
Using Testing to Iteratively Improve Training

Peter Stone Manuela Veloso
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213-3891

fpstone,velosog@cs.cmu.edu

Abstract

We present a general Active Learning paradigm and illustrate
it within the domain of robotic soccer. We then discuss the
measurement of confidence in what has been learned using
Active Learning.

Introduction
Machine Learning experiments often involve a training
phase and a testing phase. During the training phase, a
learning algorithm is (traditionally) applied to a randomly
distributed set of examples in the instance space. Then
during the testing phase, a test set is drawn from the same
distribution to measure generalization performance. Learn-
ing is deemed to be successful if performance after training
is better than performance before training.

However, especially in complex and hostile environ-
ments, researchers report successful learning results even
though performance on the test set indicates that there is
still much room for improvement. For example, if a reason-
able algorithmcan only classify 30% of the test set correctly,
then a learner that can achieve 60% correct classification is
considered wildly successful. But perhaps more carefully
chosen training data would have led to still better results.

We have recently been working in the domain of robotic
soccer. This is a domain with difficult learning tasks in
which the training data can have a huge effect on the robot’s
performance. First we present a general Active Learn-
ing paradigm which can be applied to different learning
techniques and different domains. We then illustrate this
paradigm with a particular case study within our domain.
Finally, we discuss the implications of the paradigm with
respect to the concept of confidence in learning.

A General Active Learning Paradigm
Although the testing phase is generally the end of a Machine
Learning experiment, from an Active Learning perspective
it can actually be seen as the beginning. Especially when
there is so much room for improvement, appropriately alter-
ing the training set could potentially improve performance.
Assuming that certain regions of the instance space are more
easily classified than others, at least relative to the original
training set (perhaps the training set did not have enough

examples in a certain region of the space), the testing results
can be used to construct a new training set that will allow
the same learning algorithm to cover the instance space
more completely. Now the testing phase can be viewed as a
“what-do-I-need-most-help-with?” phase in an “I-can-get-
better!” process.

The paradigm we propose is as follows:

1. Gather training data.

2. Use a Machine Learning algorithmto learn from the train-
ing data.

3. Gather testing data.

4. Test the performance of the learner.

5. If generalization performance is adequate, continue test-
ing (Goto Step 3) or stop.

6. Using the results of testing, analyze which regions of the
instance space are covered least well by the learner.

7. Gather additional training data from a skewed distribution
of the instance space, favoring those regions discovered
in Step 6.

8. Combine both sets of training data.

9. Goto Step 2.

Notice that this paradigm can be used with any type of
Machine Learning that uses a pre-specified training set. For
example, it can be used either with Neural Networks or
with Decision Tree Learning. A requirement for Step 7
(and Step 1) is that the instance space can be queried for
training examples.

Step 6 is the key step in our paradigm. It requires that
the there be some notion of a topology on the instance
space so that it makes sense to think of certain regions that
require more training examples than others. The incorrectly
classified test examples can indicate where these regions lie,
thus favoring additional training on those regions that are
not yet learned well, but that do occur during testing (i.e.
if part of the instance space is rarely queried, then there is
no need to train for it). Then examples from these regions
can be combined with (part of) the original training set to
produce a more useful training set. The original training set
should be retained so as to increase the chance that the good
learning results will be retained and repeated.



Robot Soccer: A Case Study
As an illustrative example, consider the domain of robotic
soccer in which we have been working. We have been
using a simulator based on a real-world system to study the
learning possibilities in a complex, real-time domain. In
particular, we have been studying the task of learning to
shoot a moving ball into a goal. The ball passes between
the robot and the goal with some speed and heading; the
robot must learn when to accelerate so as to redirect the ball
into the goal.

This instance space has a clear topology. If the robot
is good at scoring when it starts at a particular point, it
can probably also score from nearby points. Similarly, if
the robot is good at scoring when the ball is moving at a
certain speed or in a certain direction, it is probably also
good for similar speeds and directions. On the other hand,
if the robot is not good at scoring for a given position, speed,
and/or direction, it will also have problems at nearby points.

In this soccer domain, our paradigm works as follows:

1. Collect a training set by randomly (within ranges) se-
lecting starting positions for the robot and directions and
speeds for the ball. Especially in a simulator, it is possi-
ble to set the starting position for a trial as desired. Then
the training examples can consist of haphazard attempts
to score from these starting positions.

2. Use a neural network to learn from the training data.

3. Gather a random testing set as in Step 1.

4. Test the performance of the neural net on the test set:
how often can the robot score when using the output of
the neural net as its decision criterion?

5. If performance is adequate, stop. After the first iteration,
performance is not likely to be adequate since this is a
noisy, complex environment.

6. Use another neural net to learn from the test data whether
a particular starting position and ball speed and angle will
lead to a successful trial (a goal) or an unsuccessful one
(a miss).

7. Use this second neural net to filter possible training ex-
amples, choosing only examples that would probably not
be correctly classified test examples. Construct an ad-
ditional training set half the size of the original one by
again trying to score haphazardly (or as learned) from
these new examples.

8. Combine this training set with a randomly chosen 50%
of the original training set.

9. Goto Step 2.

Intuitively, this sequence can help learning because there
are neighborhoods of starting positions from which it is
more difficult to score. For instance, when the ball is mov-
ing quickly, the window of opportunity in which to intercept
the ball is smaller. Consequently, the neural net in Step 6
learns that more training examples with the ball moving
quickly are needed. Similarly, there may be regions of robot
positions (such as off to the side of the goal) which require
further training. On the other hand, if the original training

set was sufficient for the robot to learn how to shoot a slow-
moving ball into the goal, then further such training exam-
ples would not be included in the revised training set. Note
that our implementation of the Active Learning paradigm
keeps the training set at a constant size. However, if the
learning algorithm can handle larger training sets without
degrading performance, all of the original training examples
can be retained. Continuing this Active Learning process
iteratively helps the robot to become an expert shooter.

Confidence in Active Learning Results
Notice that our Active Learning paradigm contains an im-
plicit estimate of confidence in the results produced. Step 4
of the general paradigm says test the performance of the
learner. But what does this statement mean? How does one
measure one’s confidence in past learning?

The obvious interpretation is a straightforward measure-
ment of how well the system performs on a testing set after
learning compared with how it performed before learning.
But the key here is the testing set. Although the training
data evolves throughout the iterative learning process, the
testing data must remain independent and identically dis-
tributed (i.i.d.). As long as the testing data is gathered from
the same distribution each time, it can provide an accurate
measurement of confidence in what has been learned.

The applied version of our paradigm makes this notion
of consistency in data-gathering more explicit. Step 3 says
Gather a random testing set as in Step 1. Step 1 is only vis-
ited once to construct the initial training set, but the testing
set is constructed in the same way every time. Then Step 4
tests the learning system’s performance on the randomly
gathered testing set. Confidence is directly measured by
way of actual performance.

One important thing to keep in mind is that the testing
set need not come from an even distribution. Ideally, it
comes from a realistic real-world distribution that reflects
the situations in which the learner is intended to be applied.
Only then is it apparent how performance has improved
practically, and only then is it possible to get a meaningful
measurement of confidence in learning.

Conclusion
We have presented a general active learning paradigm and il-
lustrated its application to a specific domain. The paradigm
relies on repetitive testing with data that is i.i.d. Mean-
while, the training set evolves to better suit both the prob-
lem and the learning algorithm. The paradigm can be used
in conjunction with any learning algorithm that uses a pre-
specified training set. Searching in the space of training sets,
it iteratively moves towards more efficient and successful
learning.


