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Summary
Multi-task Reinforcement Learning (MTRL) has emerged as a critical training paradigm

for applying reinforcement learning (RL) to a set of complex real-world robotic tasks, which
demands a generalizable and robust policy. At the same time, massively parallelized training
has gained popularity, not only for significantly accelerating data collection through GPU-
accelerated simulation but also for enabling diverse data collection across multiple tasks by
simulating heterogeneous scenes in parallel. However, existing MTRL research has largely
been limited to off-policy methods like SAC in the low-parallelization regime. MTRL could
capitalize on the higher asymptotic performance of on-policy algorithms, whose batches re-
quire data from current policy, and as a result, take advantage of massive parallelization of-
fered by GPU-accelerated simulation. To bridge this gap, we introduce a massively paral-
lelized Multi-Task Benchmark for robotics (MTBench), an open-sourced benchmark featur-
ing a broad distribution of 50 manipulation tasks and 20 locomotion tasks, implemented using
the GPU-accelerated simulator IsaacGym. MTBench also includes four base RL algorithms
combined with seven state-of-the-art MTRL algorithms and architectures, providing a unified
framework for evaluating their performance. Our extensive experiments highlight the superior
speed of evaluating MTRL approaches using MTBench, while also uncovering unique chal-
lenges that arise from combining massive parallelism with MTRL.

Contribution(s)
1. This paper introduces MTBench, a unified GPU-accelerated benchmark for massively par-

allelized multi-task reinforcement learning (MTRL) in two robotics settings, manipulation
and locomotion.
Context: Existing robotics MTRL benchmarks, such as Meta-World (Yu et al., 2021), have
impractically long experimental runtimes, hindering the development and reproducibility of
MTRL research. Other GPU-accelerated benchmarks for robotics do not support MTRL out
of the box. We address both of these concerns with our end-to-end MTRL benchmark.

2. This paper conducts comprehensive experiments to evaluate all aspects of MTRL, including
base RL algorithms, gradient manipulation methods, and neural network architectures.
Context: We confirm whether the reliance on off-policy methods in the MTRL literature
holds in the massively parallel regime, and then evaluate a suite of MTRL schemes using
on-policy methods across our evaluation settings.

3. This paper presents four key observations on applying existing MTRL schemes to massively
parallelized training in robotics. These insights guide the selection of MTRL schemes and
inform future research directions.
Context: Massively parallelized training is emerging as a popular paradigm, introducing
unique challenges for existing RL methods (D’Oro et al., 2022; Li et al., 2023; Gallici et al.,
2024; Singla et al., 2024). However, MTRL development has yet to leverage this paradigm.



Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Benchmarking Massively Parallelized Multi-Task Re-
inforcement Learning for Robotics Tasks

Viraj Joshi1,†, Zifan Xu1,†, Bo Liu1, Peter Stone1,2, Amy Zhang1

{viraj_joshi,zfxu}@utexas.edu

1The University of Texas at Austin
2Sony AI
† equal contribution

Abstract

Multi-task Reinforcement Learning (MTRL) has emerged as a critical training
paradigm for applying reinforcement learning (RL) to a set of complex real-world
robotic tasks, which demands a generalizable and robust policy. At the same time,
massively parallelized training has gained popularity, not only for significantly accel-
erating data collection through GPU-accelerated simulation but also for enabling di-
verse data collection across multiple tasks by simulating heterogeneous scenes in par-
allel. However, existing MTRL research has largely been limited to off-policy meth-
ods like SAC in the low-parallelization regime. MTRL could capitalize on the higher
asymptotic performance of on-policy algorithms, whose batches require data from the
current policy, and as a result, take advantage of massive parallelization offered by
GPU-accelerated simulation. To bridge this gap, we introduce a massively parallelized
Multi-Task Benchmark for robotics (MTBench), an open-sourced benchmark featuring
a broad distribution of 50 manipulation tasks and 20 locomotion tasks, implemented
using the GPU-accelerated simulator IsaacGym. MTBench also includes four base RL
algorithms combined with seven state-of-the-art MTRL algorithms and architectures,
providing a unified framework for evaluating their performance. Our extensive exper-
iments highlight the superior speed of evaluating MTRL approaches using MTBench,
while also uncovering unique challenges that arise from combining massive parallelism
with MTRL. Code is available at https://github.com/Viraj-Joshi/MTBench

1 Introduction
Deep reinforcement learning has been successfully applied to a wide range of decision-making tasks,
including Atari games (Mnih et al., 2013), the game of Go (Silver et al., 2016), and continuous con-
trol tasks (Hwangbo et al., 2019; Wurman et al., 2022). While these applications have achieved re-
markable task-specific performance, recent research trends have shifted towards developing general-
purpose agents capable of solving multiple tasks or adapting to diverse environments (Cobbe et al.,
2020; Kirk et al., 2023; Park et al., 2024). This transition is partly motivated by the demands of real-
world robotics applications, where versatility and robustness are essential. For example, tabletop
manipulation often requires acquiring multiple skills to accomplish complex tasks (Pinto & Gupta,
2016; Yu et al., 2021) and legged locomotion demands adaptability to traverse challenging terrains
(Lee et al., 2020; Liang et al., 2024).

To facilitate the learning of a general-purpose robotic agent, massively parallelized training (»1000
simulations) has gained popularity with the advancement of GPU-accelerated simulators (Liang
et al., 2018b; Freeman et al., 2021; Makoviychuk et al., 2021; Mittal et al., 2023; Tao et al., 2024;
Zakka et al., 2025). These simulators have significantly mitigated hardware and runtime constraints
for learning single tasks, reducing experiment durations from days to minutes (Liang et al., 2018b;
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Figure 1: MTBench is a benchmark that leverages massive parallelism for MTRL in two robotics
domains, Parkour and Meta-World, and provides MTRL implementations developed over the years.
On the left, we see that IsaacGym’s Tensor API enables us to assign blocks of environments to
a desired task within the domain of interest, allowing for the setting and getting of the required
information for RL training.

