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Abstract

Generalization to unseen environments is a significant chal-
lenge in the field of robotics and control. In this work, we
focus on contextual reinforcement learning, where agents
act within environments with varying contexts, such as self-
driving cars or quadrupedal robots that need to operate in dif-
ferent terrains or weather conditions than they were trained
for. We tackle the critical task of generalizing to out-of-
distribution (OOD) settings, without access to explicit context
information at test time. Recent work has addressed this prob-
lem by training a context encoder and a history adaptation
module in separate stages. While promising, this two-phase
approach is cumbersome to implement and train. We sim-
plify the methodology and introduce SPARC: single-phase
adaptation for robust control. We test SPARC on varying con-
texts within the high-fidelity racing simulator Gran Turismo 7
and wind-perturbed MuJoCo environments, and find that it
achieves reliable and robust OOD generalization.

Code + Appendix — https://github.com/bramgrooten/sparc

1 Introduction

Deep reinforcement learning (RL) has demonstrated suc-
cessful performance in fields such as robotics (Mahmood
et al. 2018), nuclear fusion (Degrave et al. 2022), and high-
fidelity racing simulators (Wurman et al. 2022). Despite
these successes, generalizing RL agents to unseen envi-
ronments with varying contextual factors remains a critical
challenge. In real-world applications, environmental condi-
tions such as friction, wind speed, or vehicle dynamics can
change unpredictably, often leading to catastrophic failures
when the agent encounters out-of-distribution (OOD) con-
texts that it was not trained for.

A promising approach to tackle this issue is context-
adaptive reinforcement learning (Benjamins et al. 2021),
where agents infer and adapt to latent environmental fac-
tors by leveraging past interactions. Rapid Motor Adapta-
tion (RMA) (Kumar et al. 2021) is a notable framework in
this direction, introducing a two-phase learning procedure.
In the first phase, a context encoder is trained using privi-
leged information about the environment. The second phase
then employs supervised learning to train a history-based
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adaptation module, enabling the agent to infer latent con-
text solely from past state-action trajectories. While effec-
tive, this two-phase approach introduces complexity during
implementation and training.

In this work, we introduce SPARC (single-phase
adaptation for robust control), a novel algorithm that uni-
fies context encoding and adaptation into a single training
phase, as illustrated in Figure 1. SPARC is straightforward to
implement and naturally integrates with off-policy training
as well as asynchronous distributed computation on cloud-
based rollout workers. Algorithms such as SPARC and RMA
are advantageous when explicit context labels are unavail-
able at test time, a frequent limitation in real-world robotic
deployment. By collapsing adaptation into a single training
loop, SPARC is naturally compatible with on-device con-
tinual learning—especially applicable in settings where re-
training in the cloud is prohibitive due to privacy or latency
constraints. In contrast, RMA is unable to perform continual
learning in a straightforward manner.

We evaluate SPARC on two distinct domains: (1) a set
of MuJoCo environments featuring strongly varying envi-
ronment dynamics through the use of wind perturbations,
and (2) a high-fidelity racing simulator, Gran Turismo 7,
where agents must adapt to different car models on multiple
tracks. SPARC achieves state-of-the-art generalization per-
formance and consistently produces Pareto-optimal policies
when evaluated across multiple desiderata.

Our contributions are summarized as follows.

* We introduce SPARC, a novel single-phase training
method for context-adaptive reinforcement learning,
eliminating the need for separate encoder pre-training.

* We empirically validate SPARC’s generalization ability
across OOD environments, demonstrating competitive or
superior performance compared to existing approaches.

* We perform and analyze several ablation studies, exam-
ining key design choices such as history length and the
selection of rollout policy during training.

