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Control-Endogenous Representation Learning

• Observation spaces in control problems can be high-dimensional, and 
may include factors irrelevant for control.


• These factors may be time-correlated 
• Example: leaves blowing/birds flying in the background in a robotic 

navigation environment.

• To learn to perform downstream tasks efficiently, we need representation 

learning algorithms that ignore control-irrelevant factors.



Ex-BMDP Model (Efroni et al. 2022b)

• State x ∈ X can be factored into:


• Endogenous state s ∈ S, discrete, evolves deterministically according to actions 


• Exogenous state e ∈ ℰ, stochastic, independent of actions (noise)


• Factorization is not known a priori, and s and e are not observed.
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Ex-BMDP Model (Efroni et al. 2022b)

Our goal: learn φ, with 
provable sample 

complexity with no direct 
dependence on |X|, |ℰ| 



PPE (Efroni et al. 2022b)
• Efroni et al. consider episodic case, with (near) deterministic start state s₁:

• s₁ is (near) constant; st is (near) deterministic function of a1,…,at-1


• e₁ ~ d₁ex; action-independent dynamics implies et ~ dtex

• IID samples of observations x corresponding to any s can by obtained by 
simply taking the same sequence of actions a1,…,at-1 repeatedly.

s₁

e₁~d₁ex e2~d2ex e3~d3ex e4~d4ex e5~d5ex e6~d6ex
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No-Reset Setting
• What if we can’t reset to s₁?

• Single-trajectory, infinite horizon, no-reset setting

• Not obvious how to get IID sample of any particular latent state

• In fact, exogenous component is never IID at all
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No-Reset Setting
• Prior works:


• Lamb et al. 2023, Levine et al. 2024:

• Present asymptotically correct methods


• No sample-complexity guarantees given

• The hard part: how to explore efficiently, if you don’t know what state you’re 

currently in?

• Lamb et al. gives an exploration method, but it’s not proven to be sample-

efficient, or even asymptotically correct



STEEL Algorithm
• We propose a provably sample-efficient algorithm in this setting

• Additional Assumptions:

• All latent states s eventually reachable from each other (i.e., no “getting 

stuck”) — Necessary Assumption 
• Known upper-bound N on |S|

• Exogenous state e “mixes fast”:  — Necessary Assumption



STEEL Algorithm

• Sample-Complexity:

• F: hypothesis class for binary one-versus-rest classification on latent 
states in S (φ is constructed from these classifiers).


• D: diameter of latent state transition graph T.

• δ: algorithm failure rate.

• ε: maximum failure rate of encoder (on any latent state s, at stationary 

distribution of e)



STEEL Algorithm

• Basic idea:

• Repeating any action sequence a = [a₁,..,aₙ] is guaranteed to eventually 

enter a loop of latent states (of length at most n*N)

• Once we’re in a loop, we can “wait out” the exogenous state mixing 

time to get near-IID samples

• If we find the period of the cycle, we can get near-IID datasets from all 

visited latent states



STEEL Algorithm

• Dynamics are constructed one cycle at a time



STEEL Algorithm

• Challenges:

• How to determine period of each cycle?

• How do we ensure that all states are covered by some cycle?

• See paper to learn!



Results
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