
Learning to Solve Complex Planning Problems:
Finding Useful Auxiliary Problems

Peter Stone and Manuela Veloso
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890
pstone,veloso@cs.cmu.edu

Abstract

Learning from past experience allows a problem solver to
increase its solvability horizon from simple to complex prob-
lems. For planners, learning involves a training phase dur-
ing which knowledge is extracted from simple problems.
But how are these simple problems constructed? All cur-
rent learning and problem solving systems require the user
to provide the training set. However it is rarely easy to
identify problems that are both simple and useful for learn-
ing, especially in complex applications. In this paper, we
present our initial research towards the automated or semi-
automated identification of these simple problems. From a
difficult problem and a corresponding partially completed
search episode, we extract auxiliary problems with which to
train the learner. We motivate this overlooked issue, describe
our approach, and illustrate it with examples.

Introduction and Problem Formulation
Researchers in Machine Learning and in Planning have de-
veloped several systems that use simple planning problems
to learn how to solve more difficult problems (among sev-
eral others, (Laird, Rosenbloom, & Newell 1986; DeJong
& Mooney 1986; Minton 1988; Veloso & Carbonell 1993;
Borrajo & Veloso 1994)). However, all current systems
require that the simpler problems be provided by the user.
This requirement is a gap in automated learning that we
propose to fill. Using a previously untried approach, we are
developing a system that will find auxiliary problems that
are likely to be useful in learning how to solve a difficult
problem.

A planning problem can be considered difficult for a par-
ticular planner if it cannot solve the problem with a rea-
sonable amount of effort. Learning how to solve difficult
problems is a three-step process:

� First, the learner must find some simpler, i.e. more di-
rectly solvable, problems that are somehow related to the
original problem. These problems are called auxiliary
problems (Polya 1945). This first step is the one which
we address here.

� Second, the learner must take these auxiliary problems
and learn by solving them. Since they are simpler than
the original problem, the planner should be able to solve
the auxiliary problems with relatively little effort.

� Third, the learner must use the knowledge gained by
solving the auxiliary problems to find a solution to the
original problem.

This process is successful if the time to carry out all three
steps is significantly less than the time it would have taken
to solve the original problem without the benefit of learning.

Current learning systems work towards executing the sec-
ond and third steps of the above process while finessing
the first. Training problems from which to learn are usu-
ally generated randomly, entered by the user, or defined by
a set of rules according to some preset measure of sim-
plicity, such as number of goals, which is not necessar-
ily accurate (Minton 1988; Etzioni 1993; Knoblock 1994;
Bhansali 1991; Veloso 1992; Katukam & Kambhampati
1994).

The goal of our research is to provide a general method
for finding auxiliary problems that are most likely to help
us learn how to approach a difficult problem. To be useful,
these auxiliary problems must be solvable with relatively
little effort on the part of the planner; otherwise they are
no more approachable than the original problem. Yet the
auxiliary problems must also retain some complexities, if
only on a smaller, more learnable scale. If we simplify the
problem too much we will not learn anything relevant to
the original problem. Finding auxiliary problems that are
neither too complex nor too simple is a difficult task.

We believe that we will be able to accomplish this task
because we are considering some available information that
previous attempts at this task have ignored. Some of the
few attempts at decomposing a problem into simpler prob-
lems are based on capturing different abstraction levels or
problem spaces in the domain definition (Knoblock 1994;
Rosenbloom, Newell, & Laird 1990; Sacerdoti 1974).
These approaches have one thing in common: a static anal-
ysis of the domain and problem, either automated or done
by the user. But simply looking at the problem may not
provide any information as to what is causing the planner to
have difficulty. We propose to examine not only the original
problem and domain definition, but also the planner’s un-
successful solution attempt. The partially completed search
space from the original problem will help us discover why
the problem is so hard for a particular planner. In this way,
we will be able to determine what aspects of the original



problem we most need to learn.

