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Abstract— In this paper, we introduce the problem of en-
route destination changing for a self-driving car, and we study
the effectiveness of human-robot copilot systems as a solution.
The copilot system is one in which the autonomous vehicle
not only handles low-level vehicle control, but also continually
monitors the intent of the human passenger in order to respond
to dynamic changes in desired destination. We specifically
consider a vehicle parking task, where the vehicle must respond
to the user’s intent to drive to and park next to a particular
roadside sign board, and we study a copilot system that detects
the passenger’s intended destination based on gaze. We conduct
a human study to investigate, in the context of our parking task,
(a) if there is benefit in using a copilot system over manual
driving, and (b) if copilot systems that use eye tracking to
detect the intended destination have any benefit compared to
those that use a more traditional, keyboard-based system. We
find that the answers to both of these questions are affirmative:
our copilot systems can complete the autonomous parking task
more efficiently than human drivers can, and our copilot system
that utilizes gaze information enjoys an increased success rate
over one that utilizes typed input.

I. INTRODUCTION

There has recently been a great deal of interest in devel-
oping systems that are able to automate most automobile
driving tasks. In many cases, we seek to replace low-
level human control of the vehicle with control provided
by autonomous, or self-driving, systems. These autonomous
vehicles, which would operate according to a common set
of traffic and safety rules, are expected to provide safer
transportation, reduce driver stress, and improve their riders’
productivity.

A popular vision for self-driving cars is that of a passenger
pre-specifying a destination and the car autonomously ma-
neuvering to that destination. Under this paradigm, before the
system may begin its maneuver, the autonomous agent needs
to know the destination of its passenger as communicated
using, e.g., a keyboard or spoken command. Given the
specified destination, the agent may then begin autonomous
driving.

Consider, however, what might happen if the passenger
wishes to modify the destination during their trip (e.g.,
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Fig. 1: Depiction of autonomous parking task. Left: driving
simulator and controls available to users who performed
manual driving. Right: top-down illustration of autonomous
parking task for users who utilized a copilot system. The
car proceeds straight down the road at a fixed speed and
attempts to infer the user’s intended destination at pre-
specified decision points. As the car crosses the decision
point, the system attempts to infer whether or not the user’s
intended destination is the parking spot corresponding to that
decision point. If it is, the car autonomously parks there.

deciding to stop for lunch when the passenger happens
to notice a restaurant through the vehicle’s window). The
passenger would need to either respecify the destination
using the procedure described above, or disengage the au-
tonomous driving agent to take over steering and manually
drive there. Assuming we wish to avoid requiring the user
to drive manually, if the system is not explicitly designed to
accommodate this scenario, destination respecification may
prove to be too difficult; if the human is not able to quickly
instruct the vehicle, it may end up passing by the desired
destination.

In this paper, we explicitly consider the above problem,
i.e., en-route destination changing. Addressing en-route des-
tination changing requires new techniques that can enable a
higher speed of communication between the human and the
vehicle. Here, we propose and study one candidate technique:
a human-robot copilot system that not only handles low-level
vehicle control, but also continually monitors the passenger
in order to infer and respond to changes in destination in
a timely fashion. We are particularly interested in whether
or not the destination inference can be performed using
information obtained by monitoring the passenger’s eye gaze.
Our interest is inspired by neurophsychology studies that
have suggested that, by observing a partner’s gaze, humans
can infer their partner’s intention or goal towards a particular



object [1]. Indeed, several examples in the literature (e.g., [2],
[3], [4], [5], [6], [7]) have demonstrated that an autonomous
agent utilizing human gaze cues can better interpret the
human’s intent and thus make for a better partner. Here, we
posit that this information can also be useful in addressing
en-route destination changing.

We specifically consider a simulated parking task (illus-
trated in Figure 1) in which en-route destination changes
correspond to having the vehicle park next to a particular
roadside sign board. In the context of this task, we conduct
a human study and investigate the following questions:

1) Is there benefit in using a copilot system over manual
driving?

2) For a copilot system, is there any benefit in using gaze
tracking to detect a destination change versus a system
that instead uses a more traditional, keyboard-based
method of input?

We study these questions by having humans use a manual
driving system and two proposed copilot systems. Our first
copilot system, CopilotKey, is a more traditional, keyboard-
based system for detecting a destination change in which
the system gets the user’s intended destination from the
keyboard and plans a new path upon receiving a new
destination. The second copilot system, CopilotGaze, is a
gaze-based system for detecting destination changes in which
the system utilizes the recently-proposed dynamic interest
point detection (DIPD) technique [8] to recognize the user’s
intended destination based on gaze information. Once the
intended destination has been inferred, both copilot systems
plan a new path to the new location.