2 Related Work

Generalization to out-of-distribution environments is a fun-
damental challenge in reinforcement learning, hindering
its deployment in real-world applications, particularly in
robotics and control tasks (Kirk et al. 2023). The learning
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Figure 1: Overview of our algorithm SPARC (top) and the problem setting in Gran Turismo 7 (bottom). SPARC trains an expert
policy 7¢* and an adapter policy 7® simultaneously in a single phase. The adapter policy does not require access to privileged
contextual information, facilitating deployment to OOD real-world scenarios. Observations o, contextual information ¢, and a
history of recent observation-action pairs h are passed into the networks. Latent encodings ¢ and z are concatenated and passed
to the final layers, producing action a. Similar to RMA (Kumar et al. 2021), 7* is trained with reinforcement learning, while
the History Adapter ¢ of m%? is trained with supervised learning to regress its encoding ¢(h) = # to the Context Encoder’s
output ¢/(c) = z. Note that since SPARC trains in one phase, the context encoding z is a moving target, instead of a traditionally
fixed target in RMA. Trainable modules are in green. The black modules regularly copy weights from their counterpart in 7.

dynamics of RL methods often struggle to adapt to novel
environmental conditions (Lyle et al. 2022). Contextual rein-
forcement learning (Langford 2017; Benjamins et al. 2021)
provides a framework to address this problem by training
agents capable of adapting to varying environmental factors.

2.1 Contextual RL

Robust RL often depends on effective contextual adapta-
tion. Recent work has explored context-aware policies that
integrate contextual cues into decision-making (Beukman
et al. 2023; Chen et al. 2021; Lahmer et al. 2024) or em-
ploy world models to capture environment dynamics (Lee
et al. 2020b; Prasanna et al. 2024). In addition, several stud-
ies have focused on modifying the environment itself—such
as by varying gravity or adjusting agent component dimen-
sions—to promote the development of more versatile con-
trollers (Benjamins et al. 2021; Leon et al. 2024).

2.2 What if the Agent has No Access to Context?

In many real-world scenarios, agents are deprived of ex-
plicit contextual information during deployment. In these
cases, the agent must infer the relevant environmental fac-
tors indirectly. For instance, Lee et al. (2020a) advanced ro-
bust legged locomotion by introducing a two-phase learn-

ing process. It first trains an expert policy, which includes
a context encoder using the privileged contextual informa-
tion. The second phase involves an adapter policy that tries
to imitate the expert’s action, while a history-based adapta-
tion component aims to minimize the difference between its
history encoding and the expert’s context encoding. Rapid
Motor Adaptation (Kumar et al. 2021) refines this method-
ology by only imitating the context encoding, not the action.
The adapter policy can be deployed, as it does not require
access to the privileged context.

2.3 Other Techniques for Generalization

Several complementary approaches have been proposed to
enhance generalization. Domain randomization (Tobin et al.
2017; Peng et al. 2018) and procedurally generated envi-
ronments (Cobbe et al. 2020; Gisslén et al. 2021) intro-
duce diversity during training, thereby encouraging robust
policy behavior. We employ domain randomization by de-
fault in our experiments. System identification methods (Yu
et al. 2017)—whether performed explicitly or through im-
plicit online adaptation, as in SPARC and RMA—also con-
tribute to improved performance under varying conditions.
Moreover, techniques such as data augmentation (Laskin
et al. 2020; Hansen, Su, and Wang 2021; Wang et al. 2024)



and masking (Grooten et al. 2024; Huang et al. 2022) have
been shown to further enhance generalization, particularly
for pixel-based inputs.

Meta-reinforcement learning offers an alternative
paradigm for learning adaptable policies (Wang et al. 2016;
Rabinowitz et al. 2018; Duan et al. 2016). Foundational
algorithms like Model-Agnostic Meta-Learning (MAML)
(Finn, Abbeel, and Levine 2017) enable rapid task adapta-
tion, and emerging methods using hypernetworks generate
task-specific policy parameters on the fly (Beck et al. 2023;
Rezaei-Shoshtari et al. 2023; Beukman et al. 2023).

3 Background

In this section, we formalize the underlying problem frame-
work and examine the core techniques that form the founda-
tion for SPARC, enabling context-adaptive behavior.

3.1 Problem Formulation

We consider a contextual Markov decision process (CMDP)
(Hallak, Di Castro, and Mannor 2015; Abbasi-Yadkori and
Neu 2014), defined by Kirk et al. (2023) as a tuple M =
(S,A,0,C,R,T,O,p,,p.) where:

S is the state space,

» A is the action space,

* O is the observation space,

« ( is the context space,

¢ R:S x AxC — Ris the reward function,

e T:8 x AxC— A(S) defines the stochastic transition
dynamics conditioned on a context ¢ € C,

e O:8 x C — O is the observation function,

* ps : C = A(S) is the distribution over initial states s
given a context ¢ € C, and

* pe € A(C) is the distribution over contexts.