Motivation
If you cannot solve the proposed problem try to solve
first some related problem. Could you imagine a more
accessible related problem? . . . A more special prob-
lem? . . . Could you solve a part of the problem? (Polya
1945, p.xvii)

This quote is from Polya’s 1945 book How To Solve
It. In this work on heuristic problem solving, Polya lays
out several methods in which humans can solve difficult
problems. Although computers do not necessarily need to
learn in the same way that humans do, the human learning
process is a good source of motivation.

For example, Polya considers the following problem:
“Inscribe a square in a given triangle. Two vertices of
the square should be on the base of the triangle, the two
other vertices of the square on the two other sides of the
triangle, one on each.”(Polya 1945, p.23). Polya considers
simplifying this problem by eliminating one of the goals. It
is easy to draw a square with three (instead of four) vertices
on the triangle: two on the base and one on another edge.
Simply draw a line from a point on an edge straight down
to the base and finish the square with edges of the same
length. Once we have accomplished this simpler task, it is
much easier to see how to go about inscribing a square in
the triangle.

This method of learning can be seen as lazy-evaluation
learning: when you find a problem that you cannot solve,
practice solving auxiliary problems until you see how to
solve the original problem. Rather than doing all the practice
problems ahead of time, you can learn only what you need
to know. People who use lazy-evaluation learning may not
learn their subject matter so thoroughly, but they will also
not waste time learning techniques that they will never have
to use.

Similarly in planning, and especially in complex real-
world applications, lazy-evaluation learning is efficient be-
cause you cannot predict ahead of time which problems will
be difficult for your planner to solve. When you find a set of
tasks that you would like to solve with a planner, you first
have to create a domain. In so doing, you are often faced
with several decisions about how to represent objects and
operators in your domain. These decisions do not affect
your conception of the domain, but they may greatly af-
fect the performance of the planning algorithm on different
problems. Thus when you set your planner to work on an
apparently straightforward problem, you may be surprised
to find that the planner does not solve your problem in a
straightforward way. The planner may choose the wrong
operators to achieve particular goals or it may select un-
successful instantiations of operators. Whatever the case,
you will have created a new situation in which learning
is needed. You will need a learning method to find the
heuristics that can steer you clear of the exponentially-sized
dead-ends in the search space.1

1Changing the domain representation is another alternative that

If planners could be provided with ways of finding aux-
iliary problems, then they could learn heuristics that would
potentially help them solve a difficult problem. But find-
ing simpler planning problems for planners is not trivial.
For example, identifying abstraction levels and potentially
useful decompositions by applying algorithms that syntacti-
cally analyze domain definitions has been shown to be very
much representation dependent. All past considerations of
this problem — including Polya’s — have tried to find sim-
pler problems by statically analyzing the original problem.
In this paper, we propose to use unsuccessful attempts at
solving a planning problem to help us gain additional infor-
mation as to how to find appropriate simplifications.

Approach

We are conducting our research within PRODIGY, an in-
tegrated architecture for research in planning and learn-
ing (Carbonell, Knoblock, & Minton 1990). Like all plan-
ners, it uses heuristics to guide its search through its search
space. Although PRODIGY is capable of using a wide variety
of different heuristics, there is no collection of heuristics that
works efficiently in all domains (Stone, Veloso, & Blythe
1994). The focus of the PRODIGY project has been on under-
standing how an AI planning system can acquire expertise
by using different machine learning strategies. Since sev-
eral learning modules already exist in PRODIGY, it is ideally
suited to our research. Once we create appropriate auxil-
iary problems, we can hand them to one of these existing
modules in order to complete the learning process. Thus we
can concern ourselves exclusively with finding auxiliary
problems.

Since our task is to find auxiliary problems when PRODIGY
comes across a difficult problem, we must first define what
we consider a difficult problem. Here we have several
options. A difficult problem could be:

� one that PRODIGY does not solve in a fixed amount of time
or in a fixed number of search steps;

� one for which PRODIGY finds a suboptimal solution;

� one that causes PRODIGY to backtrack a disproportionate
number of times;

� or one for which a user is unsatisfied with PRODIGY’s
behavior for any other reason.