By analyzing the results of our user study, we find that
there is benefit to using the proposed copilot methods over
manual driving: the time to arrive at the intended destina-
tion is deterministic, and the vehicle speed undergoes less
fluctuation than in a manual driving counterpart. We also
find that there is benefit to using gaze information in our
copilot system compared to one that uses the keyboard:
participants using CopilotGaze tend to be more successful
at completing the parking task than those using CopilotKey,
especially when the vehicle is driving at a high speed.

The rest of this paper is organized as follows. In Section
II, we review previous works that relates to shared autonomy
and intention inference. Then, we describe our copilot system
in more detail in Section III, followed by the setup and results
for user experiments as well as the analysis of the experiment
data in Section IV. Finally, we discuss our observations and
conclude our work in Section V and Section VI, respectively.

II. RELATED WORK

Autonomous en-route destination changing is related to
work in both shared autonomy and intention inference. Our
problem is related to work in shared autonomy because it in-
volves balancing the autonomous system’s low-level control
of the vehicle with the human’s high-level control of which
destination the vehicle should go towards. The problem is
related to work in intent inference because it requires the
autonomous system to actively monitor cues from the human

and use these cues in order to infer the human’s intended
destination. In this section, we provide a review of the
literature in each of these areas. Importantly, to the best of
our knowledge, our work is one of the first that considers
these problems in the context of autonomous vehicles; we
are aware of only one other work which proposes the idea of
using an autonomous co-driver with a behavioral architecture
that enables co-driving [9].

A. Shared Autonomy

Work in shared autonomy focuses on designing techniques
that allow humans and autonomous systems to collaborate in
order to achieve a goal. One example where such systems are
desirable is robot teleoperation: requiring a human to control
every detail of the robot’s motion can be tedious. Moreover,
the user’s control may be noisy, or the user may not have
enough information to determine how the robot should be
controlled in order to achieve their goal. Work in shared
autonomy aims to address these issues by allowing the user
to cooperate with an autonomous agent so that the overall
goals can be more easily achieved.

Much of the existing work in shared autonomy uses a
predict-then-blend approach [10], [11], [12], [13]. Predict-
then-blend approaches can be viewed as ones that arbitrate
between the user’s policy and a fully-autonomous policy
[13], and the hope is that resulting policy helps the user
to achieve the goal more efficiently. These approaches first
predict the most likely goal from the user’s input, use this
goal to build a predicted user policy, and then blend this
policy with a fully-autonomous one. The policy blending is
done according to an arbitration function which is typically a
weighted summation, though selecting the specific function
often requires user studies.

Another approach described in the shared autonomy lit-
erature is to formulate the problem as one of optimizing
a partially observable Markov decision process (POMDP)
over the user’s goal [14], [15], [16], [17]. These approaches
assume that the user’s behavior is approximately optimal in
the context of a certain Markov decision process (MDP) that
contains information about their intended goal. The shared
autonomy agent, which does not know the intended goal,
models the system as a POMDP that includes observations
of the human, and uses techniques from this field in order
to try to execute optimal assistive behaviors.

The approach we study in this paper is closely related
to predict-then-blend approaches. In the copilot systems we
design, the autonomous agent seeks to infer the intended
goal of the user and effectively blends this information with
its current policy as a means by which to steer the vehicle
toward the intended goal.

B. Intention Inference

Work in the area of human intention inference focuses
on using state and/or action observations of the human in
order to reason about the human’s plans and goals [18], [19],
[20], [21], [22]. In contrast to human intention inference,
another kind of work studies how to present robot intentions



Fig. 2: A diagram of a copilot system in a driving testbed. CopilotKey interfaces with the user via a keyboard, while
CopilotGaze monitors the user using an eye tracker. Each copilot system attempts to infer the user’s intended destination
from the corresponding input, and then the autonomous agent modifies the low-level vehicle behavior in response.

to humans (e.g., [23]). Our work is more related to techniques
about human intention inference, i.e., those that seek to
provide autonomous systems with the ability to determine the
intent of humans. Since the techniques we study here utilize
bio-sensing data to infer a human’s intended destination, we
now review the literature related to bio-sensing data-driven
approache s.

