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A Champion-level Vision-based Reinforcement
Learning Agent for Competitive Racing

in Gran Turismo 7
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Kenta Kawamoto2, Peter Stone5,6, and Peter R. Wurman5

Abstract—Deep reinforcement learning has achieved superhu-
man racing performance in high-fidelity simulators like Gran
Turismo 7 (GT7). It typically utilizes global features that require
instrumentation external to a car, such as precise localization
of agents and opponents, limiting real-world applicability. To
address this limitation, we introduce a vision-based autonomous
racing agent that relies solely on ego-centric camera views and
onboard sensor data, eliminating the need for precise localization
during inference. This agent employs an asymmetric actor-critic
framework: the actor uses a recurrent neural network with
the sensor data local to the car to retain track layouts and
opponent positions, while the critic accesses the global features
during training. Evaluated in GT7, our agent consistently outper-
forms GT7’s built-drivers. To our knowledge, this work presents
the first vision-based autonomous racing agent to demonstrate
champion-level performance in competitive racing scenarios.

Index Terms—Autonomous Agents, Reinforcement Learning,
Vision-Based Navigation

SUPPLEMENTARY VIDEOS

This paper is accompanied by a video of the performance:
https://youtu.be/a-GuIbQOw_c

I. INTRODUCTION

AUTONOMOUS racing demands self-driving vehicles to
make split-second decisions at high speeds in dynamic,

adversarial environments. Traditional control-based methods
rely on modular pipelines for perception, planning, and con-
trol, requiring extensive hand-engineering. In contrast, deep
reinforcement learning (RL) unifies these components, en-
abling end-to-end policy learning directly from sensor data.
This approach has achieved superhuman performance in high-
fidelity simulators like Gran Turismo 7 (GT7) through large-
scale, distributed training [1].
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Fig. 1: Top: Our agent controlling an Audi TT Cup and racing
against GT7’s built-in AI (BIAI). Bottom: Histogram of the
winning margin, the distance between our agent and the lead-
ing BIAI at race completion. This evaluation involves starting
from the last position versus 19 identical BIAI agents on the
Tokyo Expressway track. Our agent consistently outperforms
both Human Expert and Human Champion.

Despite these successes, transferring RL-based methods
from simulation to real-world applications remains challeng-
ing. Current approaches rely on global features requiring
external instrumentation, such as track geometry and opponent
locations [1]–[7]. Acquiring accurate real-time global features
is challenging and introduces latency, which impedes rapid
decision-making essential for racing [8], [9]. This reliance on
global features restricts the practicality of deep RL approaches
in real-world racing scenarios.

A more feasible approach involves training agents using
only onboard sensor data, such as ego-centric cameras and
Inertial Measurement Units (IMUs), eliminating reliance on
global features during inference. However using only on-board
features can be challenging for competitive racing scenarios
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that include partial observability due to occlusions and track
layouts, in addition to the difficulty of handling high dimen-
sional image data [10], [11].

Our work extends vision-based RL from time-trial [12]
to competitive racing, where partial observability is more
pronounced due to frequent occlusions of opponents and
track layouts. We introduce an asymmetric recurrent actor-
critic architecture [12], [13], where the actor relies on vision-
based input with a recurrent memory module [14] to handle
partial observability, while the critic leverages global state
information during training. Additionally, to improve gener-
alization and sample efficiency, we incorporate regularization
techniques such as data augmentation [15], [16] and periodic
network reinitialization [17], [18]. Finally, we include a multi-
opponent racing reward function from Wurman et al [1]
alongside a reward function for the time-trial agent [12].

We evaluate our agent in GT7, a high-fidelity racing sim-
ulator for PlayStation® 5. Trained against GT7’s built-in AI
(BIAI), our agent consistently secures first place against 19
BIAIs, even when starting from the last position, outperform-
ing human champions (Figure 1). Extensive ablation studies
validate the effectiveness of the asymmetric architecture, re-
current memory module, and regularization strategies. To the
best of our knowledge, this work presents the first vision-
based autonomous racing agent to achieve champion-level
performance in competitive racing scenarios [12], [19], [20].