Rudin et al., 2022). However, in the multi-task setting, no out-of-the-box solution exists to allocate
a fixed number of environments per task on a single GPU, allowing for simultaneous diverse data
collection and end-to-end MTRL training. Additionally, massively parallelized online batched RL
introduces new, non-trivial algorithmic challenges. For example, on-policy methods like PPO reach
a saturation point beyond which additional parallelization no longer improves performance (Singla
et al., 2024). Meanwhile, off-policy methods such as SAC and Q-Learning become unstable, losing
their sample efficiency compared to on-policy methods as interaction with parallel environments
unbalances the replay ratio (D’Oro et al., 2022; Li et al., 2023; Gallici et al., 2024).

On the other hand, learning general-purpose robotic agents has also motivated multi-task RL
(MTRL), which aims to learn a single policy that maximizes average performance across multi-
ple tasks. By leveraging task similarities (Pinto & Gupta, 2016), MTRL often enhances sample
efficiency, requiring fewer transitions to match the performance of single-task counterparts. Prior re-
search has primarily focused on addressing optimization challenges introduced by multiple learning
signals, either from a gradient-based perspective (Yu et al., 2020; Liu et al., 2024; 2023a) or through
neural architecture design (Yang et al., 2020; Sodhani et al., 2021; Sun et al., 2022; Hendawy et al.,
2024). However, these MTRL approaches have been limited to using off-policy methods in low-
parallelization settings using libraries like Ray (Liang et al., 2018a). With massive parallelization
applied to MTRL, we no longer need to deal with how to distribute experience collection and learn-
ing, instead utilizing on-policy algorithms, whose batches require data from current experience and
as a result, take advantage of the parallelization offered by GPU-based simulators.

To support large-scale MTRL experiments and advance the development of general-purpose robotic
agents, we introduce a massively parallelized Multi-Task Benchmark for robotics (MTBench). This
open-source benchmark includes a diverse set of 50 manipulation tasks and 20 locomotion tasks
(right side of Figure 1), implemented using the GPU-accelerated simulator IsaacGym. Each task
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allows for procedurally generating infinitely many variations by modifying factors such as initial
states and terrain configurations. Additionally, MTBench integrates four base RL algorithms with
seven state-of-the-art MTRL algorithms and architectures, providing a unified framework to evaluate
their performance.

Based on our experiments, we highlight the following major observations:

(O1) On-Policy > Off-Policy: Choosing between on-policy RL methods or off-policy methods
affects performance more than the MTRL scheme applied in massively parallel training. Off-policy
RL’s asymptotic performance struggles to match on-policy RL in this regime.

(O2) Prioritize Wall-Clock Time over Sample Efficiency: In the massively parallel regime,
wall-clock efficiency is more critical than sample efficiency, as experience collection scales easily
with more GPUs.

(O3) Value Learning is the Key Bottleneck in MTRL: Multi-task RL struggles primarily with
value estimation rather than policy learning, as gradient conflicts mostly impact the critic function.

(O4) Curriculum Learning is Crucial for Sparse-Reward Tasks: MTRL alone does not help
exploration in sparse-reward tasks; curriculum learning is essential for overcoming early stagnation.

2 Background

2.1 GPU Accelerated Simulation

Traditionally, simulators used for online RL rely on the coordination between CPU and GPU where
the CPU handles physics simulation and observation/reward calculations while the GPU handles
neural network training and inference, leading to frequent slow memory transfers between the two
many times during the RL training process. Now, GPU-accelerated simulators provide access to the
results of physics simulation on the GPU, and as a result, we have all relevant data - observations,
actions, and rewards - remaining on the GPU throughout the learning process. This development
allows for massive parallelization and as a result, dramatically reduces MTRL training time from
days or weeks on thousands of CPU cores to just hours on a single GPU.

Specifically, NVIDIA IsaacGym offers a Tensor API that directly exposes the physics state of the
world in Python, so we can directly populate and manage massively parallelized heterogeneous
scenes for all tasks (Figure 1), avoiding the communication overhead of synchronizing experience
collection and neural network training across distributed systems (Nair et al., 2015; Espeholt et al.,
2018).

2.2 Multi-Task Reinforcement Learning

RL is formalized as a finite horizon, discrete-time MDP, which is represented by a tuple M =
(S,A,P, r, µ, γ), where S ∈ Rn denotes the continuous state space, A ∈ Rm denotes the continu-
ous action space, P : S × A → ∆(S) denotes the stochastic transition dynamics, r : S × A → R
denotes the reward function, µ : S → ∆(S) denotes the initial state distribution, and γ ∈ [0, 1) is
the discount factor. A policy parameterized by θ, πθ(at|st) : S → ∆(A), is a probability distribu-
tion over actions conditioned on the current state. RL learns a policy πθ such that it maximizes the
expected cumulative discounted return J(θ) = Es0∼µ,πθ

[
∑T

t=0 γ
tr(st, at)] where at ∼ πθ.

Problem statement Each task τ is sampled the task distribution p(T ) is a different MDPMτ =
(Sτ ,Aτ ,Pτ , rτ , µτ , γτ ). MTRL learns a single policy πθ that maximizes the expected cumulative
discounted return averaged across all tasks J(θ) =

∑
τ∈T Jτ (θ). The only restriction we place

uponMτ is that their union shares a universal state space S and by appending a task embedding z
to the state, we give the policy the ability to distinguish what task each observation belongs to.

A change in any part of aMτ constitutes what it means to define a new task. In locomotion, each
task from p(T ) would be associated with a different goal to reach in the same control setting, so
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only rτ would differ across tasks. In tabletop manipulation like Meta-World, the tasks range from
basic skills like pushing and grasping to more advanced skills combining these basic skills, so the
goals (rτ ) and state spaces (Sτ ) vary across tasks but the action spaces Aτ are identical.

3 Benchmark

MTBench provides a unified framework for simulating two key robotics task categories: manipu-
lation and locomotion, within the IsaacGym simulator. For manipulation, we incorporate 50 tasks
from Meta-World (Yu et al., 2021), chosen for their simplicity, task diversity, and well-designed,
shaped rewards. The locomotion domain includes 20 diverse quadrupedal Parkour tasks from Eu-
rekaverse (Liang et al., 2024), the most comprehensive Parkour benchmark, encompassing a wide
range of established locomotion challenges. As Figure 1 demonstrates, MTBench supports defining
any custom subset of tasks and their associated number of environments, enabling researchers to
craft different task sets of varying difficulty. This section provides a detailed overview of these task
domains and the evaluation protocols.