Humans’ physical status (e.g., pose, action, and other
physiological signals) and their interaction with the surround-
ing environment can sometimes reveal their intent. Therefore,
intention inference can be partially achieved by analyzing
one or more of these physical statuses. For example, plan
and intention information may be inferred from human
speech [24], [25]. Some work has shown that modeling the
relationship between human poses and objects in an image
can be used to infer the person’s next activity [26], [27].
In a driving application, head motion has been used as an
important cue for predicting a driver’s intent to change lanes
[28]. Further, employing multi-modal data including GPS,
speed, street maps, and driver’s head movement can allow
an ADAS (advanced driver assistance system) to anticipate
the driver’s future maneuvers [29].

Gaze cues, which implicitly include head pose informa-
tion, can be particularly useful when attempting to infer
human intent as it pertains to finer-grained points of interest
(e.g., shop signs far away from a driver). In human-agent
collaboration tasks, it is sometimes assumed that the human
intends to interact with particular objects on the table [30].
In this paper, we assume that the human’s intent is associated
with a particular spatial location and, therefore, that the intent
inference problem is simply that of inferring that location.
With this goal in mind, a deep learning based method was
recently proposed that combines gaze and saliency maps in
order to form a predicted gaze direction [31]. The method
was shown to be useful in both surveillance and human-
robot teaming as a means by which to understand a person’s
intention from a third party perspective. In cases where the
person’s face and gaze targets were captured by different

cameras, one needs to correlate the gaze tracking data from
the face camera with the objects from the scene camera. Prior
work on DAS has shown how to correlate a diver’s gaze with
road signs in the environment [2]. The system calculates the
disparity between the scene camera and gaze angles for the
sign, and then uses this disparity to determine whether or
not the driver sees the road sign. Another approach is to
divide the scene into several regions and train a classifier
on a dataset which contains the face images with annotated
regions to predict the region of user attention. For example,
nine gaze zones in the vehicle such as driver’s front, rear
view mirror, passenger’s front, etc., were defined and a CNN
classifier was trained to categorize the face images into the
predefined fixed nine gaze zones so as to recognize the
point of driver’s attention [3]. In other application areas such
as hand-eye coordination tasks and player-adaptive digital
games, machine learning-based methods (e.g., SVM, kNN,
LSTM, ...) have been shown to be effective in predicting user
intent from gaze observations [6], [7].

Because the en-route destination changing problem hap-
pens in a highly dynamic environment, the methods we
study infer intent either through keyboard input or through
gaze input via the recently-proposed Dynamic Interest Point
Detection (DIPD) technique [8]. DIPD is a technique for
inferring the point of interest corresponding to the human’s
intent from eye-tracking data and an environment video. The
technique correlates the scene shown in the environment
video with the human’s gaze point to infer the human’s
point of interest and deals with various sources of errors
such as eye blinks, high-speed tracking misalignment, and
shaking video content. These advantages make DIPD useful
for vehicle applications and we use it for our CopilotGaze
copilot system.

III. HUMAN-ROBOT COPILOT SYSTEM

As a means by which to study the questions set out in
Section I, we propose here a simple human-robot copilot
system that uses human intent recognition to influence the



behavior of the autonomous agent. Figure 2 shows the block
diagram of the proposed system. Our copilot system includes
both an intention inference engine and an autonomous agent.
The goal of the intention inference engine is to detect the
user’s intended destination in the context of the surrounding
environment. Based on that detection, the autonomous agent
then performs path-planning and vehicle control in order to
move toward a new destination.

For our study, we develop two kinds of copilot systems.
The first is CopilotGaze, where the user’s intended desti-
nation is inferred based on gaze observations obtained by
an eye tracker. The second is CopilotKey, where the user’s
intention is obtained from keyboard input. For CopilotGaze,
the intention inference engine utilizes the Dynamic Interest
Point Detection (DIPD) algorithm [8] in order to infer
the point of interest corresponding to the user’s intended
destination using gaze tracking data and a dynamic Markov
Random Field (MRF) model. For CopilotKey, the intention
inference engine is simply a text-matching procedure that
assumes the intended destination is the closest sign board
with the same color and shape that was indicated using the
keyboard. In both systems, while the car is autonomously
following a predefined path, the intent inference engines will
report one (or none) of the sign boards in the driving scene
as the user’s intended destination for each simulation time
step. 1

Both of the proposed copilot systems utilize the same
autonomous agent for vehicle control. First, we define a
safe parking margin ahead of each parking spot, and we
call the rear boundary of this margin the decision point.
There is a unique decision point for every possible parking
spot. When the car reaches a decision point, the copilot
system needs to decide whether to autonomously park the
car in the corresponding parking spot or not. If the inferred
point of interest at a decision point is the same as the
corresponding sign board, the autonomous agent slows the
vehicle and follows a pre-defined feasible trajectory to park
the car in the parking spot. Otherwise, the autonomous agent
continues forward. The procedure is shown in Algorithm 1
and illustrated on the right side of Figure 1. The safe parking
margin (and hence the location of the decision point) should
be a function of the vehicle speed, car model, and horizontal
distance to the parking spot, not a constant value.