II. RELATED WORK

A. Autonomous Racing

Autonomous racing aims to develop vehicles capable of per-
forming at their dynamic limits in competitive environments
[21], [22]. Traditionally, the problem has been divided into
three main components: perception [23], [24], planning [25],
[26], and control [27]–[31], with progress often occurring in
isolation. Recently, reinforcement learning (RL) has emerged
as a powerful tool for integrating these components into
unified, end-to-end systems [1], [3]–[6]. For example, Fuchs
et al. [3] achieved superhuman performance in a time trial
racing scenario, where one car is on the track at a time,
using a model-free RL approach with a novel reward structure.
Subsequently, Wurman et al. [1] introduced Gran Turismo
Sophy (GT Sophy), an RL agent that excels in both time trial
races and multi-opponent races. However, during inference,
these methods rely on global features, such as detailed track
layout information and opponent localization, which are easily
accessible in simulators but are challenging to obtain in real-
world environments.

B. Vision-Based RL for Autonomous Racing

Vision-based RL presents a promising alternative by en-
abling agents to operate competitively directly from visual
inputs, eliminating the need for precise global features during
inference. Despite its potential, existing methods face signifi-
cant challenges. Jaritz et al. [32] reported that their vision-
based RL agent struggled with maintaining optimal racing
trajectories and frequently collided with obstacles. Cai et al.
[19] combined imitation learning with model-based RL to

teach racing behaviors, but their approach required costly
expert demonstrations, limiting its scalability. Additionally,
many vision-based methods either lack direct comparisons
to human drivers [4], [32] or fail to perform effectively in
competitive settings [19], [20].

Vasco et al. [12] recently demonstrated that a vision-
based agent could achieve superhuman performance in GT7.
However, their work was confined to time trial settings without
opponents, where partial observability and stochastic elements
pose fewer challenges. In contrast, our work introduces the first
vision-based RL agent to achieve champion-level performance
in competitive racing scenarios, where the agent needs to
interact with opponent cars and aim for the first position while
respecting the rules of sportsmanship.

III. METHOD

Our goal is to develop a vision-based agent for competitive
racing scenarios in GT7 using only sensor data local to the
car during inference. Our agent is built on top of the previous
vision-based racing agent for time trial settings in GT7 [12].

A. Observation Space

Our agent employs a multimodal observation space designed
to capture the critical aspects of competitive racing. At each
time step t, the composite observation ot = (oi

t,o
p
t ,o

g
t )

consists of image data oi
t, proprioceptive information op

t , and
global information og

t derived from the GT7 simulation during
training.
• Image Feature (oi

t) is a 64× 64 RGB image, down-scaled
from the original 1920 × 1080 resolution. It captures the
agent’s first-person view of the track. To simulate a front-
view camera attached to the car, we disabled the in-game
heads-up-display containing information about the vehicle
speed or track map and masked out the rear-view mirror.
Note that Vasco et al. [12] showed that the rear-view mirror
was not critical for race car control.

• Proprioceptive Feature (op
t ) includes data from the IMU

sensors, defined as:

op
t = [vt, v̇t, v

r
t , ut, st, dt]

where vt ∈ R3 represents the car’s linear velocity, v̇t ∈ R3

is the linear acceleration, and vr
t ∈ R3 is the rotational

velocity. The vector ut ∈ R3 corresponds to the current
inputs for steering, throttle, and brake. Lastly, st ∈ R3 and
dt ∈ R3 are the steering angle and changes in the steering
angle over the last three time steps.