3.1 Meta-World

Figure 2: Illustrations of non-parametric tasks variation, parametric tasks variation of Faucet Open,
and the observation and action space of the RL agents in the Meta-World benchmark.

Task Descriptions: Meta-World consists of 50 tabletop manipulation tasks that require a simu-
lated one-armed robot (Franka Robotics, 2017) to interact with one or two objects in various ways,
such as pushing, picking, and placing. Within each task, Meta-World provides parametric variation
over the initial object position and target position. Each task has a pre-defined success criterion. Our
re-implementation of Meta-World makes necessary changes by updating Sawyer to Franka Emika
Panda and tuning the reward function of each task to ensure that the tasks are individually solvable.

Observation and Action Spaces: Despite sharing a common state space dimensionality, the se-
mantic meaning of certain dimensions varies across tasks. The state representation comprises the
end-effector’s 3D position in R3, the normalized gripper effort in R1, the object 3D positions from
two objects in R6, and the quaternion representation of the two objects’ orientation in R8. For tasks
involving a single object, the state dimensions corresponding to a second object are set to zero.
To account for temporal dependencies, the observation space concatenates the state representations
from two consecutive time steps and appends the 3D position of the target goal. This results in a
final observation vector of 39 dimensions. The action space is also consistent across the tasks, com-
prising of the displacement of the end-effector in R3 and the normalized gripper effort in R1. An
overview of the observation and action can be seen in Figure 2.

Evaluation Settings: Following Yu et al. (2021), we explictly provide two evaluation settings:
multi-task 10 (MT10) and multi-task 50 (MT50), where MT10 consists of 10 selected tasks and
MT50 consists of all 50 tasks. During evaluation, we measure the success rates (SR) (Appendix
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B.1) and the cumulative reward (R). When each environment has its parametric parameters randomly
varied every reset, the evaluation is referred to as MT10-rand and MT50-rand.

3.2 Parkour Benchmark

Figure 3: Illustrations of non-parametric tasks variation, parametric tasks variation of Jump On and
Off Box, and the observation and action space of the RL agents in the Parkour benchmark.

Task Descriptions: In the Parkour tasks from Eurekaverse, the agent controls a quadrupedal Uni-
tree Go1 robot (Unitree Robotics, 2021) to track predefined waypoints while traversing one of 20
different terrain categories (Liang et al., 2024). These tasks challenge various motor skills, including
climbing boxes, walking on slopes, jumping, navigating stepping stones, ascending stairs, maneu-
vering through narrow hallways, weaving through agility poles in a zig-zag pattern, and maintaining
balance. The left side of Figure 3 shows bird-eye views of these terrain categories.

Each task also provides parametric terrain variations defined by a set of terrain parameters, whose
definitions and valid ranges are detailed in the supplementary materials. Additionally, each task
introduces a one-dimensional continuous variable, termed difficulty, and a predefined mapping from
the difficulty to a set of terrain parameters. This difficulty measure aligns with human intuition; for
instance, high boxes present a greater challenge than lower boxes for a quadrupedal robot to jump
on and off.

Observation and Action Spaces: The observation of the agent is slightly simplified for more ef-
ficient benchmarking compared to Eurekaverse. The observation is compromised by proprioceptive
observation in R48, scandots of the terrain environments in R132, base linear velocity in R3, and
privileged information in R29. The action assigns joint position targets at a frequency of 50 Hz for
a Proportional-Derivative (PD) controller. An overview of the observation and actions is shown in
Figure 3. The reward function resembles Fu et al. (2023), which encourages positive linear and
angular velocities that point to the next waypoint, while minimizing energy consumption.

Evaluation Settings: We define two evaluation settings: Parkour-easy and Parkour-hard. Parkour-
easy consists of 200 terrains, with each of the 20 tasks assigned 10 terrains generated at the lowest
difficulty level. In contrast, Parkour-hard also includes 200 terrains but distributes difficulty levels
uniformly across the 10 terrains per task, providing a more diverse and challenging evaluation set-
ting. Before the training, all the evaluated methods are pre-trained on flat ground to acquire the basic
walking gait. Such a pre-training phase is typical in the literature (Zhuang et al., 2023; Cheng et al.,
2024).

During evaluation, we measure progress (P) as the ratio of the current waypoint index to the total
number of waypoints at the time of episode termination. An agent that successfully traverses the
entire terrain achieves a progress score of 100%. The overall progress is computed as the average
over 200 terrains, with each terrain evaluated across 10 independent runs.
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Figure 4: Vanilla MTRL performance in Meta-World. We report the pointwise 95% percentile
bootstrap CIs of the average success rates using 10 seeds for each RL algorithm in the MT10-rand
and MT50-rand evaluation settings. On-policy methods (MT-PPO, MT-GRPO) continue to improve
with more experience, achieving a substantially higher success rate than the traditional off-policy
method, MT-SAC, in substantially less time.

3.3 Algorithms

We re-implement a suite of algorithms and MTRL approaches using a popular learning library RL-
Games (Makoviichuk & Makoviychuk, 2021), providing a unified benchmark for end-to-end vec-
torized MTRL training across many seeds and hyperparameters on a single GPU. Our benchmark is
highly extensible towards new RL algorithms as well as approaches within the two axes of MTRL
research, gradient manipulation, and neural architectures. There is a brief overview in Appendix C.

Base MTRL Algorithms We implement four RL algorithms: MT-PPO, a multi-task version of
Proximal Policy Optimization (Schulman et al., 2017); MT-GRPO (Shao et al., 2024), a variant of
PPO introduced for language modeling but adapted here for control; MT-SAC, a multi-task version
of Soft Actor-Critic (Haarnoja et al., 2018); and MT-PQN, a novel multi-task extension to Parallel
Q-learning (Gallici et al., 2024) to handle continuous control problems. All algorithms are multi-
task versions of their single-task counterparts, simply by augmenting the observation space with
one-hot task embeddings.

