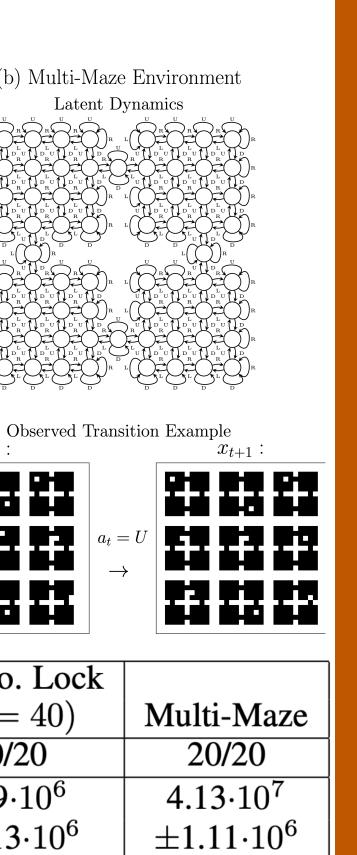
Learning a Fast Mixing Exogenous **Block MDP using a Single Trajectory** Alexander Levine¹, Peter Stone^{1,2}, and Amy Zhang¹

Ex-BMDP Model (Efroni et al., 2022) • Observation $x_t \in X$ can be factored into *controllable* state $s_t \in S$ and *noise* state $e_t \in \mathcal{E}$. • Controllable state evolves deterministically, according to actions: $s_{t+1} = T(s_t, a_t)$. • Noise (exogenous) state evolves as a Markov chain, independent of actions : $e_{t+1} \sim T_e(e_t)$. • Observation $x_t \sim Q(s_t, e_t)$; e_t and s_t are not observed and factorization not known a priori. X and ε can be continuous or large, S is assumed to be discrete and small. Goal: learn an encoder ϕ to map observations x_t to latent states s_t . x_{t-1} x_{t+1} s_{t+1} a_{t+1} (Fig. From Levine et al. 2024) **Related Work** Efroni et al. (2022): Proposed provably sample-efficient algorithm, PPE, for learning Ex-BMDP representations in the *finite horizon* setting, where the latent state s resets to a specific s₁ after (almost) every episode. • Also allows for near-deterministic latent dynamics T, rather than full determinism. Lamb et al. (2023), Levine et al. (2024): proposed algorithms for the infinite-horizon,

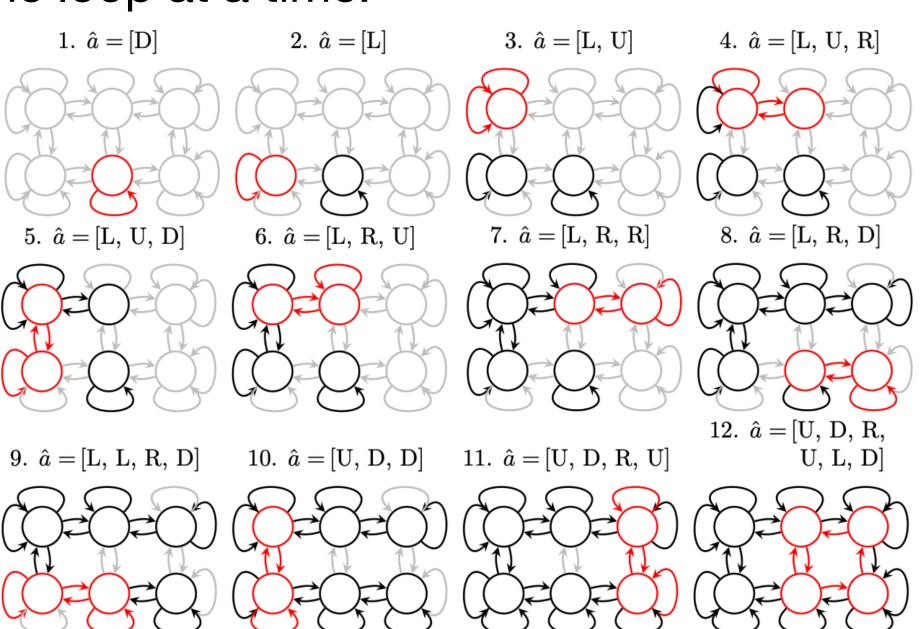
- no-reset setting, but without samplecomplexity guarantees.
- This work: we propose a provably sampleefficient algorithm for Ex-BMDP representation learning in the infinitehorizon, no reset setting.

1: The University of Texas at Austin. 2: Sony AI. Correspondence to <u>alevine0@cs.utexas.edu</u>


Problem Setting and Guarantees

- Agent interacts with the Ex-BMDP in a single trajectory, with no ability to reset the environment.
- Models cases, such as in robotic navigation, where manually resetting the environment repeatedly during training could be costly.
- Core Difficulty: In the (near) deterministic, episodic setting (Efroni et al. 2022), taking the same action sequence a_1, \ldots, a_t for repeated episodes (usually) yields i.i.d. samples of a single latent state st. Not possible in the noreset, single trajectory setting.
- We assume that the noise state *e*_t *mixes fast*:

 $\forall e \in \mathcal{E}, \ \|\Pr(e_{t+\hat{t}_{\text{mix}}} = e'|e_t = e) - \pi_{\mathcal{E}}(e')\|_{\text{TV}} \leq \frac{1}{4},$


where $\pi_{\mathcal{E}}$ is the stationary distribution of the noise state, and \hat{t}_{mix} is a known upper-bound on the mixing time. (Necessary assumption) Our proposed algorithm, STEEL, has sample-complexity polynomial in |S| and \hat{t}_{mix} , and logarithmic in the size of the hypothesis class of the encoder ϕ , with *no* explicit dependence on |X| and $|\mathcal{E}|$.

Experiments			
(a) Combination Lock Environment Latent Dynamics			(b)
			$L \bigcup_{U \in U} L \bigcup_{L \in U} L \bigcup_{U \in U} L \bigcup_{L \in U} L \bigcup_{U \in U} U \bigcup_{U \in U} L \bigcup_{U \in U} U \bigcup_$
Observed Transition Example $x_t:$ $x_{t+1}:$ $a_t = 0$ \rightarrow			
	Combo. Lock $(V = 20)$	Combo. Lock $(K = 20)$	Combo.
Accuracy	(K = 20) 20/20	(K = 30) 20/20	(K = 20/2)
Env. Steps	$2.00 \cdot 10^{6}$	$4.78 \cdot 10^{6}$	<u>9.59</u> .1
	$\pm 1.28 \cdot 10^{5}$	$\pm 4.36 \cdot 10^5$	± 1.13

Algorithm (STEEL)

- Core Idea: Repeating any action sequence $\hat{a} =$ $[a_1,..,a_n]$ is guaranteed to eventually enter a loop of latent states (of length at most $n^*|S|$)
- Once in a loop, we can "wait out" the mixing time \hat{t}_{mix} to get near-i.i.d. samples.
- Once we find the period of the cycle, we can collect near-i.i.d. datasets from all visited latent states.
- We can then construct the latent dynamics one loop at a time:

- Challenges :
- are covered by some cycle?
- See paper to find out!

References

- Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Provably filtering exogenous distractors using multistep inverse dynamics. ICLR. 2022.
- Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster, Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of controlendogenous latent states with multi-step inverse models. TMLR. 2023.
- Alexander Levine, Peter Stone, and Amy Zhang, Multistep inverse is not all you need. RLC 2024.

How do we determine the period of a cycle? How do we ensure that all latent states in S