• Global Feature (og
t ) includes track point information, ct,

and opponent grid data, gt, proposed in Wurman et al. [1].
The track point feature consists of 177 3D coordinates ct ∈
R177×3, representing the edge of the track. These points are
dynamically spaced based on the agent’s speed, covering
approximately six seconds of travel time.
The opponent grid feature contains information about
nearby opponents. For each opponent, the position, velocity,
and acceleration, projected onto the 2D plane, are recorded,
forming a vector gopp

t ∈ R6. The full opponent grid feature
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is represented as gt ∈ R6×14, describing the 7 closest
opponents looking ahead 75 meters ahead and 7 closest
opponents looking behind 20 meters.
While the critic uses global features during training, they

are excluded from the actor to ensure that the agent relies
exclusively on information local to the car during inference.

B. Action Space

We follow the action space used in previous work [12]:

at = (ast , a
g
t )

where ast ∈ R represents the delta steering angle, constrained
to the range [−3◦, 3◦] to ensure realistic steering inputs. The
term agt denotes the combined throttle and brake value, within
the range [−1, 1], with −1 indicating full braking and 1
indicating full throttle. Gear shifting is managed by the in-
game automatic transmission system.

The agent’s control updates occur at a frequency of 10
Hz, whereas the game operates at 60 Hz. To synchronize, the
game applies a zero-order hold for throttle inputs and linearly
interpolates the steering angle between control updates.

C. Reward Function

We utilize a reward function used in previous work [12],
incorporating a multi-opponent racing reward function from
Wurman et al. [1], defined as a weighted combination of
atomic reward components:

rt = λprpt + λorot + λbrbt + λvrvt

+ λcrct + λsrst + λtrtt + λhrht .

• Track Progress (rp) measures the one-step change in the
vehicle’s track position since the last step. It is defined as
rpt = pt − pt−1, where pt represents the vehicle’s position
projected onto the closest point on the track center line.

• Shortcut Penalty (ro) penalizes the agent for taking short-
cuts by cutting track corners. It is defined as rot = −(sot −
sot−1)|vt|, where sot denotes the total time the vehicle has
had at least three tires outside the track limits.

• Barrier Collision Penalty (rb) discourages the agent from
using barrier collisions to change directions quickly. It is
defined as rbt = −(sbt − sbt−1)|vt|, where sbt represents the
total time the vehicle was in contact with a barrier.

• Car Velocity-based Collision Penalty (rv) penalizes the
agent for colliding with other cars based on the difference
in speed. It is defined as rvt = −|∆vx

t |2, where ∆vx
t is the

speed difference between the agent’s car and an opponent’s
car at the time of collision

• Car Collision Fixed Penalty (rc) applies a constant penalty
for any contact with opponent cars.

• Overtaking Progress (rt) rewards the agent
for overtaking other cars. It is defined as
rt =

∑
∀i∈C\k[Icr<(pi

t−pt)<cf ((pt − pit)− (pt−1 − pit−1))],
where pit represents the position of car i, k is the index of
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Fig. 2: Architecture Overview. The actor processes the
image and proprioceptive features to predict actions, using a
recurrent memory to track opponents and track layouts. The
critic evaluates these actions using the global features. Both
networks are jointly trained with the QR-SAC algorithm.

the ego-agent’s vehicle, and cr and cf are thresholds for
the minimum distance between two cars.

• Steering Change Penalty (rs) discourages abrupt steering
changes. It is defined as rst = −|θst − θst−1|, where θst is the
steering angle at time t.

• Steering History Penalty (rh) penalizes inconsistent steer-
ing decisions over a short period. It is defined as rht =
−mt(1 + exp(−cs · (∆t − co))), where ∆t = |δt|+ |δt−1|,
δt = θst−θst−1 and mt = Iδt>cd ·Iδt−1>cd ·Isgn(δt )̸=sgn(δt−1).
cs, co, and cd are constant factors.
Following previous work [1], [12], we used λ values as:

λp = 1.0, λo = 10.0, λb = 20.0, λv = 0.5, λc = 6.0,
λs = 0.5, λt = 3.0, and λh = 5.0. The constant factors
are cr = −20, cf = 40, cs = 182.883569, co = 0.034, and
cd = 0.014.