MTRL Schemes We implement two categories of MTRL schemes that can be easily combined
with any of our base algorithms. The first category consists of gradient manipulation methods:
PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2024), and FAMO (Liu et al., 2023a). The second
category consists of multi-task architectures: Soft-Modularization (Yang et al., 2020), CARE (Sod-
hani et al., 2021), PaCo (Sun et al., 2022), and MOORE (Hendawy et al., 2024). The prefix "MH"
(multi-head) is prepended to name of the MTRL approach to denote one output head per task, and
otherwise "SH" (single-head) to denote tasks sharing one head.

Curriculum Learning Unlike Meta-World, where reward functions are carefully designed with
dense rewards, locomotion tasks often rely on sparse reward signals (e.g., moving forward to the
next waypoints). As a result, strategies like curriculum learning have been widely adopted to facil-
itate learning in challenging tasks, such as running (Margolis et al., 2024) and jumping onto high
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Figure 5: We compare the 95% bootstrapped confidence intervals of the average success rate of all
MTRL approaches using MT-PPO for the MT10-rand and MT50-rand evaluation settings of Meta-
World. Each approach uses 1B frames per run over 10 seeds. Exact numbers are in Table 2.

platforms (Liang et al., 2024). Inspired by this, we incorporate a simple curriculum strategy to train
Parkour-hard tasks. In Parkour-hard, each task consists of ten terrains with varying levels of dif-
ficulty. Agents always begin on the easiest terrain and progress to more challenging ones if they
achieve a progress of at least 80% in their current terrain. We refer to the Parkour-hard training with
curriculum learning by Parkour-hard-cl.

4 Results

In this section, we present the results of our benchmark across our evaluation settings and empirically
justify the aforementioned four major observations.

4.1 Choosing the MTRL Algorithm (O1, O2)

To illustrate how on-policy MTRL methods leverage massive parallelism, we first evaluate two
on-policy methods, MT-PPO and MT-GRPO, alongside two off-policy methods, MT-SAC and MT-
PQN, in Meta-World. Figure 4 presents the learning curves with respect to both wall-clock time and
the number of environment interactions. Since this observation is concerned with answering what
the best base MTRL algorithm is, we tune all aspects of each method to achieve its highest success
rate, including using different network architectures. The full hyperparameter and model details are
in the supplementary materials.

On-policy methods outperform traditional off-policy methods. Using MT-SAC as a represen-
tative of traditional off-policy algorithms used for MTRL, Figure 4 shows there is a substantial
performance gap in success rates between MT-PPO and MT-SAC in both evaluation settings and,
more importantly, a substantial wall-clock time difference as well (roughly 22 minutes and 12 hours
after 200M frames of collected experience in MT10-rand). While MT-SAC can match MT-PPO’s
runtime by simply matching the gradient steps per epoch that MT-PPO takes, this results in a near-
zero success rate. Furthermore, as the number of tasks increases to the MT50-rand setting, these
gaps increase.

Traditional off-policy methods in the massively parallelized regime cannot effectively leverage in-
creased environment interaction, as their stability, performance, and runtime greatly rely on the ratio
of gradient updates to environment steps, i.e, update-to-data (UTD) ratio (D’Oro et al., 2022) be-
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Figure 7: Success rate (SR) differences
of five neural network architectures relative
to the Vanilla baseline in MT10-rand and
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ing greater than or equal to 1. Research into leveraging massive parallelism in off-policy methods
is gaining popularity but is either not yet adapted for the continuous control setting (Gallici et al.,
2024) or requires distributed asynchronous processes spread across GPUs (Li et al., 2023).

Off-Policy methods can be designed for the massively parallelized regime. In Figure 4, we also
included our adaptation of PQN (Gallici et al., 2024) to the multi-task continuous control setting.
The details of our implementation are in Appendix A. Surprisingly, applying these simple changes
to an originally discrete control algorithm and left to run long enough, MT-PQN can roughly match
the performance of MT-PPO in MT10-rand. Considering PQN’s performance and stability, similar
simulation throughput to PPO, and lack of a replay buffer, suggests that smartly adapting PQN to
multi-task continuous control tasks could be a promising research direction compared to actor-critic
algorithms.

4.2 MTRL Approaches (O2, O3)

Figure 5 reports the 95% bootstrap confidence intervals of the mean success rate following Agarwal
et al. (2021) of all MTRL approaches using MT-PPO. All of the gradient manipulation methods use
the same three-layer MLP neural networks.

Multi-task architectures show greater performance gains with larger task sets. As shown in
Figure 7, the benefits of multi-task architectures become more pronounced as the number of tasks in-
creases. In MT10-rand, vanilla PPO asymptotically outperforms advanced multi-task architectures.
However, in MT50-rand, the best-performing multi-task architecture, MH-MOORE, surpasses the
vanilla approach by roughly 16% in success rate. This improvement is likely due to enhanced knowl-
edge sharing that only manifests in training diverse enough tasks, such as MT50. However, similar
performance gains are not observed in the Parkour benchmark, likely due to the insufficient task
diversity in Parkour tasks.

Resolving gradient conflict consistently improves the performance. Gradient manipulation can
outperform or match vanilla MT-PPO across all evaluation settings (middle section of Figure 5 and
Table 1). This suggests that gradient conflicts are still a common optimization challenge in multi-
task RL problems. Among these methods, FAMO shows superior scalability with respect to an
increasing number of tasks in its success rate as well as wall-clock training time, likely due to its
simple strategy of adaptive task weighting, which eliminates the need for backpropagating through
each task’s loss.
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Methods
Tasks Parkour-easy Parkour-hard Parkour-hard-CL

P(%) ↑ P(%) ↑ P(%) ↑

Vanilla 80.39± 0.43 54.51± 0.82 68.12± 0.43
Multihead 73.17± 2.53 49.65± 1.27 62.17± 1.05

PCGrad 80.61 ± 0.78 55.98 ± 0.24 68.37± 0.65
CAGrad 80.25± 0.32 55.88± 0.91 67.75± 0.43
FAMO 79.79± 0.29 55.56± 0.97 68.57 ± 0.76

PaCo 78.63± 0.70 58.65 ± 0.77 64.15± 0.98
SH-MOORE 64.61± 1.69 46.78± 0.65 49.53± 0.52
Soft-Modularization 69.29± 3.81 47.28± 0.23 51.43± 0.35

Table 1: The average success rate and standard
deviation of MTRL approaches using MT-PPO
in all Parkour evaluation settings. Each approach
uses 250M frames per run over 10 seeds.
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Figure 8: Eliminating the difficulty of critic
estimation consistently improves performance
over most MTRL approaches using MT-PPO
when comparing the 95% bootstrapped CI of av-
erage success rates in Meta-World. Each ap-
proach uses 1B frames per run over 10 seeds.

