including never seen before situations—without the expense
of gathering substantial amounts of gold standard data for every scenario.
We do this by choosing fitted parameters for the new task based on the
data that is available. Remember that fitted parameters can be obtained
by inputting the gold standard data and the chosen model function into
Matlab’s lsqcurvefit algorithm, as this will fit the chosen model to the limited
gold standard data using a least squares curve fitting algorithm. Then these
fitted parameters can be used to calculate fitted results and fitted decisions,
which represent the decisions chosen by the agent given each possible set of
teammates.

Below we evaluate the accuracy of the incremental value model in our
Pacman domain on multiple tasks when various amounts of randomly se-
lected data is available for choosing fitted parameters. We use two new tasks
in this section, both against two opponents. One task “vs-2-alley” is on the
“AlleyDefense” map shown in Figure 3(a) and the other task “vs-2-33%” is
on the “33%Defense” map shown in Figure 3(b). Both the “AlleyDefense”
and “33%Defense” maps include a smaller defensive area than offensive area
for the team that the ad hoc agent is added to, but the alley in “Alley-
Defense” calls for the ad hoc agent to behave very differently than in the
“33%Defense” map where the opponent’s food pellets are relatively easy for
the ad hoc agent’s team to capture. Specifically, in the “33%Defense” map it
is desirable—up to a certain threshold—to add an offensive agent as long as
there is at least one defensive agent, whereas in the “AlleyDefense” map it
is desirable to have substantially more defensive agents than offensive agents
as long as there is at least one offensive agent.

25

(a) “AlleyDefense” Map (b) “33%Defense” Map

Figure 3: The maps used for the predictive modeling tasks.

Consider the case in which the ad hoc team agent is given, either through
experience or observation, randomly selected data points that represent some
sparse experience in a task, where a data point consists of the number of
agents fulfilling each role and the average gold standard data calculated over
25 games. We choose 25 games because this proved to be an appropriate
trade-off between the time required to collect data and the value of mini-
mizing incorrect predictions. However, in practice the agent will usually not
get to determine how many games it receives information about, and instead
must do the best it can with whatever experience it is given. Note that if
only one data point is used to fit the model, then score differentials from 25
games are required. Likewise, use of ten data points requires 250 (10*25)
games. Even if all forty-nine data points are used, only 1,225 (49*25) games
are required. To put these game numbers in perspective, we can usually run
500 games on our high-throughput computing cluster in under five minutes.

We evaluate the prediction accuracy of each of the three function varia-
tions of the incremental value model on two tasks for which we have limited
data ranging from one to forty-nine randomly selected data points. In this
experiment we endeavor to determine how many data points are needed to
obtain reasonable prediction accuracy — in other words, we want to find
the point at which it might not be worth obtaining additional data points.
Note that since a data point can not be selected more than once, all data
points are being used when forty-nine data points are selected. Prediction
accuracy is reported as the number of statistically significant incorrect pre-
dictions made by the model. Figure 4 shows the accuracy of each variation of
the chosen model on the “vs-2-alley” task, while Figure 5 shows accuracy on
the “vs-2-33%” task, both when given varying amounts of randomly selected
data points calculated from 25 games.

As would be expected, the accuracy of each variation of the chosen model

26

Figure 4: Accuracy of each variation of the incremental value model (averaged
over 1000 trials) using various amounts of randomly selected data points from 25
games in the “vs-2-alley” task.

improves steadily in both tasks as additional data points are used fit the
model. Note that in both tasks, using as few as ten data points yields about
as many incorrect predictions on average as using all forty-nine data points.
One interesting result to note is that in the “vs-2-alley” task, the incremental
model with the logarithmic function does worst of the incremental models,
whereas in the “33%Defense” task it does best. This performance variability
is acceptable — although the incremental model with either an exponential
function or a sigmoidal function was shown in the previous section to be best
for the Pacman Capture-the-Flag domain, it will not always be the absolute
best. What is notable is that the chosen model — the incremental model
with either an exponential function or a sigmoidal function in our domain —
does best or close to best in both tasks.

6.3.1. Importance of Determining the Fitted Parameters

In the previous section we presented the idea that once an ad hoc agent
has chosen a model for a particular domain, it can use this chosen model to
predict the marginal utility of role selection on new tasks in the same domain

27

Figure 5: Accuracy of each variation of the incremental value model (averaged
over 1000 trials) using various amounts of randomly selected data points from 25
games in the “33%Defense” task.

by using limited gold standard data to determine new fitted parameters for
the model.

However, how important is it to use limited gold standard data to deter-
mine appropriate fitted parameters for the chosen model function in a new
task? We found experimentally that if parameters fit on one task are used on
another task, the results can be quite poor. For example, using parameters
fit for the “vs-6” task (which yield one incorrect decision on the “vs-6” task)
yields 14 incorrect decisions on the “vs-2-33%” task. As such, it is almost
always important and worthwhile to find new fitted parameters when a new
task is encountered and there is opportunity to obtain any gold standard
data.