D. Architecture

We use Quantile Regression Soft Actor-Critic (QR-SAC)
[33], a distributional variant of SAC [34] to train the agent.
This algorithm has successfully learned superhuman au-
tonomous racing agents in previous work [1], [12].

As illustrated in Figure 2, we use an asymmetric actor-critic
architecture, which is designed as follows:
• Actor (πθ): The actor is only provided with the local

features, the image input oi
t and proprioceptive data op

t . The
image is passed through three convolutional layers, fθ, They
use 32, 64, and 64 filters respectively. The kernel sizes are
8, 4, and 3 with strides of 4, 2, and 1. The resulting feature
map is flattened and embedded into a 512-dimensional
vector, which is then concatenated with the proprioceptive
features. This combined feature vector is then processed by
a recurrent predictor network, pθ, which includes an internal
hidden state, ht−1. The recurrent module is implemented
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TABLE I: We evaluate our agents across three distinct scenarios, each consisting of a track, car, and tire combination.

Scenario Track Car Tire

Tokyo Tokyo Expressway - Central Clockwise, Japan Audi TT Cup ’16 Racing Hard
Spa Circuit de Spa-Francorchamps, Belgium Alfa Romeo 4C Launch Edition ’14 Sports Medium
Sarthe 24 Heures du Mans race track, France HYUNDAI N 2025 Vision Gran Turismo (Gr.1) Racing Medium

with a Gated Recurrent Unit [35], followed by four fully
connected layers, each with 2048 hidden units. A final
linear layer with a hyperbolic tangent activation function
predicts action probabilities of the delta steering angle and
the combined throttle and brake value individually, modeled
by a Gaussian distribution.

• Critic (qθ): The critic uses both proprioceptive data op
t and

global features og
t to precisely evaluate actions based on

local and global information. The network consists of 4 fully
connected layers with 2048 hidden units each and outputs
a value function with 32 quantile units to model the Q-
function distribution.
Using this asymmetric architecture, the actor relies on

image and proprioceptive features, allowing the agent to make
inferences based solely on local information.

E. Regularization

To improve the stability and generalization of our vision-
based agent, we apply the following regularizations:
• Network Reinitialization: In RL, agents can overfit to

early training data which often includes limited behaviors,
such as navigating simpler track sections or less dynamic
opponent interactions [18]. This can lead to overemphasis
on static features like track layouts. To alleviate this bias,
we reinitialize the networks after the replay buffer is fully
populated, as recommended by Nikishin et al. [17]. At
this stage, the buffer contains a diverse range of scenar-
ios, including complex opponent interactions and strategic
behaviors. Reinitializing the network allows the agent to
restart from this broader dataset and helps to prevent the
agent from prematurely overfitting to static features.

• Image Augmentation: To prevent overfitting to specific
visual cues, we apply random shift augmentation [36].
During training, the input image is randomly shifted within
a small range, simulating different visual perspectives and
enhancing the agent’s ability to generalize to unseen sce-
narios.
These regularization strategies improve the agent’s learning

stability and generalization, supporting robust decision-making
in competitive racing environments.

IV. EXPERIMENTAL SETUP

A. Environments

We evaluate our approach in GT7 across three car-track
scenarios, each presenting different challenges. Detailed setups
are provided in Table I and Figure 3.
• Tokyo: A track with a mix of chicanes, high-speed straights,

and tight track boundaries with no run-off, requiring precise

C
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Fig. 3: Racing Scenarios. Visualization of track, car, and
sample input image for each training scenario.

control in overtaking maneuvers with a front-wheel drive
vehicle.

• Spa: A technical circuit with significant elevation changes,
demanding good racing lines and control of vehicle over-
steer with a rear-wheel drive vehicle.

• Sarthe: A high-speed circuit where effective slipstreaming
on long straights and managing vehicle downforce are
critical, with speeds reaching 340 km/h in a 4WD car.