Value learning is the key bottleneck in MTRL. Prior research in MTRL has shown that address-
ing gradient conflicts improves performance in off-policy actor-critic RL algorithms like MT-SAC.
Our benchmarking results extend this observation to on-policy actor-critic algorithms, demonstrat-
ing that gradient conflicts also arise when learning the critic network in MT-PPO. However, we do
not observe similar conflicts in policy optimization. This observation aligns with prior work using
an actor-critic algorithm for large-scale multi-task learning (Hessel et al., 2019). Figure 6 shows
the average cosine similarity across all task gradient pairs for both actor and critic networks, where
critic gradients manifest lower minimum similarities.

4.3 Reward Sparsity (O4)

Although tasks in Meta-World and the Parkour Benchmark are defined independently of their reward
functions, training performance is significantly influenced by reward design. We adopt commonly
used reward formulations in both domains. In Meta-World, tasks utilize dense rewards, which pro-
vide continuous feedback to guide specific interactions between the robotic arm and objects. In
contrast, the Parkour Benchmark employs a sparse reward scheme, where the agent is rewarded
solely for maintaining forward velocity toward waypoints, without receiving additional signals for
intermediate behaviors.

Dense rewards increase the complexity of multi-task critic learning. In multi-task RL, dense
reward functions introduce challenges for critic learning, as different tasks exhibit varying reward
distributions and gradient magnitudes. We can see in Figure 5 that addressing these conflicts in
dense-reward multi-task settings such as MT10-rand and MT50-rand can improve performance.
However, the performance gains are relatively marginal in a sparse-reward multi-task setting like
the Parkour benchmark.

Curriculum learning is crucial for sparse-reward tasks. In environments with sparse rewards,
standard MTRL methods do not inherently enhance exploration, as agents receive limited feed-
back in each task. This challenge is particularly evident in the Parkour Benchmark, where agents
tend to adopt overly conservative behaviors in more difficult tasks. Curriculum learning addresses
this issue by structuring task progression, enabling agents to first master simpler behaviors before
tackling more complex ones. By gradually increasing task difficulty, curriculum learning improves
exploration efficiency and yields a 10% performance gain in progress, as observed when comparing
Parkour-hard and Parkour-hard-cl (columns 2 and 3 in Table 1).
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4.4 Learning without a Critic (O3)

To further investigate the impact of gradient conflict in the critic on MTRL, we can eliminate the
critic by increasing the horizon length in MT-PPO to be equal to the length of the episode.

MTRL can benefit from eliminating gradient conflict in the critic. In fact, eliminating the critic
from MT-PPO is equivalent to implementing MT-GRPO (Shao et al., 2024) without the KL term.
We use the Monte Carlo estimate of the return as the reward in the advantage calculation. In the
dense reward setting, Figure 8 indicates that MT-GRPO is a simple baseline that nearly outperforms
every MTRL approach (except MH-MOORE and FAMO in MT-50) using the same hyperparameters
as MT-PPO and no baked-in MTRL design.

Massive Parallelism is well suited for reducing bias from an imperfect critic. By directly us-
ing Monte Carlo returns instead of bootstrapping, we effectively eliminate the bias introduced by
imperfect critic estimation. This approach represents a clear bias-variance tradeoff: while removing
the critic increases the variance of our gradient estimates, this increased variance can be effectively
mitigated through large batches (of size episode length times the number of parallel environments)
made possible by massive parallelization (Sutton et al., 1999).

5 Related

5.1 Parallelizing RL

As deep online RL relies on training neural networks (learners) and collecting experience (actors),
many methods have explored how to parallelize both aspects to speed up training over the years.
Early works leveraged low levels of parallelization without hardware accelerators mainly for Atari
either in a distributed compute cluster of hundreds (in some cases thousands) of CPU cores (Nair
et al., 2015) or a single machine using a multi-threaded approach (Mnih et al., 2016). Hybrid CPU-
GPU distributed frameworks introduce accelerating learners with GPUs (Babaeizadeh et al., 2016;
Espeholt et al., 2018; Horgan et al., 2018; Petrenko et al., 2020) along with actors collecting experi-
ence across CPUs.

Unlike Atari, robotic control tasks rely on physics simulators (Todorov et al., 2012), where dis-
tributed RL methods using CPU-based simulators would demand even more intense hardware re-
quirements (Liang et al., 2018a; OpenAI et al., 2019) due to running multiple simulator instances in
parallel. A wave of recent GPU-accelerated simulators (Liang et al., 2018b; Freeman et al., 2021;
Makoviychuk et al., 2021; Mittal et al., 2023; Tao et al., 2024; Zakka et al., 2025) has essentially alle-
viated the experience collection constraint and shown success in rapidly learning single-task robotic
control tasks (Allshire et al., 2021; Rudin et al., 2022) with the modest hardware requirement of 1
GPU.