During training, the agent will be exposed to a certain sub-
set of contexts Cinp C C, which are in-distribution (IND),
short for within the training distribution. To test general-
ization ability, we hold out a different subset of contexts
Coop C C that are out-of-distribution (OOD). We ensure
that there is no overlap: Cinp N Coop = @. This separation
defines two sub-CMDPs: Mnp and Moop. We specify the
context distributions to be uniform over their respective sub-

sets:
1 .
) - ifce(;
Z = ‘Cl‘ ! v 1
Pe(c) {O otherwise, M

for i € {IND, OOD}.

In our setting, the agents do not observe c at test time and
must infer it through other means, for example from their
interaction history. However, for comparison, we will also
present results of an expert policy that does have access to
the privileged context information ¢ € Coop at evaluation.

Our objective is to train a policy 7 that maximizes
expected return across both in-distribution and out-of-
distribution contexts, while only having access to privileged
contextual information ¢ € Ciyp during training.

3.2 Pure History-based Policies

History-based policies have emerged as a powerful approach
in reinforcement learning for inferring hidden environmen-
tal context from past interactions. Instead of relying solely
on the current observation o, € O, these policies condition
action selection on a sequence of recent observation-action
pairs. Let H be the history length and H = (O x A)H, the
space of possible histories. For time ¢ we define the corre-
sponding history h; as
he = (0t—m4-1,a-m:1-1) € H.

This history input results in policies of the form 7 : O x
H — A(A). Including the history may enable the agent to
implicitly capture latent context information ¢ € C, as the
context ¢ may influence the environment dynamics.

A pure history-based approach is presented by Lee et al.
(2020a) as a strong baseline. In their work on quadrupedal
locomotion over challenging terrains, the authors demon-
strate that leveraging an extended history of proprioceptive
data via a temporal convolutional network (TCN) enables
robust control in diverse settings.

4 Method
4.1 Leveraging Contextual Information

Training with privileged contextual information—even if
not available at test time—has been shown to be particularly
useful for generalizing to OOD contexts. In that regard, the
approaches by Lee et al. (2020a) and Kumar et al. (2021)
are almost equivalent; we will focus on Rapid Motor Adap-
tation (RMA) (Kumar et al. 2021). In RMA, two policies are
trained in separate phases. First, the expert policy

T O % C = A(A)

which includes a context encoder ¢ (-) with access to the
environment’s privileged information, is trained using a re-
inforcement learning algorithm. While the original RMA
work uses PPO (Schulman et al. 2017), we employ the more
sample-efficient QR-SAC, proven to work well in Gran Tur-
ismo (Wurman et al. 2022).

Once training of 75” has converged to a sufficient level,
the best model checkpoint 7% needs to be determined. This
selection requires careful evaluation across multiple dimen-
sions (Morrill et al. 2023), a cumbersome intermediate step
that SPARC skips, as it is trained in a single phase.

The second stage of RMA trains the adapter policy

78 O x H — A(A)

while keeping the expert policy g% frozen. In the adapter
policy, a history adapter ¢y processes a sequence of recent
observation-action pairs /; to produce a latent representa-
tion 2, = ¢g(h:). The history adapter is trained by mini-
mizing the distance between 2; = ¢g(h:) and z; = ¥p=(ct)
through the mean squared error loss:

£¢(cta ht) = Ect,ht [(zt - ’ét)Q]' (2)

The history-inferred latent context Z; is integrated into the
policy. By conditioning on both the current observation oy
and the latent context Z;, the policy can adjust its behavior
to handle unseen or varying environmental conditions.



Table 1: Performance summary on IND and OOD settings across all test tracks in Gran Turismo, averaged over 3 seeds. Results
show the mean built-in AI (BIAI) ratio across cars (ratio = the RL agent’s lap time divided by the BIAI lap time, lower is better).
If an algorithm fails to complete a lap with a specific vehicle, it receives a BIAI ratio of 2.0 for that car model. Additionally, we
show the percentage of cars with a successfully completed lap (£ s.e.m.). We bold the best out-of-distribution results across
algorithms without access to context at test time (all except Oracle, see Table 3). We include IND results for reference. SPARC
achieves the fastest OOD lap times on 2 of 3 tracks and completes the most laps with OOD vehicles overall.

