
In Proc. Symposium on Abstraction, Reformulation, and Approximation (SARA-05)

Function Approximation via Tile Coding:
Automating Parameter Choice

Alexander A. Sherstov and Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
{sherstov, pstone }@cs.utexas.edu

Abstract. Reinforcement learning (RL) is a powerful abstraction of sequential
decision making that has an established theoretical foundation and has proven
effective in a variety of small, simulated domains. The success of RL on real-
world problems with large, often continuous state and action spaces hinges on
effectivefunction approximation.Of the many function approximation schemes
proposed,tile codingstrikes an empirically successful balance among represen-
tational power, computational cost, and ease of use and has been widely adopted
in recent RL work. This paper demonstrates that the performance of tile coding
is quite sensitive to parameterization. We present detailed experiments that iso-
late the effects of parameter choices and provide guidance to their setting. We
further illustrate thatno single parameterizationachieves the best performance
throughout the learning curve, and contribute anautomatedtechnique for adjust-
ing tile-coding parameters online. Our experimental findings confirm the superi-
ority of adaptive parameterization to fixed settings. This work aims to automate
the choice of approximation scheme not only on a problem basis but also through-
out the learning process, eliminating the need for a substantial tuning effort.

1 Introduction

Temporal-difference reinforcement learning (RL) is a powerful machine-learning
methodology that has an established theoretical foundation and has proven effective
in a variety of small, simulated domains. The application of RL to practical problems,
however, is problematic due to their large, often continuous state-action spaces. Re-
cently RL has been successfully applied to larger problems, including domains with
continuous state-action spaces. The success of RL in such cases critically depends on
effectivefunction approximation, a facility for representing the value function concisely
at infinitely many points and generalizing value estimates to unseen regions of the state-
action space.

A variety of function approximation methods for RL have been proposed, including
simple discretization, radial basis functions, instance- and case-based approximators,
and neural networks [1]. These methods trade off representational power, computational
cost, and ease of use.Tile coding[2] is a linear function-approximation method that
strikes an empirically successful balance along these dimensions and has been widely
adopted in recent work [3, 1, 4–6]. The success of tile coding in practice depends in

large part on parameter choices. We are not aware of any detailed studies of the effects
of parameters in tile coding, an omission we set out to address.

This paper makes two chief contributions. First, we present a controlled empirical
study of the effects of parameters in tile coding. While it is natural to expect the right
parameterization to depend on theproblemat hand, we additionally demonstrate that no
single parameterization achieves the best performance on thesameproblem throughout
the learning curve. Our analysis isolates the causes of these phenomena. Second, this
paper contributes an automated scheme for adjusting tile-coding parameters online. We
demonstrate the superiority of online parameter adjustment to any fixed setting.

Our work on adaptive parameterization in tile coding automates the choice of an
appropriate approximation scheme for any given RLproblemand learning stage. The
designer need only specify a parameter range, leaving it up to the algorithm to de-
termine the right settings throughout execution. Viewed differently, our work unifies
fixed approximation schemes into a more powerful and generic scheme. We validate
our insights empirically in the context of RL, arguably the most realistic and successful
abstraction of sequential decision making to date.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of RL and describes tile coding and our testbed domain. Experimental re-
sults in multiple learning settings and an accompanying analysis are presented in Sec-
tions 3 and 4, respectively. Section 5 builds on those findings to propose an automated
parameter-adjustment scheme and demonstrates its effectiveness empirically. Section 6
concludes with a summary.

2 Preliminaries

This section introduces reinforcement learning (RL) and tile coding and describes the
testbed domain used in our experiments.

2.1 Reinforcement learning

In RL [2], a learner is placed in a poorly understood, possibly stochastic and non-
stationaryenvironment. The learner interacts with the environment at discrete time
steps. At every time step, the learner can observe and change the environment’sstate
through itsactions. In addition to state changes, the environment responds to the
learner’s actions with areward, a scalar quantity that represents the immediate utility
of taking a given action in a given state. The learner’s objective is to develop apolicy (a
mapping from states to actions) that maximizes its long-term return.