5.2 GPU-Accelerated Benchmarks

Several RL benchmarks have arisen as a result of GPU-accelerated simulation, mainly in JAX-
based game environments (Cobbe et al., 2020; Lange, 2022; Morad et al., 2023; Bonnet et al., 2023;
Koyamada et al., 2023; Rutherford et al., 2024; Matthews et al., 2024). In contrast, a relatively
small number of rigid-body robotic tasks are bundled with GPU-accelerated simulators or soft-body
robotic tasks with other simulation platforms (Chen et al., 2022; Xing et al., 2024). To truly represent
the multi-task challenge, MTBench precludes adapting popular, small task sets, e.g, robot tasks from
DMControl (Tassa et al., 2018) or robosuite (Zhu et al., 2020), or combining them since their tasks
significantly overlap, resulting in low diversity. For manipulation, Meta-World resolves both of
these concerns and maintains continuity of MTRL research over other large task set alternatives like
RLBench (James et al., 2020) or LIBERO (Liu et al., 2023b).
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In the domain of locomotion, massively parallelized training has become the standard approach
due to its simplicity and increased robustness (Hwangbo et al., 2019; Lee et al., 2020). Never-
theless, parkour-style locomotion—which requires qualitatively different motor skills across ter-
rains—remains a challenging setting for multi-task learning, which recent work addresses by learn-
ing specialized policies for individual motor skills and subsequently distilling them into a unified
policy (Zhuang et al., 2023). Emerging locomotion benchmarks such as HumanoidBench (Sferrazza
et al., 2024) and the Parkour Benchmark (Liang et al., 2024) feature a broad variety of Parkour tasks,
but have not yet been adopted for evaluating multi-task RL methods. Another important class of lo-
comotion tasks involves humanoid motion imitation, such as those in PHC (Luo et al., 2023) and
LocoMuJoCo (Al-Hafez et al., 2023), which exhibit inherently diverse task distributions due to the
complex and high-dimensional nature of human motion.

6 Conclusions

We present MTBench, a highly extensible MTRL benchmark that includes a GPU-accelerated im-
plementation of Meta-World and Parkour tasks, extensive gradient manipulation and neural archi-
tecture baselines, and an initial study on the current state as well as future directions of MTRL in
the massively parallel regime. However, MTBench is limited to state-based MTRL to retain high
simulation throughput, which we hope to resolve with pixel-based MTRL using NVIDIA IsaacLab
in a future release of MTBench.

Future work can use MTBench beyond online MTRL methods. One can explore offline RL, imita-
tion learning, or distillation methods by writing additional code to rapidly collect transitions from
expert single-task agents. Another application of our benchmark could be as part of the ‘finetune’
step in the ‘pretrain, then finetune’ paradigm where one pre-trains on a diverse set of tasks using
offline data and rapidly finetunes an agent online using our environments.

A PQN

Parallel Q-learning (Gallici et al., 2024) is a recent off-policy TD method designed for discrete action
spaces and massively parallelized GPU-based simulators that casts aside the tricks introduced over
the years to stabilize deep Q learning such as replay buffers (Mnih et al., 2013), target networks
(Mnih et al., 2015) and double Q-networks (Wang et al., 2016) by simply introducing regularization
in the function approximator like LayerNorm (Ba et al., 2016) or BatchNorm (Ioffe & Szegedy,
2015). Coupled with this architectural change, PQN exploits vectorized environments by collecting
experience in parallel for T steps.

As our action space is continuous, we modify PQN through bang-off-bang control, treating contin-
uous control as a multi-agent problem where each of the M actuators is an agent in a cooperative
game following Seyde et al. (2023). Then, the state-action function Qθ(st,at) is factorized as the
average of M different state-action functions Qi

θ(st, a
i
t), where the ith state-action function predicts

the value of the bang-off-bang actions in ith action dimension following Sunehag et al. (2017).

Qθ(st,at)) =
1

M

M∑
i=1

Qi
θ(st, a

i
t) (1)

In code for the Meta-World setting, the output of the state-action function is of size (B,M, nb) where
B is the batch size, m is the action dimension/number of actuators (4) and nb is the number of bins
per dimension (3). The action value is recovered by first taking the max over the bin dimension
and then the mean over the action dimension. By taking the max over the bin dimension, Seyde
et al. (2023) sidestepped taking a max over the continuous action space. Now, we can compute the
Bellman target and in the case of PQN, n-step returns.

yt = r(st,at) + γ
1

M

M∑
i=1

max
ai
t+1

Qi
θ(st+1, a

i
t+1) (2)
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B Meta-World

B.1 Success

We report two evaluation metrics, the overall success rate averaged across tasks and the cumulative
reward achieved by the multi-task policy. Following the original Meta-World, success is a boolean
indicating whether the robot brings the object within an ϵ distance of the goal position at any point
during the episode, which is less restrictive than works qualifying a success only if it occurs at the
end of an episode. Mathematically, success occurs if ∥o − g∥2 < ϵ is satisfied at least once, where
o is the object position and g is the goal position.

Rather than defining the success rate as the maximum success rate over some evaluation rollouts as
some previous work did, the success rate is defined as the proportion of success in the large number
of environments that terminate their episodes every step. The reported success rate is this success
rate averaged over the last 5 epochs of training. Due to massive parallelization, there is no need to
separately roll out the learned policy in a separate process.

B.2 More Results

Methods
Tasks MT10-rand MT50-rand

SR ↑ R ↑ SR ↑ R ↑
Vanilla 87.51 [86.99, 87.97] 1032.99 [1016.82, 1045.94] 63.26 [60.91, 65.37] 817.77 [789.13, 842.97]
Multihead 85.19 [81.42, 88.21] 1005.69 [980.87, 1027.55] 74.03 [71.47, 76.58] 954.97 [939.72, 962.84]
GRPO-Vanilla 91.12 [88.32, 93.96] 916.32 [899.83, 933.60] 74.48 [73.31, 75.64] 916.83 [898.69, 935.66]

PCGrad 86.21 [83.19, 88.32] 1038.27 [1022.88, 1050.59] 59.74 [55.52, 64.12] 760.99 [739.05, 772.13]
CAGrad 82.98 [79.23, 86.27] 938.43 [896.83, 972.29] 67.70 [64.76, 70.53] 874.45 [845.62, 903.10]
FAMO 87.26 [82.53, 91.57] 1016.11 [964.30, 1053.88] 74.52 [73.25, 75.75] 961.03 [946.64, 976.15]