IV. EXPERIMENTS

In this section, we describe the user study that we per-
formed in order to answer the questions stated in Section I.
That is, we seek to answer experimentally whether there is
benefit to the proposed copilot system versus manual driving,
and whether inference from gaze helps our copilot system. To
do this, we recruited 15 human participants living in Taiwan
between the ages of 23 and 46 comprised of 6 females and
9 males. Each participant had a driver’s license, and five of
them had no or very little scientific background. Participants

1A sample video of the system is available at http://www.cs.
utexas.edu/~larg/index.php/Gaze_and_Intent.

Algorithm 1 Autonomous parking procedure in the proposed
human-robot copilot system.

1: procedure COPILOTPARK
2: isParking = false
3: inferredPOI = null
4: parkGoal = null
5: brakeDistance = safe parking margin
6: while autonomous parking is enabled do
7: carPosition = current car position
8: inferredPOI = DIPD(gaze point, scene)
9: if not isParking then

10: if distance(inferredPOI, carPosition) >
brakeDistance then

11: parkGoal = inferredPOI
12: if parkGoal != null and distance(parkGoal’s

decision point, carPosition) <= brakeDistance then
13: isParking = true
14: Park the car based on a pre-defined tra-

jectory while slowing down the car.
15: else
16: Continue forward.

were asked to test a manual driving system, the CopilotKey
system, and the CopilotGaze system (as shown in Fig. 3)
using a driving simulator. The vehicle information and user
input data recorded by the driving simulator in each task are
used to evaluate the manual driving system and the copilot
systems in terms of vehicle trajectory, task completion time
(i.e. arrival time to the parking destination), number of user
actions, and success rate of completing the parking task.

A. Experiment Setup

In order to compare the performance of the three systems
studied in our work (i.e., manual driving, CopilotKey, and
CopilotGaze), all of our human participants were asked to
perform three tasks:

1) Task 1 users controlled a non-autonomous car using
a steering wheel and pedals. The steering wheel sim-
ulates turning left and turning right, and the pedals
simulate accelerating and braking. The users needed
to manually drive the vehicle to the parking spot as if
they were driving a real car.

2) Task 2 users operated the CopilotKey copilot system
that uses a keyboard to communicate the intended
destination. The users indicated to the autonomous
vehicle where they would like to park by typing on
a keyboard the color and shape of the sign board next
to the intended parking spot.

3) Task 3 users operated the CopilotGaze copilot system
that uses a gaze-based intention inference algorithm
[8]. The users indicated to the autonomous vehicle
where they would like to park simply by looking at
the sign board next to the parking spot.

For each task, we had the users sit in front of a computer
monitor attached to a computer that ran our driving simulator.



(a) Manual driving system (b) CopilotKey copilot system (c) CopilotGaze copilot system

Fig. 3: Experimental setup for manual driving system and each copilot system. Left: the manual driving system includes
a steering wheel, pedals, and a desktop screen to display the driving scene. Middle: the CopilotKey copilot system includes
a traditional keyboard and a desktop screen. Right: the CopilotGaze copilot system includes a desktop screen with an eye
tracker attached to its bottom rim.

The simulator utilizes a car model that simulates vehicle
physics under the control of steering wheel, accelerator, and
brake. The driving simulator was designed using Unity3D
[32]. The screen shows the road scene which, for our parking
task, includes multiple sign boards with a parking spot next
to each. Each sign board depicts a colored shape, where the
specific color and shape were randomly generated for each
trial such that users could not anticipate what they would
be. Each shape was one of the set {square, triangle, star,
circle}. Colors belonged to the set {red, yellow, blue, green,
and orange}. Hence, in total, 20 different signs are possible.
Additionally, in each trial, we ensured that at least two of
the signs were the same. This was done introduce ambiguity
similar to that of real-world driving scenarios where a user
may not be able to clearly differentiate between similar
signs or know what to say but does know where to look.
A depiction of the systems used by each of the three tasks
is shown in Figure 3.