Formally, an RL problem is given by the quadruple〈S,A, t, r〉, whereS is a finite
set of states;A is a finite set of actions;t : S × A → Pr(S) is a transition function
that specifies the probability of observing a certain state after taking a given action in a
given state; andr : S × A → R is areward functionthat specifies the expected reward
upon taking a given action in a given state. Given a stream of rewardsr0, r1, r2, . . . , the
associated return is defined as

∑∞
i=0 γiri, where0 ≤ γ ≤ 1 is thediscount factor. The

learner experiences the world as a sequence of states, actions, and rewards, with no prior
knowledge of the functionst andr. A practical vehicle for learning in this setting is the

value functionQπ : S × A → R that yields the expected long-term return obtained
by taking a certain action in a given state and following policyπ thereafter. The widely
used Q-learning algorithm [7] maintains and iteratively updates an approximation to the
Q-value function of the optimal policy.

2.2 Tile coding

In practical applications of RL, states and actions are defined by continuous parameters
such as distances and voltages. As a result, the setsS andA are typically large or
infinite, and learning the value function requires some form offunction approximation.
In tile coding, the variable space is partitioned intotiles. Any such partition is called
a tiling. The method uses several overlapping tilings and for each tiling, maintains the
weights of its tiles. The approximate value of a given point is found by summing the
weights of the tiles, one per tiling, in which it is contained. Given a training example,
the method adjusts the weights of the involved tiles by the same amount to reduce the
error on the example.

Figure 1 illustrates tile coding as it is used in this paper. The variable space consists
of a single continuous variablex. The tiles are all the same width and adjacent tilings
are offset by the same amount, the type of tiling organization we refer to ascanonical.
Figure 1 also illustrates the computation of value estimates. A tiling organization such
as those in Figure 1 is given by tile widthw and the number of tilingst. The ratiow/t
is theresolutionof a tiling organization. Speaking of tiling organizations that provide
the same resolution, we refer to the number of tilings as thebreadth of generalization
since tiling organizations with more tilings generalize more broadly. This happens be-
cause the span of the tiles activated by an update grows with the number of tilings. A
degenerate form of tile coding is straight discretization (the organization with a single
tiling in Figure 1), which does not generalize across tile boundaries.

xt = w =2, 2/3 1t = w = x3,x1/31t = w =,

Fig. 1: One-, two-, and three-tiling canonical organizations with the same resolutionr = 1/3.
The number of tilingst and tile widthw are specified for each organization. In each case, the
weights of the highlighted tiles are summed to obtain the value estimate for the indicated point.

Note that tile coding is apiecewise constantapproximation scheme: for any assign-
ment of the tile weights, there will be actions within resolutionr of each other that map
to the same set of tiles and share the same value estimate. When pondering an action
choice in this setting, our RL algorithm picks the middle action. While tile coding does
not supporttruly continuous learning, its generalization capability makes it far supe-
rior to straight discretization. Finer distinctions can always be learned by increasing the

resolutionr. An initial result regarding tiling organizations is (a proof sketch is in the
appendix):

Theorem 1. For everym,n ≥ 1, the sets of functions representable bym- andn-tiling
canonical univariate organizations with the same resolution are identical.

For example, the three organizations in Figure 1 are functionally equivalent. Despite
this representational equivalence and identicalasymptoticperformance, tiling organiza-
tions with more tilings generalize more broadly and perform differently on RL tasks.
This paper assumes a fixed resolutionr and studies the role of generalization breadtht
as a parameter. Our work seeks to identify how varying the breadth of generalization—
while preserving representational equivalence—affects performance.