Race Track Method IND 00D
BIAI ratio ({) Success % (1)  BIAlratio ({) Success % (1)
Only Obs 0.9929 + 0.0007 100.00 4+ 0.00 1.0641 + 0.0058  95.15 + 0.56
History Input  0.9904 4+ 0.0001  99.68 +0.08 1.0826 £+ 0.0203  92.56 £+ 2.12
Grand Valley RMA 1.0046 + 0.0054  99.84 + 0.16 1.0560 +0.0134  97.09 + 1.12
SPARC 0.9999 + 0.0061  99.76 + 0.14 1.0491 + 0.0055 98.06 + 0.56
Oracle 0.9884 + 0.0005 100.00 +0.00 1.1348 £0.0137 90.94 +2.27
Only Obs 1.0202 +0.0163  95.87 +1.48 1.17454+0.0129 81.88 + 1.17
History Input  0.9984 4+ 0.0030 97.49 +0.32 1.1204 £0.0132  86.73 + 1.29
Niirburgring RMA 1.1085 +0.0195 88.03 + 1.76  1.2995 +0.0306  77.99 + 3.19
SPARC 1.0254 + 0.0061  95.87 +0.49 1.1199 £+ 0.0076  89.00 + 0.86
Oracle 0.9804 + 0.0027 99.27 +£0.28 1.1182 +0.0215  89.64 + 2.53
Only Obs 0.9319 + 0.0009 100.00 4+ 0.00 0.9560 + 0.0006  100.00 + 0.00
History Input  0.9294 4+ 0.0001  100.00 & 0.00 0.9553 + 0.0068  99.33 4+ 0.67
Catalunya Rallycross RMA 0.9445 + 0.0010  99.82 £ 0.18  0.9667 + 0.0030  100.00 + 0.00
SPARC 0.9432 + 0.0027 100.00 4+ 0.00 0.9631 + 0.0026  100.00 + 0.00
Oracle 0.9282 + 0.0001  100.00 & 0.00 1.1354 +0.0595 85.33 + 5.81

4.2 Single-Phase Adaptation

Our algorithm illustrated in Figure 1, SPARC, greatly sim-
plifies the implementation and training of agents capable of
generalizing to out-of-distribution environments without ac-
cess to privileged contextual information. In SPARC, the ex-
pert policy 7¢* and the adapter policy 7%¢ are trained simul-
taneously, in contrast to the two-phase approach of RMA.
This means that the context encoding ¢ (c) = z is a non-
stationary target for the history adapter ¢, instead of a fixed
target. The results in Section 6 demonstrate that the adapter
policy is able to manage these new learning dynamics.

An important detail in RMA is which model acts in the
environment to collect experience. Policy 7¢* acts in the
first training phase, while 7%¢ does so in the second. This
raises the question which policy should gather experience
for SPARC, as both are trained together. One option would
be to let the expert policy m¢* control the actions, since it is
updated and improved through QR-SAC.

However, the expert policy, 7°*, is not the goal of the
SPARC approach. A robust adapter policy, 7%¢, is the over-
all learning target and using this policy to gather experience
allows the learning algorithm to correct for any inaccuracies
before final deployment. This brings the learning dynamics
of ¢ closer to an on-policy setting, even though its history
adapter ¢ is trained through supervised learning as shown in
Equation 2. We perform an ablation study on this choice of
rollout policy in the supplementary material.

SPARC’s critic networks—necessary to run QR-SAC on
m%*—have the same architecture as the expert policy and
thus have access to the context c. We can still run inference
without knowing ¢, because at test time only 7%? is needed.

Reducing training of SPARC to one phase provides sev-
eral benefits: (i) no intermediate selection of the best model
checkpoint of the first phase is necessary, (ii) training can be
easily continued indefinitely, without having to retrain the
second phase, (iii) the simpler implementation facilitates the
use of SPARC on asynchronous distributed systems.