For us, all of these cases are acceptable definitions of
difficult problems and we allow room in our system for all
of them. In particular, we will allow both PRODIGY and the
user to label a problem as difficult.

has not been explored in automated learning systems. It is widely
done by planner developers whose systems do not incorporate
learning capabilities; however, learning usually occurs by adding
more knowledge to the initial domain specification in order to
direct the planner through the search space at planning time. Find-
ing methods for changing the domain representation is a current
challenging line of research for learning.



Analyzing the partial search
Once we have a difficult problem, we can begin learning
how to solve it. As mentioned earlier, we are trying to find
auxiliary problems based not only on the problem descrip-
tion, but also based on the partial search space that results
from PRODIGY’s attempt at solving the original problem. As
such, the size of the partial search space will affect our re-
sults. Again, we will try to accommodate different possible
approaches. The user could fix the size of the partial search
space by bounding the number of search steps or amount
of time that PRODIGY may work on the original problem.
Another possibility is that this bound could be randomized
to create differently sized search spaces. Finally, the user
could manually interrupt PRODIGY’s search at any time and
pass both the problem and the partial search space to our
system. All of these possibilities are acceptable. We only
require that our system have access to a partial search by
PRODIGY of the problem’s search space.

Since we use the partial search to extract information, its
size can affect its usefulness. For example, a very early
interrupt may not give the planner the opportunity to ex-
plore a rich enough search space. On the other hand, an
excessively long partial search episode, aside from taking
a long time, may mislead our learning algorithm in its at-
tempt to extract the relevant information. It may even be
the case that different partial search episodes will provide
different useful information. We will address this issue
by using a generate-and-test technique to exploit different
partial search episodes.

PRODIGY’s partial search space can provide many clues as
to what makes the original problem difficult for our planner.
For example, we can determine which subgoals PRODIGY
solved and which it did not. Among those that it solved,
we can determine which subgoals it solved quickly, and
which required a large amount of search. We can also
find out if, due to goal or operator interactions, the prob-
lem forced PRODIGY to repeatedly solve the same subgoals.
Furthermore, we can determine at which points PRODIGY
backtracked the most. All of these clues, among others, can
provide information as to what auxiliary problems are most
likely to be useful for learning how to solve the original
problem.

Simplifying the problem
After examining the partial search space, there are several
ways in which we can try to simplify the problem.

� The most straightforward way is to reduce the number of
goals in the problem: if a difficult problem has five goals
to solve, a problem with just three of them is likely to be
simpler.

� Another way to simplify a problem is to use subsets of
troublesome subgoals as the goals of the auxiliary prob-
lem. For example, consider the situation where we de-
termine that PRODIGY has a hard time solving a goal G1.
If G1 can be achieved by an operator with preconditions
S1, S2; . . . ; Sk, then candidate auxiliary problems will be
ones with different combinations of the preconditions S1

through Sk satisfied in the initial state. The remaining
preconditionswill be new goals in the auxiliary problems.

� Some other possible ways of simplifying a problem are
changing the order of its goals, changing the set of rele-
vant domain operators, changing the objects available as
possible bindings, and changing the initial state in a va-
riety of ways. Note that changing a problem could mean
either reducing its size or adding information to it.

The aim of our research is to find a general method for using
the clues from the search space to choose one or more of
these options to create useful auxiliary problems. Currently
our system is in the early implementation stages. Table 1
shows a high-level view of the algorithm.