2.3 Testbed domain

Our testbed domain is a grid world, shown along with an optimal policy in Figure 2.
Two locations of the grid world are designated as “start” and “goal,” with the learner’s
objective being to navigate from the start cell to the goal cell. Another type of cell is
a wall that the learner cannot pass through. Finally, certain cells are designated as an
abyss. This grid world task is episodic, ending with the learner falling into the abyss
(“stepping off the cliff”) or successfully entering the goal state. The state variables are
the cell coordinatesx andy (the start state is at the origin).

The learner’s actions are of the form(d, p), whered ∈ {NORTH, SOUTH, EAST,
WEST} is an intended direction of travel andp is a real-valued number between0 and
1. The learner moves in the requested direction with probabilityF (x, y, p), and in one
of the three other directions with probability(1− F (x, y, p))/3. Moves into walls and
off the edge of the grid world result in no change of cell.F is a cell-dependent function
that mapsp to [0.5, 1]. The two “extreme”F functions are shown in Figure 3, and the
F functions for all other cells are successive interpolations between these two.1 This
design ofF was intended to ensure continuity as well as multiple local maxima and
minima. To illustrate, consider choosing an action in a cell governed by the solidF
curve in Figure 3. A choice ofp ≈ 0.78 guarantees a successful move in the requested
direction. A choice ofp ≈ 0.93 moves the learner in the requested direction with prob-
ability 0.5 and in each of the other three directions with probability≈ 0.17.

Our experiments use two different reward functions to guide the learner to the goal,
an “informative” one with−1 assigned on every nonterminal transition,−100 on step-
ping off the cliff, and+100 on reaching the goal cell; and another, “uninformative”
reward function with zero reward assigned on all transitions except the one to the goal
cell (+100). Because of the discount parameterγ = 0.99 < 1, the optimal policy is the
same under both functions.

The learner initially has no information regardingt, r, or any of theF ’s. Thus,
the challenge is to identify, in each cell, the right direction of travel and thep value

1 The exact functional form isF (x, y, p) = 1
3
w(p, x, y) sin(4πw(x, y, p)) + 19

24
, wherew(·)

is a warping function that applies a different monotonic transformation of thep range for each
cell. As a result, the optimump value is different for every cell. As the cells are traversed in
row-major order, theF curve gradually transforms from one extreme in Figure 3 to the other.

.8 .8 .8

start goal

.7 .7 .7 .7

.7 .7 .7 .7.7.7.7.7

.6 .6 .6 .6 .6 .5

.5 abyss

w
all .7

.8.8.8.8.8.8

Fig. 2: The grid world map and optimal policy.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

p

Fig. 3: The two extremeF (p) functions.

that maximizes the probability of this move. We use tile coding in thep variable to
approximate the value function for every distinct setting of(x, y, d). Every (x, y, d)
triple enjoys a dedicated set of tiles, so there is no generalization across cell boundaries
or directions of travel.

3 Initial Empirical Results

This section presents empirical results in three scenarios illustrating the effects of the
breadth of generalization on performance. The settings of generalization breadth com-
pared are1, 3, and6 tilings, all reasonable choices given the target function curves in
Figure 3. The resolution was fixed at0.04, corresponding to26, 10, and6 tiles per tiling
in the1, 3, and6 tiling cases, respectively.

All experiments in this paper used Q-learning withε-greedy action selection. The
parameter settings were:α = 0.1, γ = 0.99, and ε = 0.05, except where indicated
otherwise. The Q-value estimates were initialized to0 on all runs. The metric in all
experiments was the value of the start state under the best policy discovered so far
(as a percentage of optimal), as determined by an external policy-evaluation module.
This model-based evaluation module (value iteration) was unrelated to the model-free
algorithm used to learn the policies. Every performance curve in the graphs represents
the point-wise average of at least100 independent runs with all identical settings.

We categorize our empirical findings in three groups:

Experiment A: Initial performance boost due to generalization (regularα).
Figure 4 plots early performance obtained using the uninformative reward function
(a) and the informative one (b). The step sizeα is 0.1, a typical value. The graphs
show a performance boost due to generalization when the informative reward func-
tion is used, but no observable differences with the uninformative reward function.