PaCo 84.37 [81.61, 86.61] 995.39 [970.20, 1017.21] 70.46 [67.01, 73.32] 917.84 [881.61, 953.14]
SH-MOORE 84.60 [81.55, 87.59] 1022.64 [1006.23, 1037.54] 66.33 [64.56, 68.29] 837.70 [815.00, 860.89]
MH-MOORE 86.94 [83.91, 89.01] 1044.85 [1029.76, 1056.96] 79.46 [77.40, 82.24] 1019.59 [999.24, 1048.88]
SH-CARE 81.51 [78.52, 84.49] 964.28 [948.59, 979.89] 67.51 [66.33, 68.72] 842.04 [822.31, 864.66]
MH-CARE 84.79 [81.34, 87.32] 990.03 [972.35, 1006.34] 71.05 [69.88, 72.30] 863.88 [850.43, 878.51]
Soft-Modularization 82.96 [80.15, 85.66] 994.29 [980.24, 1009.03] 67.72 [65.06, 69.93] 860.41 [832.44, 883.77]

Table 2: 95% bootstrapped confidence intervals of the Meta-World evaluation metrics used to gen-
erate Figure 5 and Figure 8

64 72 80 88
MT10

MH-MOORE
SH-MOORE

SH-PaCo
MH-CARE
SH-CARE

Soft-Modularization
FAMO

CAGrad
PCGrad

MH-Vanilla
SH-Vanilla

40 50 60 70
MT50

Figure 9: 95% bootstrapped CIs of the average success rate of all MT-PPO MTRL approaches using
250M frames per run over 10 seeds in Meta-World.
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C MTRL Approaches

Here, we present an overview of each state-of-the-art MTRL baseline in MTBench.

C.1 Gradient manipulation methods

Gradient manipulation methods compute a new gradient of the multi-task objective, incurring the
overhead of solving an optimization problem per iteration as well as storing and computing K task
gradients.

PCGrad: Projecting Conflicting Gradients (Yu et al., 2020) observe when the gradients of any two
task objectives li conflict ( defined as having negative cosine similarity) and when their magnitudes
are sufficiently different, optimization using the average gradient will cause negative transfer. It
attempts to resolve gradient confliction by a simple procedure manipulating each task gradient ∇li
to be the result of iteratively removing the conflict with each task gradient∇lj , ∀j ∈ [K], j ̸= i.

∇l′i ← ∇li −
∇lTi ∇lj
∥∇lj∥2

∇lj if ∇lTi ∇lj < 0 (3)

CAGrad: Conflict-Averse Gradient descent (Liu et al., 2024) resolves the gradient conflict by
finding an update vector d ∈ Rm that minimizes the worst-case gradient conflict across all the tasks.
More specifically, let gi be the gradient of task i ∈ [K], and g0 be the gradient computed from the
average loss, CAGrad seeks to solve such an optimization problem:

max
d∈Rm

min
i∈[K]
⟨gi, d⟩ s.t. ∥d− g0∥ ≤ c∥g0∥ (4)

Here, c ∈ [0, 1) is a pre-specified hyper-parameter that controls the convergence rate. The optimiza-
tion problem looks for the best update vector within a local ball centered at the averaged gradient
g0, which also minimizes the conflict in losses ⟨gi, d⟩.

FAMO: Fast Adaptive Multitask Optimization (Liu et al., 2023a) addresses the under-optimization
of certain tasks when using standard gradient descent on averaged losses without incurring the O(K)
cost to compute and store all task gradients, which can be significant, especially as the number of
tasks increases. FAMO leverages loss history to adaptively adjust task weights, ensuring balanced
optimization across tasks while maintaining O(1) space and time complexity per iteration.

C.2 Neural Architectures

Neural Architecture methods seek to avoid task interference by learning shared representations,
which are fed to the prediction head. Such representations accelerate MTRL.

CARE: Contextual Attention-based Representation learning (Sodhani & Zhang, 2021) utilizes
metadata associated with the set of tasks to weight the representations learned by a mixture of
encoders through the attention mechanism.

MOORE: Mixture Of Orthogonal Experts (Hendawy et al., 2024) uses a mixture of experts to
encode the state and orthogonalizes those representations to encourage diversity, weighting these
representations from a task encoder.
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PaCo: Parameter Compositional (Sun et al., 2022) learns a base parameter set ϕ = [ϕ1 · · ·ϕk] and
task-specific compositional vector wk such that multiplying ϕ and wk represents the task parameters
θk.

Soft-Modularization: Yang et al. (2020) also uses a mixture of experts to encode the state but
also uses a routing network to softly combine the outputs at each layer based on the task.

D Hyperparameter Details

In this section, we provide hyperparameter values for each MTRL approach.
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Description value variable_name

Number of environments 24576 / 24576 num_envs
Network hidden sizes [256,128,64] network.mlp.units
Minibatch size 16384 / 32768 minibatch_size
Horizon length 32 horizon
Mini-epochs 5 mini_epochs
Number of epochs 1272 / 1272 max_epochs
Episode length 150 episodeLength
Discount factor 0.99 gamma
Clip ratio 0.2 e_clip
Policy entropy coefficient .005 entropy_coef
Optimizer learning rate 5e-4 learning_rate
Optimizer learning schedule fixed lr_schedule
Advantage estimation tau 0.95 tau
Value Normalization by task True normalize_value
Input Normalization by task True normalize_input
Separate critic and policy networks True network.separate

CARE-Specific Hyperparameters

Network hidden sizes [400,400,400] care.units
Mixture of Encoders experts 6 encoder.num_experts
Mixture of Encoders layers 2 encoder.num_layers
Mixture of Encoders hidden dim 50 encoder.D
Attention temperature 1.0 encoder.temperature
Post-Attention MLP hidden sizes [50,50] attention.units
Context encoder hidden sizes [50,50] context_encoder.units
Context encoder bias True context_encoder.bias

MOORE-Specific Hyperparameters

MoE experts 4 / 6 moore.num_experts
MoE layers 3 moore.num_layers
MoE hidden dim 400 moore.D
Activation before/after task encoding weighting [Linear, Tanh] moore.agg_activation
Task encoder hidden sizes [256] task_encoder.units
Task encoder bias False task_encoder.bias