1. Try to solve the difficult problem.

2. While PRODIGY does not solve the problem,

(a) Determine from the search space which goals and sub-
goals PRODIGY solved easily, which it solved only after
some backtracking, and which it did not solve at all.
� If there were several unsolved goals, then suggest

trying auxiliary problems with fewer goals.
� If PRODIGY solved each goal at some point, then out-

put auxiliary problems with different goal orderings.
(b) Determine from the search space at which type of

choice point PRODIGY backtracked the most. If it back-
tracked most at . . .
� subgoal choice points, suggest auxiliary problems

with fewer goals.
� operator choice points, suggest auxiliary problems

with different goals or different initial states.
� binding choice points, suggest auxiliary problems

with fewer objects.
(c) Choose a limited number of the suggested auxiliary

problems for training.
(d) Train PRODIGY on the chosen auxiliary problems.
(e) Use the newly-learned heuristics to try to solve the

difficult problem.

Table 1: Generating and learning from simple problems.

As our research proceeds, our system will be able to use
clues from the search space in more sophisticated ways as
well.

Example
To understand our task in a real-world context, consider an
extended version of the rocket domain introduced in (Veloso
& Carbonell 1993). This domain is a simple instance of a
real world class of transportation domains where there is
a limited number of resources that are consumed and can
or cannot be reachieved while planning. In this particu-
lar version of the domain, fuel is an unrenewable resource
which prohibits rockets from moving more than once. The
domain includes objects which can be loaded in and out of



rockets, and locations to which rockets can fly. One possible
representation of the operators is as follows:

� (Load-Rocket<object><rocket>) changes the location
of <object> to be (inside <rocket>). <object> and
<rocket> must be in the same location.

(Operator
Load-Rocket
(params <object> <rocket>)
(preconds
((<object> OBJECT)
(<o-place> ORIGIN)
(<rocket> ROCKET))
(and (at <rocket> <o-place>)

(at <object> <o-place>)))
(effects
()
((del (at <object> <o-place>))
(add (inside <object> <rocket>)))))

� (Unload-Rocket <object> <rocket>) changes the loca-
tion of <object> to be (at <location>). <rocket> must
be at <location> and <object> must be in <rocket>).

(Operator
Unload-Rocket
(params <object> <d-place> <rocket>)
(preconds
((<object> OBJECT)
(<d-place> DESTINATION)
(<rocket> ROCKET))
(and (inside <object> <rocket>)

(at <rocket> <d-place>)))
(effects
()
((del (inside <object> <rocket>))
(add (at <object> <d-place>)))))

� (Move-Rocket <rocket> <location- 1> <location- 2>)
changes the location of<rocket> from<location- 1> to
<location- 2>. <rocket> must have fuel to be moved
and this operator consumes the rocket’s fuel. Note that a
rocket cannot be refueled as there is no operator that adds
fuel.

(Operator
Move-Rocket
(params <rocket> <loc-from> <loc-to>)
(preconds
((<rocket> ROCKET)
(<loc-from> LOCATION)
(<loc-to>
(and LOCATION

(diff <loc-to> <loc-from>))))
(and (has-fuel <rocket>)

(at <rocket> <loc-from>)))
(effects
()
((del (at <rocket> <loc-from>))
(add (at <rocket> <loc-to>))
(del (has-fuel <rocket>)))))

Problems in this domain consist of trying to move objects
from their initial locations to specific destinations.

When given this domain representation, PRODIGY has a
difficult time with some apparently simple problems. For
example, consider the following problem with five objects
and two rockets:

Initial State Goal State
(at objA Pittsburgh) (at objA London)
(at objB Pittsburgh) (at objB London)
(at objC Pittsburgh) (at objC London)
(at objD Pittsburgh) (at objD Tokyo)
(at objE Pittsburgh) (at objE Tokyo)
(at rocket1 Pittsburgh)
(at rocket2 Pittsburgh)

An Optimal Solution
<Load-Rocket objA rocket1>
<Load-Rocket objB rocket1>
<Load-Rocket objC rocket1>
<Move-Rocket rocket1 Pittsburgh London>
<Unload-Rocket objA rocket1>
<Unload-Rocket objB rocket1>
<Unload-Rocket objC rocket1>
<Load-Rocket objD rocket2>
<Load-Rocket objE rocket2>
<Move-Rocket rocket2 Pittsburgh Tokyo>
<Unload-Rocket objD rocket2>
<Unload-Rocket objE rocket2>