We asked the participants to do their best to get the car
to park in a particular parking spot. To communicate to
participants which spot they should try to park in, we used a
brief priming phase before the vehicle started moving or the
participant could control the car. During the priming phase,
a yellow arrow specified the goal parking spot. Participants
were then allowed to press a start button on the screen to
begin the trial, after which the yellow arrow disappeared
and the car began to move (either by manual driving or by
autonomous driving agent). After the start for the copilot
systems, the car moves straight ahead at a fixed initial speed
and only parks at the destination if the system identifies it

at the decision point through the intent inference engine.
After the start for the manual condition, the car responded
to the participant’s pedal and steering wheel control. These
experiments are repeated for goals specified at different
distances from the start (23.1 meters, 77.2 meters, and 131.2
meters) and, in the case of the copilot trials, different speeds
(15 km/hr, 30 km/hr, and 45 km/hr).

In order to analyze the performance of each system, we
collected vehicle information, user commands, car trajectory,
and task success rate. In particular, we timestamped and
logged the (x, y) location of the car, the human driving com-
mands (i.e., left/right/accelerate/brake/none), and whether or
not the task had been completed successfully for every
frame during each trial. These data were then post-processed
to calculate the 2D trajectory, arrival time to the parking
destination, number of user operations, and vehicle speed.
Users in each task were allowed to practice driving in the
simulation testbed for 3-4 times to get familiar with the
system before the experiments actually started. Here, practice
means controlling the car using a steering wheel and pedals
(for Task 1 users), communicating the intended destination
via a keyboard (for Task 2 users), or communicating the
intended destination using gaze (for Task 3 users), depending
on the specific task.

For each of the questions of interest, we have a separate
hypothesis. First, due to an autonomous system’s ability to
efficiently and reliably perform low-level vehicle control, we
hypothesize that we will observe benefit in using copilot sys-
tems versus manual driving for our task. Second, due to the
speed with which gaze information can be communicated and



Fig. 4: Comparison of manual driving mode and copilot
modes when the intended destination is correctly in-
ferred. Each column of graphs represents the measures for
a different set of trials, where each column represents trials
conducted where the intended goal was at a different distance
from the vehicle’s starting position. Each row corresponds to
a different measure. Top: Vehicle’s coordinates (x, y) along
the trajectory. All copilot data overlaps and so only the
15 Km/h line is visible. Bottom: Distance to goal versus
time. User average and user standard deviation refer to data
recorded in the manual driving condition. This figure is best
viewed in color.

the usefulness of this information in helping to resolve spatial
ambiguity, we hypothesize that our CopilotGaze system will
be more successful than our CopilotKey system.

B. Experimental Results

To help answer our first question, Figure 4 compares data
from users that used the manual driving system with those
that used one of the copilot systems in trials with successful
destination inference. From the top row, it is clear that the
vehicle trajectories generated by the copilot system are both
smoother and lower-variance. From the bottom row, it can
be seen that, especially when the autonomous system was
moving at higher speeds, the copilot system allowed the users
to reach their intended goal more quickly than when they
drove there manually.

Table I reports the mean and standard error of the number
of user actions required for a participant to reach their
intended goal for both the manual driving system and the
CopilotKey system. We do not report any action information
for the CopilotGaze system because the users can reach the
goals just by gazing at the sign board next to the intended
parking destination. In the manual driving system, actions
occur when users turn the steering wheel to the left or
right, or press or release the accelerator or brake pedals.
In the CopilotKey system, actions occur when users press
a key, regardless of whether or not the users achieve the
correct goal. Since the number of actions for the CopilotKey
system is related to the number of characters that describe

TABLE I: The number of user actions required for
reaching an intended goal. The table shows the mean and
standard error (in parentheses) of the number of user actions
that were performed by our study’s participants. There is no
number reported for the CopilotGaze system since the users
control the system using only their eye gaze. We see that
manual driving requires more user activity than either of the
copilot systems we study.

Manual driving CopilotKey
Short Distance Goal 41.93 (2.41) 12.87 (1.60)

Middle Distance Goal 44.80 (4.21) 13.20 (3.24)
Long Distance Goal 44.60 (4.13) 13.18 (1.55)

the sign board, we only prompted users with sign boards of
similar description length: “blue square" was used for the
short and middle distance goals, and “orange circle" for the
long distance goal. In other words, the minimum number of
user actions required for reaching the short distance goal,
middle distance goal, and long distance goal are 12, 12,
and 14, respectively, each achieved using the CopilotKey
system. Some users performed more actions because they
needed to correct their wrong typing during each trial, while
others performed fewer actions because they failed to type
the entire description of the sign board before the car passed
the sign. Overall, we see that manual driving required more
user activity - in an order of fifty driving actions compared to
an order of 10 character key-in (e.g. "blue square" and press
the ENTER key) required by CopilotKey and gaze activity
required by CopilotGaze.