5 Experimental Setup

In this section, we describe the experimental setup used
to evaluate SPARC, our proposed single-phase adaptation
method, in comparison with several baselines.

5.1 Environments
We evaluate our approach on two distinct domains:

* MuJoCo: A suite of continuous control tasks including
HalfCheetah, Hopper, and Walker2d (Todorov, Erez, and
Tassa 2012). We induce contextual variability by perturb-
ing the environment’s wind speed in multiple dimensions
and scales, creating challenging OOD scenarios.

* Gran Turismo 7: A high-fidelity racing simulator that
features diverse car models and realistic vehicle-track dy-
namics (Wurman et al. 2022). The simulator’s rich con-
textual variability makes it an ideal testbed for assessing
generalization to unseen conditions.

Within Gran Turismo, we experiment on two settings: (1)
generalization across car models, and (2) generalization
across differing engine power and vehicle mass settings for
one specific car. The in-distribution (IND) training set and
OOD test set are selected as follows:



Table 2: The Gran Turismo tracks which we experiment on
in the Car Models setting. The road type and track length
pose varying challenges.

Track Length Road Type
Grand Valley 5.099 km  Tarmac
Niirburgring 25.378 km  Tarmac + Concrete

Catalunya Rallycross 1.133km  Dirt + Tarmac

Table 3: The set of inputs that each algorithm receives.

Method Inputs during Training Inputs at Test Time
Only Obs obs obs

History Input  obs, history obs, history
RMA obs, history, context obs,history
SPARC obs, history, context obs,history
Oracle obs, context obs, context

(1) Car Models: we sort all ~500 vehicles by their anomaly
score through an isolation forest on the car’s contextual
features such as mass, length, width, weight distribution,
power source type, drive train type, wheel radius, etc.
We hold out the 20% most outlier vehicles as a test set
(OOD) and train on the 80% most inlier cars (IND).

(2) Power & Mass: for a more controlled experiment, we
pick a relatively standard racing car, but tune its engine
power and mass in each training episode to randomly
sampled values within the range [75%, 125%] of their
defaults. During evaluation, we test on fixed-spaced in-
tervals within [50%, 150%], covering IND and OOD
contextual settings.

For the wind-perturbed MuJoCo environments, we similarly
train on a certain range of wind speeds, while testing on
intervals twice as large. In Gran Turismo, we experiment
on three different tracks, presented in Table 2. These tracks
represent highly varying settings, with Catalunya Rallycross
even including a mixed dirt and tarmac racing path.

5.2 Training Details

We repeat our runs with independent random seeds to ensure
statistical robustness: three seeds for the compute-heavy
Gran Turismo simulator, and five for MuJoCo environments.
Key training hyperparameters—such as the history length
H, learning rates, and network architectures—are tuned
through preliminary experiments with grid search. We train
all methods asynchronously, collecting experience on dis-
tributed rollout workers. Further training details and analy-
ses are provided in the supplementary material.

5.3 Evaluation Protocol
We evaluate policy performance under two settings:
¢ In-Distribution (IND): Environments with contextual
parameters that lie within the training distribution.

¢ Out-of-Distribution (OOD): Contextual parameters
that deviate significantly from the training set, testing the
model’s generalization capabilities.
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Figure 2: Results on Grand Valley averaged over three seeds.
For each algorithm, we plot the percentage of cars that suc-
cessfully completed laps, and the built-in Al ratio lap time.
SPARC is able to complete the most and the fastest laps on
out-of-distribution cars.

During training, we regularly evaluate the policy on three
predetermined IND settings. These training evaluations
form a Pareto-front, from which we select the best model
checkpoint for each run. We then test the policy on a wide
range of IND & OOD contexts. For Car Models, this means
all unique vehicles, while for Power & Mass and MuJoCo
we divide the widest context ranges into fixed intervals, pro-
viding up to 212 = 441 test environments.

Performance metrics include the return for MuJoCo and
lap times in Gran Turismo. However, for particularly diffi-
cult outlier cars, some algorithms may not be able to com-
plete any laps. For this reason, we present the racing results
along two dimensions: (1) percentage of cars with a com-
pleted lap, and (2) the average lap time. Note that (2) is a
biased metric, so (1) needs to be taken into account.