PRODIGY does not directly find this solution when searching
with its default heuristics. There is no explicit information
in the domain telling it to send one rocket to London and
one to Tokyo. PRODIGY also does not realize to load all the
objects that are going to the same destination before flying
the rocket. We could use heuristics that guide PRODIGY
straight to a solution, but we explore the use of learning
algorithms rather than relying on the user to specify the way
in which the planner should search for a solution.

What are some good auxiliary problems for this problem?
Recall that one possible way of creating auxiliary problems
is to reduce the number of goals. However, it is not always
obvious which goals to eliminate. In this case, considering
a problem with goal state (and (at objA London) (at objD
Tokyo) (at objE Tokyo)) is indeed likely to provide useful
information for solving our problem (see Table 2). On
the other hand, an auxiliary problem with just one goal is
not likely to help. Since a problem with one goal is directly
solved by PRODIGY, it is too simple to lead to useful learning.
At the other extreme, a problem with four goals in the goal
state is almost as difficult as the original problem. If able to
find a solution, PRODIGY could certainly use it to learn how
to solve the original problem; however, if PRODIGY cannot
find a solution in a relatively short amount of time, then the
auxiliary problem is not useful for learning.

This problem also has useful auxiliary problems that do
not involve reducing the number of goals. One example
is the auxiliary problem whose initial state includes hav-
ing objA already loaded into rocket1 with objD and objE
loaded into rocket2. As before, there is the danger of sim-
plifying the problem too much or too little. Starting with



Goal State Solution Found? Time (sec)
(at objA London) yes .45
(at objA London)
(at objD Tokyo) yes 9.7
(at objE Tokyo)
(at objA London)
(at objB London) no 500
(at objD Tokyo)
(at objE Tokyo)

Table 2: PRODIGY’s performance on problems with fewer
goals than the original problem. The problem with just one
goal is solved almost immediately: there is no backtracking
from which to learn. At the other extreme, the problem
with four goals is not solved in a reasonable amount of
time. It is the problem with three goals that is most likely to
be useful for learning. This problem is suggested as a good
auxiliary problem by an examination of a partial search (one
hundred seconds in duration) of the original problem: (at
objA London), (at objD Tokyo), and (at objE Tokyo) are
achieved at some point during the partial search while the
other two goals are not.

all five objects in the correct rockets renders the problem
trivial, whereas starting with only one object loaded does
not simplify the problem enough.

The partial searches of this rocket problem leave many
other options open for possible auxiliary problems. But
rather than listingmore, we would like to emphasize the phe-
nomenon illustrated in the previous two paragraphs: finding
useful auxiliary problems is not trivial. Of the three auxil-
iary problems which were created by removing goals from
the original problem, one is too simple to be useful, one is
too difficult to be useful, and only one may possibly be use-
ful for learning since it is easily but not trivially solvable.
Similarly, problems with slightly altered initial states can be
too simple, too difficult, or possibly useful. Our system will
identify the auxiliary problems that are most likely to be
useful and then use them to reduce the total time necessary
to solve complex problems.

Conclusion

Learning is absolutely necessary for solving complex plan-
ning problems, especially in real-world domains in which
domain representation issues can make planning difficult.
Since seemingly simple problems can turn out to be quite
difficult for a planner to solve, we need a method of learn-
ing heuristics to solve a particular problem. Current learn-
ing systems overlook the difficult task of finding auxiliary
problems on which to train. Our approach is to generate
auxiliary problems by analyzing not only the problem and
domain specifications, but also the planner’s unsuccessful
attempt at solving the problem. By generating the auxiliary
problems and learning from them, we will efficiently solve
complex planning problems.
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