7. Conclusions and Future Work

This chapter presented a formalization of role-based ad hoc teamwork
settings, introduced several methods for modeling the marginal utility of
an ad hoc agent’s role selection, and empirically showed that each of these

28

methods is appropriate for a different class of role-based tasks. We assume in
this work that the roles of the teammates are known and that we know how
well some team configurations do in a particular task. However, we do not
know how much an ad hoc agent could help the team if added to each role. As
such, we show that it is possible to use a particular functional form to model
the marginal utility of a role selection in a variety of tasks. Additionally, we
show that only a limited amount of data is needed on a new task in order to
be able to fit the function such that it can be used as a predictive model to
determine how an ad hoc agent should behave in situations of a task that it
has not previously encountered.

This research is among the first to study role-based ad hoc teams. As
such, there are many potential directions for future work. One such direction
would be to expand this work into more complicated environments with more
than two potential roles to fulfill and more than one ad hoc agent. Another
direction would be to consider the case in which the ad hoc agents encounter
teammates that are running unfamiliar behaviors, as this would force the ad
hoc agents to model their teammates.

8. Acknowledgements

This work has taken place in the Learning Agents Research Group (LARG)
at UT Austin. LARG research is supported in part by NSF (IIS-0917122),
ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).

References

[1] P. Stone, G. A. Kaminka, S. Kraus, J. S. Rosenschein, Ad hoc au-
tonomous agent teams: Collaboration without pre-coordination, in:
Proceedings of the Twenty-Fourth Conference on Artificial Intelligence
(AAAI’10), 2010.

[2] B. J. Grosz, S. Kraus, Collaborative plans for complex group action,
Artificial Intelligence Journal 86 (2) (1996) 269 – 357.

[3] M. Tambe, Towards flexible teamwork, Journal of Artificial Intelligence
Research 7 (1997) 83–124.

[4] K. S. Decker, V. R. Lesser, Designing a family of coordination algo-
rithms, in: Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS’95), 1995.

29

[5] P. Stone, M. Veloso, Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time strategic teamwork, Artifi-
cial Intelligence Journal 110 (2) (1999) 241–273.

[6] S. Liemhetcharat, M. Veloso, Weighted synergy graphs for role assign-
ment in ad hoc heterogeneous robot teams, in: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’12), 2012.

[7] F. Wu, S. Zilberstein, X. Chen, Online planning for ad hoc autonomous
agent teams, in: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI’11), 2011.

[8] M. Bowling, P. McCracken, Coordination and adaptation in impromptu
teams, in: Proceedings of the Twentieth Conference on Artificial Intel-
ligence (AAAI’05), 2005.

[9] E. Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso, A. T. Stentz,
Dynamically formed heterogeneous robot teams performing tightly-
coordinated tasks, in: Proceedings of the International Conference on
Robotics and Automation (ICRA), 2006.

[10] J. Han, M. Li, L. Guo, Soft control on collective behavior of a group
of autonomous agents by a shill agent, Journal of Systems Science and
Complexity 19 (2006) 54–62.

[11] S. Barrett, P. Stone, S. Kraus, Empirical evaluation of ad hoc teamwork
in the pursuit domain, in: Proceedings of Eleventh International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’11),
2011.

[12] G. Sukthankar, K. Sycara, Policy recognition for multi-player tactical
scenarios, in: Proceedings of the Sixth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’07), 2007.

[13] H. H. Zhuo, L. Li, Multi-agent plan recognition with partial team traces
and plan libraries, in: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI’11), 2011.

30

[14] M. Blake, G. Sorensen, J. Archibald, R. Beard, Human assisted capture-
the-flag in an urban environment, in: Proceedings of the International
Conference on Robotics and Automation (ICRA), 2004.

[15] A. Sadilek, H. Kautz, Modeling and reasoning about success, failure, and
intent of multi-agent activities, in: Proceedings of the Twelfth Interna-
tional Conference on Ubiquitous Computing (UbiComp’10) - Workshop
on Mobile Context-Awareness, 2010.

[16] M. Mataric, Learning to behave socially, in: Proceedings of From Ani-
mals to Animats 3: The Third International Conference on Simulation
of Adaptive Behavior, 1994.

[17] K. Lerman, C. Jones, A. Galstyan, M. Mataric, Analysis of dynamic
task allocation in multi-robot systems, International Journal of Robotics
Research 25 (2006) 225–242.

[18] J. DeNero, D. Klein, Teaching introductory artificial intelligence with
pac-man, in: Proceedings of the First Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI’10), 2010.

31