When averaging raw lap times, slower cars have a larger
impact on the average. To avoid skewed results, we divide
by the built-in AI (BIAI) lap time for each specific car. The
BIAI is a classical control method implemented in Gran Tur-
ismo 7 to follow a preset driving line. This BIAI ratio of RL
lap time over BIAI lap time provides an informative normal-
ized value. When a car was unable to complete a lap, we set
its BIAI ratio to 2.0 before averaging over all vehicles.

5.4 Baselines
We compare the performance of the following algorithms.
* Only Obs: This QR-SAC (Wurman et al. 2022) policy is

trained without any context information. Only the current
observation is provided as input.

» History Input: A baseline policy (Lee et al. 2020a) that
additionally receives a history of observation-action pairs
he = (0t—H:t—1,Qt—H:t—1)-



Table 4: Performance summary of the Power & Mass exper-
iments, averaged over 3 seeds. Results show the mean built-
in-Al lap-time ratio (2.0 if no lap completed) across all OOD
power & mass settings, and the percentage of these settings
with a successfully completed lap (£ s.e.m.). SPARC com-
pletes the most and has the fastest laps.

Method Built-in-Al lap-time ratio ()  Success % (1)
Only Obs 1.0131 + 0.0136 98.75 + 1.25
History Input 1.0135 + 0.0013 98.33 £ 0.10
RMA 1.0004 £+ 0.0030 99.17 £ 0.28
SPARC 0.9907 + 0.0011 99.90 + 0.10
Oracle 0.9962 + 0.0067 99.27 £0.58

* RMA: The two-phase approach of Rapid Motor Adapta-
tion (Kumar et al. 2021), first trains an expert policy with
context input, then learns the adapter policy from history.

e SPARC: Our single-phase adaptation technique intro-
duced in this work. At test time it only receives an
observation-action history and the current observation.

* Oracle: A policy that has access to the ground-truth un-
encoded contextual features, even at test time.

Benchmarking SPARC against the listed baselines allows us
to isolate the benefits of our single-phase training paradigm,
especially regarding implementation simplicity and OOD
generalization. See Table 3 for a concise overview of the
inputs per algorithm.

6 Results

We present the performance of SPARC and several baselines
on Gran Turismo and MuJoCo environments, focusing on
generalization to unseen contexts.

6.1 Gran Turismo: Car Models

The scatterplot in Figure 2 summarizes the performance
of each algorithm averaged over all out-of-distribution cars
on the race track Grand Valley. The results indicate that
SPARC outperforms the baselines across unseen vehicles
during training. SPARC completes laps with the most cars
and with the fastest average built-in Al ratio lap time.

Table 1 provides a quantitative summary of our findings
across all three tracks. On IND settings, SPARC is competi-
tive, but it is particularly designed to handle OOD dynamics.
When racing untrained cars, SPARC is the fastest of all al-
gorithms without access to context at test time on 2 out of 3
tracks. Furthermore, our method manages to complete laps
with the most OOD vehicles on aggregate.

SPARC even outperforms its two-phase counterpart
RMA. We believe this occurs because SPARC avoids the
brittle selection of a phase-1 checkpoint, required by RMA.
Training an adapter ¢ against one checkpoint of ) can over-
fit to parts of the context space, while SPARC learns against
multiple strong checkpoints over time.

6.2 Gran Turismo: Power & Mass

In Figure 4 we show the difference between (a) the strongest
baseline and (b) our method. SPARC is able to complete laps

Table 5: Performance across MuJoCo environments, aver-
aged over 5 seeds. Results show the mean return over all out-
of-distribution wind perturbations (+ s.e.m.). SPARC out-
performs all baselines in 2 out of 3 environments.

