Learning a Fast Mixing Exogenous **Block MDP using a Single Trajectory** Alexander Levine¹, Peter Stone^{1,2}, and Amy Zhang¹

1: The University of Texas at Austin. 2: Sony AI. Correspondence to <u>alevine0@cs.utexas.edu</u>

Control-Endogenous Representation Learning

- Observation spaces in control problems can be high-dimensional, and may include factors irrelevant for control.
- These factors may be time-correlated
 - Example: leaves blowing/birds flying in the background in a robotic navigation environment.
- To learn to perform downstream tasks efficiently, we need representation learning algorithms that *ignore control-irrelevant factors*.

Ex-BMDP Model (Efroni et al. 2022b) e_{t+1} e_{t-1} e_t x_{t-1} x_{t+1} x_t s_{t+1} s_{t-1} s_t a_{t+1} a_t a_{t-1}

- State $x \in X$ can be factored into:

 - Exogenous state $e \in \mathcal{E}$, stochastic, independent of actions (*noise*)
- Factorization is not known a priori, and s and e are not observed.

• Endogenous state $s \in S$, discrete, evolves deterministically according to actions

Ex-BMDP Model (Efroni et al. 2022b)

$$\begin{aligned} x_{t+1} &\sim \mathcal{Q}(x|s_{t+1}, e_{t+1}), \\ s_{t+1} &= T(s_t, a_t), \quad s_t = \phi(x_t), \\ e_{t+1} &\sim \mathcal{T}_e(e|e_t) \end{aligned}$$

Ex-BMDP Model (Efroni et al. 2022b)

$$\begin{aligned} x_{t+1} &\sim \mathcal{Q}(x|s_{t+1}, e_{t+1}), \\ s_{t+1} &= T(s_t, a_t), \quad s_t = \phi(x_t), \\ e_{t+1} &\sim \mathcal{T}_e(e|e_t) \end{aligned}$$

Our goal: learn φ, with provable sample complexity with *no* direct dependence on |X|, |ε|

- - s_1 is (near) constant; s_t is (near) deterministic function of a_1, \ldots, a_{t-1}
 - $e_1 \sim d_1^{ex}$; action-independent dynamics implies $e_t \sim d_t^{ex}$

 IID samples of observations x corresponding to any s can by obtained by simply taking the same sequence of actions a_1, \ldots, a_{t-1} repeatedly.

- - s_1 is (near) constant; s_t is (near) deterministic function of a_1, \ldots, a_{t-1}
 - $e_1 \sim d_1^{ex}$; action-independent dynamics implies $e_t \sim d_t^{ex}$

 IID samples of observations x corresponding to any s can by obtained by simply taking the same sequence of actions a_1, \ldots, a_{t-1} repeatedly.

- - s_1 is (near) constant; s_t is (near) deterministic function of a_1, \ldots, a_{t-1}
 - $e_1 \sim d_1^{ex}$; action-independent dynamics implies $e_t \sim d_t^{ex}$

 IID samples of observations x corresponding to any s can by obtained by simply taking the same sequence of actions a_1, \ldots, a_{t-1} repeatedly.

- - s_1 is (near) constant; s_t is (near) deterministic function of a_1, \ldots, a_{t-1}
 - $e_1 \sim d_1^{ex}$; action-independent dynamics implies $e_t \sim d_t^{ex}$

 IID samples of observations x corresponding to any s can by obtained by simply taking the same sequence of actions a_1, \ldots, a_{t-1} repeatedly.

- - s_1 is (near) constant; s_t is (near) deterministic function of a_1, \ldots, a_{t-1}
 - $e_1 \sim d_1^{ex}$; action-independent dynamics implies $e_t \sim d_t^{ex}$

 IID samples of observations x corresponding to any s can by obtained by simply taking the same sequence of actions a_1, \ldots, a_{t-1} repeatedly.

- - s_1 is (near) constant; s_t is (near) deterministic function of a_1, \ldots, a_{t-1}
 - $e_1 \sim d_1^{ex}$; action-independent dynamics implies $e_t \sim d_t^{ex}$

 IID samples of observations x corresponding to any s can by obtained by simply taking the same sequence of actions a_1, \ldots, a_{t-1} repeatedly.