PaCo-Specific Hyperparameters

Number of Compositional Vectors 5 / 20 paco.K
Network hidden dim 400 paco.D
Network layers 3 paco.num_layers
Task encoder bias False task_encoder.bias
Task encoder init orthogonal task_encoder.compositional_initializer
Task encoder activation softmax task_encoder.activation

Soft-Modularization-Specific Hyperparameters

MoE experts 2 soft_network.num_experts
MoE layers 4 soft_network.num_layer
State encoder hidden sizes [256,256] state_encoder.units
Task encoder hidden sizes [256] task_encoder.units

PCGrad Hyperparameters

Number of environments 24576 / 8192 num_envs
Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient

CAGrad Hyperparameters

Number of environments 24576 / 6144 num_envs
Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient
Local ball radius for searching update vector 0.4 c

FAMO Hyperparameters

Regularization coefficient 1e-3 gamma
Learning rate of the task logits 1e-3 w_lr
Clipping value of the task logits 1e-2 epsilon
Normalize the task logits gradients True norm_w_grad

Table 3: Hyperparameters used for MTPPO. A ’/’ indicates the value used for Meta-World’s
MT10/MT50 respectively, and otherwise is identical for each setting.
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Description value variable_name

Number of environments 4096 / 24576 num_envs
Minibatch size 16384 / 76800 minibatch_size
Episode length 150 episodeLength
Horizon length 150 horizon
Mini-epochs 5 mini_epochs
Number of epochs 1908 / 1272 max_epochs
Discount factor 0.99 gamma
Clip ratio 0.2 e_clip
Policy entropy coefficient .005 entropy_coef
Optimizer learning rate 5e-4 learning_rate
Optimizer learning schedule fixed lr_schedule
Advantage estimation tau 0.95 tau
Value Normalization by task True normalize_value
Input Normalization by task True normalize_input
Separate critic and policy networks True network.separate

Table 4: Hyperparameters used for MT-GRPO in MT10 / MT50. A ’/’ indicates the value used for
MT10/MT50 respectively and otherwise is identical for each setting.

Description value variable_name

Number of environments 8192 num_envs
Gamma .99 gamma
Peng’s Q(lambda) .5 q_lambda
Number of minibatches 4 num_minibatches
Episode length 500 episodeLength
Bang-off-Bang 3 binsPerDim
Action Scale .005 actionScale
Mini epochs 8 mini_epochs
Max grad norm 10.0 max_grad_norm
Horizon 16 horizon
Start epsilon 1.0 start_e
End epsilon 0.005 end_e
Decay epsilon True decay_epsilon
Fraction of exploration steps .005 exploration_fraction
Critic learning rate 3e-4 critic_lr
Anneal learning rate True anneal_lr
Value Normalization by task False normalize_value
Input Normalization by task False normalize_input
Use residual connections True q.residual_network
Number of LayerNormAndResidualMLPs 2 q.num_blocks
Network hidden dim 256 q.D
Batch norm input False q.norm_first_layer

Table 5: Hyperparameters used for MT-PQN in MT10.
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Description value variable_name

Number of environments 4096 num_envs
Network hidden sizes [512,256,128] network.mlp.units
Gamma .99 gamma
Separate critic and policy networks True network.separate
Number of Gradient steps per epoch 32 gradient_steps_per_itr
Learnable temperature True learnable_ temperature
Use distangeled alpha True use_disentangled_alpha
Initial alpha 1 init_alpha
Alpha learning rate 5e-3 alpha_lr
Critic learning rate 5e-4 critic_lr
Critic tau .01 critic_tau
Batch size 8192 batch_size
N-step reward 16 nstep
Grad norm .5 grad_norm
Horizon 1 horizon
Value Normalization by task True normalize_value
Input Normalization by task True normalize_input
Replay Buffer Size 5000000 replay_buffer_size
Target entropy coef 1.0 target_entropy_coef

Table 6: Hyperparameters used for MT-SAC in MT10/MT50. A ’/’ indicates the value used for
MT10/MT50 respectively and otherwise is identical for each setting. MT-SAC is very sensitive to
the number of environments and replay ratio in the massively parallel regime.
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Description value variable_name

Minibatch size 16384 minibatch_size
Horizon length 32 horizon
Mini-epochs 5 mini_epochs
Number of epochs 2000 / 4000 max_epochs
Episode length 800
Discount factor 0.99 gamma
Clip ratio 0.2 e_clip
Policy entropy coefficient .005 entropy_coef
Optimizer learning rate 5e-4 learning_rate
Optimizer learning schedule adaptive lr_schedule
Advantage estimation tau 0.95 tau
Value Normalization by task False normalize_value
Input Normalization by task False normalize_input
Separate critic and policy networks True network.separate

MOORE-Specific Hyperparameters

MoE experts 2 moore.num_experts
MoE layers 2 moore.num_layers
MoE hidden dim 256 moore.D
Activation before/after task encoding weighting [Linear, Linear] moore.agg_activation
Task encoder hidden sizes [128]
Task encoder bias False task_encoder.bias
Multihead False multi_head

PaCo-Specific Hyperparameters

Number of Compositional Vectors 5 paco.K
Network hidden dim 400 paco.D
Network layers 3 paco.num_layers
Task encoder bias False task_encoder.bias
Task encoder init orthogonal task_encoder.compositional_initializer
Task encoder activation softmax task_encoder.activation

Soft-Modularization-Specific Hyperparameters

MoE experts 2 soft_network.num_experts
MoE layers 2 soft_network.num_layer
State encoder hidden sizes [256,256] state_encoder.units
Task encoder hidden sizes [128] task_encoder.units

PCGrad Hyperparameters

Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient

CAGrad Hyperparameters

Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient
Local ball radius for searching update vector 0.4 c

FAMO Hyperparameters

Regularization coefficient 1e-4 gamma
Learning rate of the task logits 5e-3 w_lr
Small value for the clipping of the task logits 1e-3 epsilon
Normalize the task logits gradients True norm_w_grad

Table 7: Hyperparameters used for MT-PPO in Parkour Benchmark. A ’/’ indicates the value used
for Parkour-easy/Parkour-hard respectively and otherwise is identical for each setting.