Method HalfCheetah-v5 (1) Hopper-v5 (1) Walker2d-v5 (1)
Only Obs 572451 + 162498 1274.13 + 133.78 2495.77 + 220.69
History Input ~ 8760.12 + 161.53  1367.09 + 67.79  1534.86 =+ 144.26
RMA 9033.87 + 634.11 1307.96 + 45.65 230623 + 222.09
SPARC 10017.90 + 476.19  1348.22 + 53.67 252825 + 263.58
Oracle 782142 + 1156.77 1710.14 + 98.98 232530 + 576.48
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Figure 3: Difference in average return of SPARC versus
RMA with varying wind perturbations over 5 seeds. In green
SPARC is better in that wind setting, while in purple RMA
scores higher. Our method outperforms the two-phase base-
line across many IND and OOD contextual settings.

in almost all OOD contextual settings, while RMA struggles
in the most difficult scenarios of lightweight cars with high
engine power. Table 4 provides a summary of the average
results across all OOD contexts, indicating that SPARC out-
performs all baselines, including the Oracle method. The Or-
acle does not receive history as part of its inputs, as opposed
to other baselines. We believe that SPARC is even able to
outperform the Oracle in this environment because knowl-
edge of some history may be useful to mitigate the par-
tial observability in our contextual MDP M (Section 3.1).
SPARC is the most robust in this experiment—completing
laps in all but one setting—and also achieves the fastest av-
erage built-in-Al lap-time ratio.

6.3 MuJoCo: Wind Perturbations

In Figure 3, we present results on HalfCheetah by calculat-
ing the difference in performance between SPARC and its
main baseline RMA, in each wind perturbation tested. The
green squares show SPARC outperforming RMA, while pur-
ple indicates the opposite. Overall, SPARC beats RMA in
significantly more IND and OOD settings, demonstrating a
robust performance across varying contexts.

Table 5 shows the OOD results for all baselines and Mu-
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Figure 4: (a) and (b): Lap times on the Power & Mass experiment. Colours denote average lap time over 3 seeds (red = fast,
blue = slow); black squares indicate at least one unfinished lap. Even though both algorithms are trained only on settings within
the IND region (dashed box), SPARC is able to handle challenging OOD settings in the bottom-right corner (high power and
low mass). (¢): Performance difference between old and new game dynamics. These algorithms have only been trained on old
physics settings, and are tested zero-shot on the new physics after a game update of Gran Turismo. SPARC shows the best OOD
generalization, with only slightly slower lap times on new dynamics, while other methods degrade significantly.

JoCo enviroments. Again, SPARC presents strong general-
ization ability to unseen contexts. On Hopper, the Oracle
performs best; note that this baseline has access to true con-
text at test-time, in contrast to all others (see Table 3).

6.4 Transferability to Updated Game Dynamics

The Gran Turismo developers regularly deploy game up-
dates, where the simulation physics can be adjusted. Rein-
forcement learning agents that are trained on previous game
dynamics may struggle to adapt. In this section we evalu-
ate policies on the newest game dynamics, while they were
solely trained on a previous version of Gran Turismo.

In Figure 4c, we show that SPARC outperforms all base-
lines in OOD generalization, this time not only across dif-
ferent car models, but also across other unseen environment
dynamics. The Oracle policy with access to ground-truth
context is not able to finish laps with around 10% of the
OOD cars, while SPARC reduces this to less than 5%, with
significantly faster lap times. Note that the context ¢ € C
that we provide to the Oracle contains information about
the car model only, as the exact simulator physics adjust-
ments are unknown to us. This missing information high-
lights the importance of SPARC’s ability to adapt to unseen
contexts without access to comprehensive contextual details,
e.g., when training in simulation and transferring to a real-
world environment.

7 Conclusion

This paper introduces SPARC, a novel single-phase
adaptation method for robust control in contextual environ-
ments. The algorithm unifies context encoding and history-
based adaptation into one streamlined training procedure.
By eliminating the need for separate phases, SPARC not
only simplifies implementation but also facilitates continual
learning and deployment in real-world scenarios.

Our extensive experiments in both the high-fidelity Gran

Turismo 7 simulator and various MuJoCo tasks demonstrate
that SPARC achieves competitive or superior performance in
both in-distribution and OOD settings. In particular, SPARC
excels at generalizing to unseen contexts while maintaining
robust control, a critical capability for robotics applications
where explicit contexts are unknown during deployment.
While our results are promising, the work also high-
lights opportunities for future research. In particular, testing
SPARC on physical robotic platforms and further optimizing
its training efficiency remain important next steps. Overall,
SPARC represents a significant advance toward practical,
adaptable agents that can thrive in dynamic environments.
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