Experiment B: Initial performance boost due to generalization (smallα).
Figure 5 plots performance over the first50000 episodes, a substantial allotment of
learning time. The reward function used is the uninformative one, chosen to control
for the apparent advantage enjoyed by broad-generalizing learners in experiment A.
(As the analysis in Section 4 will show, the results observed in experiments A and
B are due to different causes which this experimental setup serves to isolate.) De-
creasing the step size degrades performance for any fixed setting of generaliza-
tion breadth; however, the extent of this deterioration diminishes as generalization

breadth increases. Viewed differently,α = 0.5 reveals no observed benefit to gen-
eralization. But asα decreases to0.10 and then to0.05, generalization becomes
increasingly beneficial.

Experiment C: Eventual degradation of performance due to generalization.
Experiments A and B demonstrate that generalization can improve performance
while the policy is undergoing initial development or early refinement. Figure 6,
on the other hand, shows that in the final count generalization proves detrimental.
Figure 6 was obtained using the uninformative (a) and informative (b) reward func-
tions. In the former case, the more challenging nature of the task favors the use of
generalization for a longer time.

Note that the graphs in Figures 4–6 have vastly differentx-axis scales. Moreover,
they-axis scales in Figures 4 and 5 are different from those in Figure 6.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

 0

 20

 40

 60

 80

 100

 0 250 500 750 1000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

a b

Fig. 4: Early performance with the uninformative (a) and informative (b) reward functions. The
ordering of the curves inb is statistically significant at a0.005 confidence level between episodes
92 and280.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

a b c

Fig. 5: Performance with the uninformative reward function and three settings of step size:α =
0.5 (a), α = 0.1 (b), andα = 0.05 (c). The ordering of the curves is statistically significant at a
0.005 confidence level between episodes6100 and22100 (b), and10000 and40000 (c).

4 Interpretation of Empirical Results

As observed in Section 3, generalization tends to help initial performance but hurts in
the long run. This section analyzes the causes of these phenomena. We start by intro-

 95

 96

 97

 98

 99

 40000 60000 80000 100000
%

 O
P

T
IM

A
L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

 95

 96

 97

 98

 99

 40000 60000 80000 100000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

a b

Fig. 6: Long-term performance (episodes50000–100000) with the uninformative (a) and infor-
mative (b) reward functions. The ordering of the curves inb is statistically significant at a0.005
confidence level staring at episode55000.

ducing an abstraction of the problem. We categorize state-action pairs asoverestimated,
underestimated, andcorrectly estimatedwith respect to the backup procedure used and
the approximate value function̂Q(s, a) for states and actions. In Q-learning, an overes-
timated state-action pair is characterized by

Q̂(s, a) > r(s, a) + γ max
a′∈A

{Q̂(s′, a′)},

wheres′ is the successor state. Underestimated and correctly estimated state-action
pairs are defined by replacing the “greater than” sign in the above equation with “less
than” and “equals” signs, respectively. Note that this terminology is unrelated to the
true values of state-action pairs under the current policy; state-action pairs are “un-
derestimated,” “overestimated,” or “correctly estimated” solely with respect toone-step
updates. Finally, we define a state-action pair(s, a) to bedesirableif a is a near-optimal
action in states, i.e.,

|Q∗(s, a)−max
a′∈A

Q∗(s, a′)| < δ,

whereQ∗ is the optimal value function andδ > 0 is a small constant.Undesirable
state-action pairs are defined symmetrically.

The effect of generalization on correctly estimated state-action pairs is nonexis-
tent or negligible since backups in such cases generate zero expected error. The ef-
fect of generalization on overestimated and underestimated state-action pairs, on the
other hand, is significant. In what follows, we analyze these two cases separately. We
assume the exploration/exploitation trade-off is addressed using Boltzmann (softmax)
action selection, anε-greedy policy, or any other method in which the greedy action
â∗ = arg maxa∈A Q̂(s, a) is selected in states with the greatest probability and the
probabilities of selection of the other actions are nondecreasing in their value estimates.
We refer to the region to which a value update of a state-action pair(s, a) is generalized
as thevicinity of (s, a).