B. Training

Unlike many RL simulators (e.g., MuJoCo [37]) that can
leverage accelerated simulation, GT7 operates in real-time. To
speed up training, we used the same asynchronous distributed
training framework described in Wurman et al. [1]. Our setup
utilized 20 rollout workers for data collection, each connected
via Ethernet to a dedicated PlayStation® 4 system.

Latency from retrieving images over Ethernet presented
challenges for real-time training. To mitigate this problem,
we configured the simulator to pause simulation steps until
action commands were received from the rollout workers [12].
A dedicated training server managed the network parameters
and updated them via gradient descent. Rollout workers are
synchronized with the server at the end of each epoch by
receiving the latest policy checkpoint.

While GT7 supports a maximum of 20 cars per track,
training against 19 BIAI opponents directly can hinder the
agent’s ability to learn basic driving skills. To address this
challenge, we adopted the multi-scenario training approach
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Fig. 4: Performance comparison of our agent, GT Sophy, a Human Expert, and a Human Champion. Car collision time
is the total duration of contact with any opponent, while winning margin is the distance between the agent and the highest-
ranked opponent when the agent completes all four laps. The contours represent the density of data points, with denser regions
indicating more frequent occurrences of certain performance outcomes. Upper-right regions indicate superior performance, as
they represent larger winning margin achieved with lower car collision times.

from Wurman et al. [1]. Each training episode is sampled
from a range of configurations, from solo runs to races with
1, 2, 3, 4, 7, 12, and 19 opponents. The agent starts each
race from randomly sampled points around the track. To
diversify opponent behavior, GT7’s balance-of-performance
(BoP) interface uniformly samples the opponent cars’ engine
power and body weight within [-25%, + 25%] range relative
to vehicle’s original specification.

For the main experiments, we adopted the same hyperpa-
rameters as those established in prior work [12]. We used a
mini-batch size of 512, sampled from 16 trajectories with a
sequence length of 32 and a burn-in phase of 16 steps for
the recurrent module. The replay buffer was set to 5 million
samples, and we applied the Adam optimizer with a learning
rate of 2.5×10−5, a discount factor of 0.9896, and an entropy
coefficient of 0.01. We incorporated a multi-step return with
n = 7. To encourage the network to relearn overlooked
features, we reinitialized the networks at 2,000 epochs, which
aligned with the replay buffer reaching capacity. Image inputs
were augmented using random shift with a maximum shift of 4
pixels, utilizing mirrored padding. The training was conducted
over 20,000 epochs.

C. Baselines

For comparison, we include the following baselines:

• Human Expert:1 Performance of a GT7 player with 25+
years of experience in the Gran Turismo series and real-
world circuit racing. The player is regularly ranked in the
top 3-5% in online time trial events of GT7. The player was
allowed unlimited practice laps and evaluated in three trials
per scenario, with trials restarted if the player lost control
and spun out to ensure consistency.

1We conducted evaluation trials with Rodney Meza to present results as a
Human Expert. He is an employee of Sony Research, Tokyo.

• Human Champion:2 Performance of a top GT7 player with
multiple world titles. The evaluation protocol matched that
of the Human Expert.

• GT Sophy: An agent trained using the architecture de-
scribed in Wurman et al. [1], with modifications to train
exclusively against BIAI. Population-based training is not
utilized in this setup.

D. Evaluation

We evaluated the performance of each agent over 4-lap
episodes in their respective scenarios, starting from the back
of a 20-car grid, with the remaining 19 cars controlled by
BIAI. BIAI is an in-game model predictive control-based AI
in GT7, serving as the opponent for all experiments. The
BoP is disabled during evaluation. The primary metric was
the winning margin, which measures the distance by which
the agent leads the second-best opponent if it wins, or the
deficit if it does not. Sportsmanship was also considered,
with overtaking through collisions discouraged. We tracked
car collision time, the total duration the agent’s car was in
contact with others during an episode.