Figure 5 depicts the experimental results related to our
second question (i.e., for a copilot system, is there any benefit
in using gaze tracking to detect a destination change versus a
system that instead uses a more traditional, keyboard-based
method of input?). It shows the average success rate (and
standard error of this statistic) of users for each of our copilot
systems, CopilotKey and CopilotGaze as the autonomous
vehicle’s speed was increased. We can see that, in trials
where the vehicle moved more slowly, both systems do
very well and have approximately the same performance.
However, as the speed is increased, we see that the success
rate of CopilotGaze only decreases slightly, while the success
rate of CopilotKey decreases significantly. We ran a Student’s
t-test between the CopilotKey task and the CopilotGaze task,
and found that CopilotGaze system leads to a significantly
higher success rate for each vehicle speed shown (p =
0.019188 for 15km/h, p = 0.0021075 for 30km/h, and p =
5.0517e-006 for 45km/h).

V. DISCUSSION

As passenger vehicles become more autonomous, the
interaction between these vehicles and their drivers will
change. For example, a driver choosing the remove their
hands from the steering wheel of an autonomous vehicle
may not necessarily mean that the driver intends to stop
steering the vehicle. Therefore, these vehicles will require
new methods of detecting and incorporating driver intent.
As a limited example of this new paradigm, we studied the



Fig. 5: Success rate of CopilotKey and CopilotGaze sys-
tems. The figure compares the average success rate of
participants completing the autonomous parking task using
either the CopilotKey or CopilotGaze system at different
initial driving speeds. The height of the thick bars indicate
the mean value of success rate averaged over participants,
and the error bars indicate the standard error of this statistic.

benefit of a collaborative human-robot copilot system in the
context of a vehicle parking task we designed in which the
autonomous system is tasked with inferring en-route changes
in the human driver’s goal.

We first investigated if there is benefit in using a copilot
system over manual driving in the context of our parking
task. We hypothesized that there would be benefit, and the
experimental data appears to support this hypothesis. In
particular, we found benefit in that vehicle trajectories had
lower variance in the copilot conditions, task completion was
achieved more quickly in the copilot conditions, and the
copilot conditions required fewer user actions. One factor
that may have contributed to these results is the skill of
human drivers: unskillful drivers may exhibit more oscil-
latory behavior as they try to determine which controls to
apply in order to achieve the intended goal. Assuming that
the intended destination was inferred correctly, autonomous
vehicles, with a model of the vehicle dynamics and explicit
knowledge of the goal, do not suffer from this behavior.
Moreover, in our experiments, the copilot systems were
actually able to achieve a faster vehicle speed than that
achieved in the manual driving condition. These results imply
copilot systems may be more time and energy-efficient, safer,
and more comfortable than manual driving.

We also hypothesized that CopilotGaze would perform
better than CopilotKey, and indeed the data support this
hypothesis as well. We believe that a few factors could
contribute to why utilizing gaze information leads to a higher
rate of successfully-inferred destinations. First, CopilotKey
users may not have enough time to key in their intended
point of interest before the vehicle passes the decision point.
This could be due to, for example, individual typing speed

or sign description word length. CopilotGaze would not be
affected by these temporal issues because of the speed at
which the human can shift their gaze and the system can
detect that shift. A second contributing factor might have
been destination ambiguity. Because some of the sign board
icons were identical in shape and color, CopilotKey users
may have found it difficult to specify a particular board
using only text input. For example, two sign boards may have
both depicted a red triangle, and so typing the phrase “red
triangle" would not be enough information for the system to
know which sign board in particular was the user’s intended
destination. CopilotGaze, on the other hand, would not be
affected by this form of ambiguity since each sign has a
unique spatial position that corresponds to unique user gaze
behavior.

One may also envision alternative copilot systems that
employ other modalities of human input, e.g., speech and
touch. While designing and testing such systems are outside
the scope of the current work, we argue here for the unique
advantages of employing gaze instead of relying on only
these modalities. A copilot system that uses speech input
rather than keyboard would provide a slightly-faster method
of communication, but such a system might still suffer from
the ambiguity issue discussed above. A copilot system that
utilizes a touch-based inference system may resolve this
ambiguity issue, however, it requires drivers to shift their
attention to the touch screen, which might lead to greater
driver reaction time and therefor pose a safety concern.