4.1 Generalization on overestimated vs. underestimated state-actions pairs

Generalizing the value update of an overestimated state-action pair(s, a) to nearby
state-action pairs will decrease their value estimates and thus reduce the likelihood of

selection of the corresponding actions in their respective states. If(s, a) and state-action
pairs in its vicinity are undesirable, this generalized update is beneficialregardlessof
whether these state-action pairs are also overestimated. If, on the other hand, some state-
action pairs in the vicinity of(s, a) are desirable, generalization is harmful if they are
not overestimated. In this latter case, generalization will excessively lower the proba-
bility of selection of certain good actions.

Similarly, generalization on an underestimated state-action pair(s, a) is helpful if
the state-action pairs in its vicinity are desirable, and may be harmful if there are unde-
sirable pairs with correct or excessive estimates. However, there is an additional benefit
to generalizing on desirable underestimated state-action pairs. Typical domains have
continuous value functions. In this case, generalization ensures that the nearby state-
action pairs also have favorable estimateseven if they are rarely tried. Generalization
thus accelerates the adoption of better actions in the vicinity of(s, a) as greedy choices,
which is increasingly helpful with small step sizes. By contrast, a non-generalizing
learner will require more exploratory visits to the vicinity of(s, a) to build up these
actions’ value estimates.

4.2 Application to the empirical results

Generalization improves early performance in experiment A when used with the more
informative reward function because the algorithm can more rapidly learn clusters of
actions that lead to a fall off the cliff. When such a catastrophic event occurs and a
heavy penalty is received (−100), the learner generalizes the outcome to neighboring
p values, thus requiring less time to identify directions of travel to avoidfor any value
of p. A non-generalizing learner, on the other hand, needs to visit everyp value within
resolution to rule out a poor choice of direction. This is an example of the beneficial
effects of generalization on overestimated state-action pairs. The uninformative reward
function, on the other hand, does not communicate the undesirability of falling off the
cliff and leads to no performance improvement with generalization.

The small step sizes in experiment B require a substantial amount of exploratory ac-
tivity to build up value estimates for betterp choices in the vicinity of an already estab-
lished one—unless generalization across tiles is used, yielding elevated value estimates
for thosep choices even if they are rarely tried. As a result, generalization improves
performance for small step sizes, a benefit of generalization on underestimated state-
action pairs. Underestimated state-action pairs are common in experiment B as positive
reward propagates from the faraway goal state (the only source of nonzero reward) to
the rest of the grid world, one state at a time. Thus, the use of the uninformative reward
function ensures that the performance differences are not due to the expedited mastery
of cliff avoidance with generalization, as in experiment A.

Once the value estimates become sufficiently accurate (with the optimum actions
adopted as greedy choices and the catastrophic actions assigned low values), general-
ization cannot further improve performance. The negative effects of generalization are,
on the other hand, still at work. The empirical results in experiment C confirm that
generalization is detrimental at the final stages. As expected, the observed performance
degradation is monotonic in the breadth of generalization.

5 Adaptive Generalization

We have confirmed that our empirical findings in Section 3 scale with map size. As an
example, Figure 7 shows the early and late performance curves using the informative
reward function and a32× 8 grid world. This new map is6.4 times larger than that of
Figure 2 but structurally similar to it.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

 82

 84

 86

 88

 90

 92

 94

 96

 20000 40000 60000 80000 100000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

1 TILING
3 TILINGS
6 TILINGS

a b

Fig. 7: Performance in a32 × 8 grid world: episodes0–10000 (a) and10000–100000 (b). The
ordering of the curves is statistically significant at a0.005 confidence level between episodes
2000 and5600 (a) and starting at episode40000 (b).