After training, we selected the top model checkpoint for
each seed (three seeds in total) based on the highest winning
margin with a car collision time better than the worst ob-
served in the human champion baseline. The evaluation was
conducted over 500 episodes per model checkpoint.

V. EXPERIMENTAL RESULTS

A. Main Experiment

We present the main experiment results in Figure 4, using a
Kernel Density Estimate plot [38] to visualize the relationship
between car collision time (x-axis) and winning margin at

2We conducted evaluation trials with Mikail Hizal, a champion at the
GT World Series events in 2019 and 2020, to present results as a Human
Champion.
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t=0.0 t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 t=3.0

Fig. 5: Visualizing our agent’s trajectory and action attributions in the Spa scenario. The sequence is shown in 0.5-second
intervals and consists of three rows: Top: displays the trajectory of our agent (red) and a BIAI opponent (black); Middle: shows
attribution maps using Integrated Gradients, highlighting the agent’s focus on lower vehicle regions for overtaking opportunities
or treelines for track layout. Bottom: illustrates how visual features from the past frames contribute to actions predicted for
the final frame, demonstrating the agent’s ability to infer information that is not included in the final frame.

the final distance (y-axis). We focus on the 50% interquartile
range, with better performance indicated by density concen-
trated on the upper-right corner ( ). In all scenarios, our agent
demonstrates champion-level performance:

• Tokyo. Our vision-based agent outperforms all baselines,
achieving the highest winning margin. This superior per-
formance likely stems from our agent’s ability to assess
the distance and gaps to nearby cars better than GT
Sophy. While GT Sophy treats opponents as point masses
with relative position, velocity, and acceleration, it lacks
awareness of opponent orientation [1]. In contrast, our
agent’s vision-based input enables it to infer opponent ori-
entation, leading to improved gap perception and overtak-
ing capabilities. These advantages are particularly critical
on the Tokyo track, which demands precise navigation
within tight boundaries and minimal run-off areas.

• Spa. Our agent matches GT Sophy’s performance while
surpassing the human expert and the human champion
baseline. Overtaking is easier here due to the track’s
wider layout and generous run-off areas, allowing our
agent to exploit curbs and optimize its racing line. The
similar performance between our agent and GT Sophy is
expected, as both consistently execute near-perfect racing
lines, providing a significant advantage over the human
champion, whose racing lines are skilled but less precise.

• Sarthe. On Sarthe, our agent consistently surpasses the
human expert and a majority of the human champion
data in performance. Note that our agent induces higher
car collision time compared to the human champion.
Although we selected a model checkpoint with a collision
time lower than the worst observed human performance,
the agent’s overall collision time remains higher. This
discrepancy is likely due to inherent randomness in GT7:

even with identical starting conditions, vehicle positions
can diverge significantly after the first corner, where
a majority of collisions occur. GT Sophy achieves a
lower collision time than our agent, utilizing the precise
perception to avoid collisions at the first corner.

B. Visual Analysis

To better understand the decision-making process of our
vision-based agent, we apply Integrated Gradients (IG) [39],
which assigns importance to individual pixels in an image. In
our analysis, attributions are calculated using a 7 × 7 mean-
filtered blurred baseline as a reference point. Gradients are
then computed over 20 linearly interpolated images between
the baseline and the input image, integrating the resulting
gradients along this path. These integrated attributions are
summed to quantify the contribution of each pixel to the output
action. Figure 5 visualizes these attributions during a short
driving segment, highlighting pixels contributing to the top
90% of attribution values. Past work has shown that pixels
with high attributions are crucial to maintaining performance
in the racing domain [12].