Another point we address here is that of ambiguous gaze
patterns. While it certainly warrants future study to analyze a
diversity of possible human gaze patterns, we might consider,
for example, a situation in the vehicle is closing in on a
supermarket, and the driver happens to attend to a passing
car near the supermarket sign. In such a situation, uur
CopilotGaze system would not falsely infer the supermarket
as the en-route destination because the supercar moves at
different speed than the supermarket from the driver’s view,
and therefore the DIPD technique, which considers dynamic
tracking and time consistency in its algorithm [8], would
infer the driver is not “tracking" the supermarket.

In future work, we plan to investigate ways improve the
gaze tracking accuracy and the intent inference algorithm -
both of which we believe would improve the success rate of
the CopilotGaze system. Another interesting direction would
be to include other vehicles in the scene and have real-time
traffic simulation.

VI. CONCLUSION

In this paper, we studied the effectiveness of human-robot
copilot systems in addressing the challenge of autonomous
en-route destination changing situation. We analyzed such
systems in the context of a parking task, where the pas-
senger’s intent is to go to and park next to a particular
sign board. A human study was conducted to investigate
whether there is benefit in using a copilot system over
manual driving, and whether a gaze-based copilot system
has benefit compared to a more traditional keyboard-based



system for detecting intent. Our experiment results showed
that copilot systems could be operated in a more time-
efficient manner, with less variability in vehicle trajectory.
Further, we found that a copilot system using gaze for
detecting user’s intent can result in higher success rates
since it enables fast communication between the human
passenger and the machine and resolves ambiguity that may
be present in language-based destination specification. This
work verified that including gaze-based intention inference
in a copilot system is worthwhile, and it paves the way to
future research that aims to improve the effectiveness and
efficiency of human-robot copilot systems.

ACKNOWLEDGMENTS

The author would like to thank Mike Huang and MingXi
Lee from Mindtronic AI for their valuable inputs and help
on setting up the autonomous vehicle parking system for
user experiments. They would also like to thank Justin
Hart for helpful discussions. This work has taken place
in the Learning Agents Research Group (LARG) at the
Artificial Intelligence Laboratory, The University of Texas
at Austin. LARG research is supported in part by grants
from the National Science Foundation (CNS-1305287, IIS-
1637736, IIS-1651089, IIS-1724157), The Texas Department
of Transportation, Intel, Raytheon, and Lockheed Martin.
Peter Stone serves on the Board of Directors of Cogitai,
Inc. The terms of this arrangement have been reviewed and
approved by the University of Texas at Austin in accordance
with its policy on objectivity in research.

REFERENCES

[1] A. J. Calder, A. D. Lawrence, J. Keane, S. K. Scott, A. M. Owen,
I. Christoffels, and A. W. Young, “Reading the mind from eye gaze,”
Neuropsychologia, vol. 40, no. 8, pp. 1129–1138, 2002.

[2] L. Fletcher, G. Loy, N. Barnes, and A. Zelinsky, “Correlating driver
gaze with the road scene for driver assistance systems,” Robotics and
Autonomous Systems, vol. 52, no. 1, pp. 71–84, 2005.

[3] I.-H. Choi, S. K. Hong, and Y.-G. Kim, “Real-time categorization of
driver’s gaze zone using the deep learning techniques,” in Big Data
and Smart Computing (BigComp), 2016 International Conference on.
IEEE, 2016, pp. 143–148.

[4] M. Tall, A. Alapetite, J. San Agustin, H. H. Skovsgaard, J. P. Hansen,
D. W. Hansen, and E. Møllenbach, “Gaze-controlled driving,” in
CHI’09 Extended Abstracts on Human Factors in Computing Systems.
ACM, 2009, pp. 4387–4392.

[5] Y. Matsumotot, T. Ino, and T. Ogsawara, “Development of intelligent
wheelchair system with face and gaze based interface,” in Robot and
Human Interactive Communication, 2001. Proceedings. 10th IEEE
International Workshop on. IEEE, 2001, pp. 262–267.

[6] Y. Razin and K. M. Feigh, “Learning to predict intent from gaze during
robotic hand-eye coordination.” in AAAI, 2017, pp. 4596–4602.

[7] W. Min, B. Mott, J. Rowe, R. Taylor, E. Wiebe, K. E. Boyer, and
J. Lester, “Multimodal goal recognition in open-world digital games,”
2017.

[8] Y.-S. Jiang, G. Warnell, and P. Stone, “DIPD: Gaze-based intention
inference in dynamic environments,” 2018.

[9] M. Da Lio, F. Biral, E. Bertolazzi, M. Galvani, P. Bosetti, D. Win-
dridge, A. Saroldi, and F. Tango, “Artificial co-drivers as a universal
enabling technology for future intelligent vehicles and transportation
systems,” IEEE Transactions on intelligent transportation systems,
vol. 16, no. 1, pp. 244–263, 2015.