The empirical results indicate that broad generalization is helpful at the early stages
of learning but detrimental in the final count, suggesting thatonline adjustmentof gen-
eralization breadth would yield the optimal approach. To this end, we implemented an
adaptive algorithm as follows. For every state-action pair(s, a), the method maintains
a reliability index ρ(s, a) that expresses the learner’s confidence inQ̂(s, a), ranging
from 0 (unreliable) to1 (reliable). The reliability indices (initialized to0) are stored in a
tiling organization with the same resolution as the organization for the Q-values them-
selves. Backups of̂Q(s, a) that yield a large errorlower the reliability indices for(s, a)
and nearby state-action pairs; backups that result in a small errorincreasethose relia-
bility indices. When performing a backup, the algorithm selects the largest allowable
breadth of generalization such that the state-action space covered has an average reli-
ability index of less that1/2. This heuristic encourages broad generalization when the
value estimates are rapidly changing and discourages generalization when they are near
convergence. Note that no actual conversion from one tiling organization to another is
necessary when changing generalization breadth: with an appropriate update scheme, a
single flat tiling organization can efficientlysimulateany number of tilings.

In this framework, one needs to specify only therangeof minimum and maximum
generalization breadth to be used, leaving the parameter adjustment to the algorithm.
Observe that the adaptive-generalization method varies generalization as needed based
not only on the learning stage (time-variantgeneralization), but also on the state-space
region (space-variantgeneralization). This facility is valuable because some regions of
the state-action space are visited very frequently and favor an early cutback on general-
ization; other state-action regions are visited only occasionally and would benefit from
generalization for a longer time.

To complete the description of the adaptive-generalization algorithm, it remains to
specify how a backup error of a certain magnitude affects the reliability index of the
corresponding state-action pair. Various update schemes can be proposed here. Our ap-
proach increases the reliability by1/2 on zero error and decreases it by1/2 on a very
large error (50 was an appropriate setting in our domain); the intermediate cases are
linear interpolations between these extremes. We generalize each reliability update to
its immediate vicinity. In stochastic environments, it may be additionally useful tode-
caythe reliabilities periodically. Figure 8 presents the finalized adaptive-generalization
algorithm in pseudocode, embedded inQ-learning.

ADAPTIVE-GENERALIZATION(max -error)

1 InitializeQ(s, a) arbitrarily for alls ∈ S, a ∈ A
2 ρ(s, a)← 0 for all s ∈ S, a ∈ A
3 repeat s← current state
4 a← π(s)
5 Take actiona, observe rewardr, new states′

6 error ← [r + γ maxa′∈AQ(s′, a′)]−Q(s, a)
7 num-tilings ← max{t ≥ 1 : avgρ(s′′, a′′) at most 1/2}
8 UpdateQ(s, a) by α · error using generalization breadthnum-tilings

9 ρ(s, a)←
h
ρ(s, a) +

ş
1
2
− | error |

max-error

ťi1

0

10 π ← ε-greedy w.r.t.Q
11 until converged

Fig. 8: Adaptive generalization method in pseudocode. The left arrow “←” denotes assignment;
[x]ab = max{min{x, a}, b} denotes the bounding operation.

We did not attempt to optimize the above reliability-update rule and used it as an
informed first guess. Figure 9a illustrates the progress of generalization breadth on a
typical run in this scheme. Figures 9b and 9c demonstrate that even this “first guess”
approach to varying generalization is superior to fixed settings of generalization breadth
between episode numbers450–49000, which arguably covers any reasonable allotment
of training time in this domain.