The middle row of Figure 5 shows that the agent exhibits
context-dependent attention patterns. When near opponents,
the agent focuses on lower vehicle regions and shadows
to assess overtaking opportunities, similar to human drivers
who rely on these cues in competitive driving [40]. On
straight sections, the agent shifts attention to static features
like vanishing points, treelines, and skylines, which aid in
track localization and turn anticipation, reflecting the gaze
patterns of professional drivers [41]. While lane markings
occasionally attract attention, their reliability is influenced by
lateral positioning and the presence of opponents. As a result,
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Fig. 6: Ablation studies on the Tokyo scenario. Ablated variations are compared by final place metric, evaluated over 500
episodes with three random seeds. Left: shows a comparison with the symmetric architecture variant; Middle: compares
variations with different recurrent module configurations; Right: shows how each regularization approach affects performance.

the agent prioritizes more stable environmental cues, such as
the sky and treelines.

The bottom row of Figure 5 illustrates how the agent utilizes
the recurrent module to capture long-term dependencies. By
performing backpropagation-through-time [42] to compute IG,
we visualize how information from earlier frames contributes
to actions predicted for the final frame in the sequence. This
visualization demonstrates how the agent uses early-frame data
to infer opponent positions and trajectories, which informs its
decision-making for future maneuvers. This ability to integrate
long-term predictions is crucial for partially observable, multi-
player environments like racing, where opponent velocities
cannot be directly inferred from a single frame.

C. Ablation Studies

We conducted ablation studies to evaluate the contributions
of specific architectural and training decisions to the per-
formance of our vision-based agent. Each ablation involved
modifications or removals of model components, followed by
an evaluation to quantify their impact. We trained agents in
each setting for 5,000 epochs and selected the top-performing
checkpoint from three seeds for each setting based on the
highest winning margin. Each model was evaluated over 500
episodes, and the results were summarized using box plots of
each agent’s final place, the final place after the race.
• Asymmetric Architecture: The asymmetric architecture,

where the critic incorporates both local (image and proprio-
ceptive data) and global features, was pivotal for champion-
level performance. In contrast, the symmetric variant, rely-
ing solely on local features, consistently failed to achieve
first place in most evaluations. This result highlights the
importance of leveraging global features in the critic.

• Recurrent Module: During training, initializing the recur-
rent module’s hidden state to zeros before RNN warmup
slightly degraded performance compared to using the replay
buffer’s stored hidden state. Reducing the hidden state
dimension from 512 to 128 caused a noticeable performance
drop, while completely removing the RNN resulted in
complete failure, with the agent unable to overtake any
opponents. These findings emphasize the RNN’s role in

maintaining temporal continuity, tracking off-screen oppo-
nents, and estimating their velocity and direction.

• Regularization: Applying image augmentation reduced the
variance in performance across evaluation episodes, by po-
tentially enhancing the agent’s generalization and mitigating
overfitting to specific visual inputs. Similarly, reinitializing
the networks at 2000 epochs improved stability and final
performance, as they allowed the agent to relearn and
emphasize underrepresented features in the replay buffer,
leading to a more balanced use of diverse visual inputs
during training.

VI. CONCLUSION

In this work, we introduced a vision-based autonomous
racing agent that achieves champion-level performance in
Gran Turismo 7, using only ego-centric camera views and
proprioceptive data for inference. Our approach leverages
an asymmetric actor-critic framework, where the actor uses
both ego-centric and proprioceptive inputs, enhanced by a
recurrent neural network to capture track layouts and opponent
dynamics. The critic, on the other hand, has privileged access
to the detailed track and opponent information during training.
The agent consistently outperformed model predictive control
drivers, achieving overtaking maneuvers comparable to, or
better than, those of human champions.

This work sets a new benchmark for vision-based compet-
itive racing and demonstrates the potential of reinforcement
learning in high-performance, real-time environments. How-
ever, our agent was tested in a controlled setting, using a single
vehicle type per scenario with fixed weather conditions. Future
work could focus on expanding the framework to enable
competitive head-to-head races with top human drivers, as well
as enhancing the agent’s ability to generalize across different
car models, tracks, and weather conditions. Overcoming these
challenges will be key to deploying vision-based racing agents
in real-world scenarios.
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