[10] A. Fagg, M. Rosenstein, R. Platt, and R. Grupen, “Extracting user
intent in mixed initiative teleoperator control,” in AIAA 1st Intelligent
Systems Technical Conference, 2004, p. 6309.

[11] D. Aarno, S. Ekvall, and D. Kragic, “Adaptive virtual fixtures for
machine-assisted teleoperation tasks,” in Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Con-
ference on. IEEE, 2005, pp. 1139–1144.

[12] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a
robot manipulator using a vision-based human-robot interface,” IEEE
transactions on industrial electronics, vol. 52, no. 5, pp. 1206–1219,
2005.

[13] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, 2013.

[14] O. Macindoe, L. P. Kaelbling, and T. Lozano-Pérez, “POMCoP: Belief
space planning for sidekicks in cooperative games,” in AIIDE, 2012.

[15] T.-H. D. Nguyen, D. Hsu, W. S. Lee, T.-Y. Leong, L. P. Kaelbling,
T. Lozano-Perez, and A. H. Grant, “CAPIR: Collaborative action
planning with intention recognition,” in AIIDE, 2011.

[16] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A.
Bagnell, “Shared autonomy via hindsight optimization for teleopera-
tion and teaming,” arXiv preprint arXiv:1706.00155, 2017.

[17] S. Javdani, J. A. Bagnell, and S. S. Srinivasa, “Minimizing user cost
for shared autonomy,” in Human-Robot Interaction (HRI), 2016 11th
ACM/IEEE International Conference on. IEEE, 2016, pp. 621–622.

[18] K. Yordanova, S. Whitehouse, A. Paiement, M. Mirmehdi, T. Kirste,
and I. Craddock, “What’s cooking and why? behaviour recognition
during unscripted cooking tasks for health monitoring,” in Pervasive
Computing and Communications Workshops (PerCom Workshops),
2017 IEEE International Conference on. IEEE, 2017, pp. 18–21.

[19] L. M. Hiatt, A. M. Harrison, and J. G. Trafton, “Accommodating
human variability in human-robot teams through theory of mind,”
in IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, vol. 22, no. 3, 2011, p. 2066.

[20] M. Ramırez and H. Geffner, “Goal recognition over POMDPs: Infer-
ring the intention of a POMDP agent,” in IJCAI. IJCAI/AAAI, 2011,
pp. 2009–2014.

[21] G. Kaminka, “Comparing plan recognition algorithms through stan-
dard libraries,” 2018.

[22] R. G. Freedman, Y. R. Fung, R. Ganchin, and S. Zilberstein, “Towards
quicker probabilistic recognition with multiple goal heuristic search,”
2018.

[23] A. Watanabe, T. Ikeda, Y. Morales, K. Shinozawa, T. Miyashita,
and N. Hagita, “Communicating robotic navigational intentions,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 5763–5769.

[24] S. Carberry, Plan recognition in natural language dialogue. MIT
press, 1990.

[25] J. Stephanick, R. Eyraud, D. J. Kay, P. van Meurs, E. Bradford, and
M. R. Longe, “Method and apparatus utilizing voice input to resolve
ambiguous manually entered text input,” May 18 2010, uS Patent
7,720,682.

[26] H. Koppula and A. Saxena, “Learning spatio-temporal structure from
rgb-d videos for human activity detection and anticipation,” in Inter-
national Conference on Machine Learning, 2013, pp. 792–800.

[27] V. Delaitre, J. Sivic, and I. Laptev, “Learning person-object interac-
tions for action recognition in still images,” in Advances in neural
information processing systems, 2011, pp. 1503–1511.

[28] A. Doshi and M. Trivedi, “A comparative exploration of eye gaze
and head motion cues for lane change intent prediction,” in Intelligent
Vehicles Symposium, 2008 IEEE. IEEE, 2008, pp. 49–54.

[29] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena, “Car that
knows before you do: Anticipating maneuvers via learning temporal
driving models,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 3182–3190.

[30] H. Ravichandar, A. Kumar, and A. Dani, “Bayesian human intention
inference through multiple model filtering with gaze-based priors,” in
Information Fusion (FUSION), 2016 19th International Conference
on. IEEE, 2016, pp. 2296–2302.

[31] A. Recasens, A. Khosla, C. Vondrick, and A. Torralba, “Where are
they looking?” in Advances in Neural Information Processing Systems,
2015, pp. 199–207.

[32] unity, Unity official website, https://unity3d.com/, 2017.