To see why the1-tiling (no generalization) learner eventually overtakes the adap-
tive learner, observe that in online RL the learner typically discovers the optimal pol-
icy much sooner than itsexactvalue function. Indeed, to obtain the optimal policy the
learner need only get the relative values of the states right; the actual estimates can be ar-
bitrarily far from the true values. Even after a near-optimal policy has been discovered,
the adaptive learner thus continues to see a steady drift of the values as positive reward
propagates from the goal state to the rest of the grid world, one state at a time. Faced
with this continual change, the above adaptive rule is too slow to cut generalization. This
minor drift is easy to detect and correct for with a more informed reliability-update rule.
At the same time, even our relatively simple update rule results in good performance.
We conclude that even unsophisticated schemes for varying generalization breadth are
generally preferable to any fixed setting.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000

A
V

E
. G

E
N

. B
R

E
A

D
T

H

EPISODES COMPLETED

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

ADAPTIVE
1 TILING

3 TILINGS
6 TILINGS

 90

 92

 94

 96

 98

 100

 20000 40000 60000 80000 100000

%
 O

P
T

IM
A

L

EPISODES COMPLETED

ADAPTIVE
1 TILING

3 TILINGS
6 TILINGS

a b c

Fig. 9: Adaptive method in the10 × 4 grid world: per-episode average generalization breadth,
smoothed (a); and comparative performance, episodes0–1000 (a) and1000–100000 (b). At a
0.005 confidence level, the adaptive method is superior between episodes450 and49000.

6 Conclusions

This paper explores parameterization issues in tile coding, a widely adopted function-
approximation method for reinforcement learning. In particular, we present a precise
empirical study of the effect ofgeneralization breadthon the performance of a tile-
coding approximator. Our findings demonstrate that generalization helps at the early
stages of learning but invariably hurts past a certain point. As a result,no single set-
ting achieves the best performance throughout the learning curve. We pinpoint the
causes of this phenomenon and build on our analysis to propose a novel technique
for automatically adjustinggeneralization breadth as needed in different regions of the
state-action space (space-variantgeneralization) and at different learning stages (time-
variant generalization). We experimentally show the superiority of varying the gener-
alization breadth in this way to any fixed parameterization. Our adaptive-generalization
method is generic and can be advantageously applied in any setting in which tile coding
is used.

7 Acknowledgments

This research was supported in part by NSF CAREER award IIS-0237699 and an MCD
fellowship. The authors are thankful to Lilyana Mihalkova for her feedback on an earlier
version of this manuscript.

Appendix: Proof of Theorem 1

Proof. (Sketch.) The theorem can be proven by establishing that any function repre-
sentable with at-tiling organization is also representable with a single-tiling organiza-
tion, and vice versa. The former claim is shown by projecting thet-tiling organization
onto the single-tiling organization and weighting the tiles of the single-tiling organiza-
tion by the sum of the corresponding tile weights of thet-tiling organization. The latter
claim is shown by assigning random weights to the leftmostt − 1 tiles of thet-tiling
organization (one in each of the firstt− 1 tilings) and weighting the leftmost tile in the
remaining tiling such that the sum of thet tile weights equals the weight of the first tile

in the single-tiling organization; the latter weighting operation is repeated iteratively,
moving at each step one tile to the right in thet-tiling organization.

References

1. Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning in problems
with continuous state and action spaces. Adaptive Behavior6 (1997) 163–217

2. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA
(1998)

3. Lin, C.S., Kim, H.: CMAC-based adaptive critic self-learning control. In: IEEE Trans. Neural
Networks. Volume 2. (1991) 530–533

4. Stone, P., Sutton, R.S.: Scaling reinforcement learning toward RoboCup soccer. In: Proc. 18th
International Conference on Machine Learning (ICML-01), Morgan Kaufmann, San Fran-
cisco, CA (2001) 537–544

5. Sutton, R.S.: Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Tesauro, G., Touretzky, D., Leen, T., eds.: Advances in Neural Information
Processing Systems 8, Cambridge, MA, MIT Press (1996) 1038–1044

6. Tham, C.K.: Modular On-line Function Approximation for Scaling up Reinforcement Learn-
ing. PhD thesis, Cambridge University, Cambridge, England (1994)

7. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge University
(1989)