- What if we can't reset to s₁?
 - Single-trajectory, infinite horizon, no-reset setting
 - Not obvious how to get IID sample of any particular latent state
 - In fact, exogenous component is never IID at all

- What if we can't reset to s₁?
 - Single-trajectory, infinite horizon, no-reset setting
 - Not obvious how to get IID sample of any particular latent state
 - In fact, exogenous component is never IID at all

- What if we can't reset to s₁?
 - Single-trajectory, infinite horizon, no-reset setting
 - Not obvious how to get IID sample of any particular latent state
 - In fact, exogenous component is never IID at all

- What if we can't reset to s₁?
 - Single-trajectory, infinite horizon, no-reset setting
 - Not obvious how to get IID sample of any particular latent state
 - In fact, exogenous component is never IID at all

- What if we can't reset to s₁?
 - Single-trajectory, infinite horizon, no-reset setting
 - Not obvious how to get IID sample of any particular latent state
 - In fact, exogenous component is never IID at all

- What if we can't reset to s₁?
 - Single-trajectory, infinite horizon, no-reset setting
 - Not obvious how to get IID sample of any particular latent state
 - In fact, exogenous component is never IID at all

- Prior works:
 - Lamb et al. 2023, Levine et al. 2024:
 - Present asymptotically correct methods
 - No sample-complexity guarantees given
 - The hard part: how to explore efficiently, if you don't know what state you're currently in?
 - Lamb et al. gives an exploration method, but it's not proven to be sampleefficient, or even asymptotically correct

STEEL Algorithm

- We propose a provably sample-efficient algorithm in this setting
- Additional Assumptions:
 - All latent states s eventually reachable from each other (i.e., no "getting" stuck") — Necessary Assumption
 - Known upper-bound N on |S|
 - Exogenous state e "mixes fast": Necessary Assumption $= e' |e_t = e) - \pi_{\mathcal{E}}(e') ||_{\mathrm{TV}} \le \epsilon.$ $t_{\rm mix} := t_{\rm mix}(1/4)$

$$\forall e \in \mathcal{E}, \| \Pr(e_{t+t_{\min}(\epsilon)} =$$

There is a known upper bound \hat{t}_{mix} on the mixing time t_{mix}

• Sample-Complexity:

 $\mathcal{O}^*\Big(ND|\mathcal{S}|^2|\mathcal{A}|\cdot\lograc{|\mathcal{F}|}{\delta}+|\mathcal{S}||\mathcal{A}|\hat{t}_{mix}\cdot\lograc{|\mathcal{F}|}{\delta}$ where $\mathcal{O}^*(f(x)) := \mathcal{O}(f(x)\log(f(x))).$

- F: hypothesis class for binary one-versus-rest classification on latent states in S (φ is constructed from these classifiers).
- D: diameter of latent state transition graph T.
- δ : algorithm failure rate.
- ε: maximum failure rate of encoder (on any latent state s, at stationary distribution of e)

$$g \frac{N|\mathcal{F}|}{\delta} + \frac{|\mathcal{S}|^2 D}{\epsilon} \cdot \log \frac{|\mathcal{F}|}{\delta} + \frac{|\mathcal{S}|\hat{t}_{mix}}{\epsilon} \cdot \log \frac{|\mathcal{F}|}{\delta} \Big),$$

- Basic idea:
 - Repeating any action sequence $a = [a_1, ..., a_n]$ is guaranteed to eventually enter a loop of latent states (of length at most n*N)
 - Once we're in a loop, we can "wait out" the exogenous state mixing time to get near-IID samples
 - If we find the period of the cycle, we can get near-IID datasets from all visited latent states

• Dynamics are constructed one cycle at a time

- Challenges: \bullet
 - How to determine period of each cycle?
 - How do we ensure that all states are covered by some cycle?
 - See paper to learn!

Results

$$a_t = 0$$

 \rightarrow

	Combo. Lock	Combo. Lock	Combo. Lock	
	(K = 20)	(K = 30)	(K = 40)	Multi-Maze
Fixed Env. Accuracy	20/20	20/20	20/20	20/20
Fixed Env. Steps	1886582 ± 0	4286241±0	7914856±0	41003875±0
Variable Env. Accuracy	20/20	20/20	20/20	20/20
Variable Env. Steps	$2.00 \cdot 10^{6}$	$4.78 \cdot 10^{6}$	9.59 .10 ⁶	$4.13 \cdot 10^7$
	$\pm 1.28 \cdot 10^{5}$	$\pm 4.36 \cdot 10^{5}$	$\pm 1.13 \cdot 10^{6}$	$\pm 1.11 \cdot 10^{6}$

References

- 2024.

• Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Provably filtering exogenous distractors using multistep inverse dynamics. ICLR. 2022b. • Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster, Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-endogenous latent states with multi-step inverse models. TMLR. 2022. • Alexander Levine, Peter Stone, and Amy Zhang, Multistep inverse is not all you need. RLC