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Abstract— Robot decision-making in partially observable,
real-time, dynamic, and multi-agent environments remains
a difficult and unsolved challenge. Model-free reinforcement
learning (RL) is a promising approach to learning decision-
making in such domains, however, end-to-end RL in complex
environments is often intractable. To address this challenge in
the RoboCup Standard Platform League (SPL) domain, we
developed a novel architecture integrating RL within a clas-
sical robotics stack, while employing a multi-fidelity sim2real
approach and decomposing behavior into learned sub-behaviors
with heuristic selection. Our architecture led to victory in the
2024 RoboCup SPL Challenge Shield Division. In this work,
we fully describe our system’s architecture and empirically
analyze key design decisions that contributed to its success.
Our approach demonstrates how RL-based behaviors can be
integrated into complete robot behavior architectures.

I. INTRODUCTION

In the field of robotics, reinforcement learning (RL) has
enabled complex and impressive behaviors [1]–[3]. Despite
the exciting advances in RL, the training and deployment
of RL for strategic decision-making on physical robots in
partially observable, real-time, dynamic, and multi-agent
environments remains a challenge.

One particular domain that exhibits these challenges is the
RoboCup Standard Platform League (SPL) [4]. The SPL is
part of the RoboCup initiative, which has driven advances
in robotics over the past three decades [5]. In the SPL,
teams of 5 or 7 humanoid NAO robots compete in soccer
games. Each robot must be fully autonomous and act in real-
time; and the presence of teammates and adversaries makes
the domain highly dynamic. In addition, it is a competitive
environment that requires teams to quickly adapt to different
opponents and improve their strategy between and within
matches. Teams participating in the SPL typically rely on
a classical robot behavior architecture with complex hand-
coded behaviors, and RL has had little use at the behavior
level.

Toward the use of RL in partially observable, real-time,
dynamic, and multi-agent environments, we introduce an
RL-based robot architecture and training framework that
we evaluate in the RoboCup SPL domain. Using this ar-
chitecture, our joint team across two universities, WisTex
United, participated in and won the 2024 RoboCup SPL
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Challenge Shield Division. Over 8 games we won 7 and
outscored opponents 39-7. To the best of our knowledge,
our system represents the first successful use case of RL
for high-level decision-making in the SPL domain. While
specific to the SPL competition, our system design provides
insights for roboticists seeking to apply RL in domains of
similar complexity.

Our architecture is based upon a fairly standard classical
robotics stack that decomposes perception, state estimation,
behavior, and control into separate modules. Our main con-
tributions are then to enable the use of RL as a central
part of the behavior module that controls each robot’s high-
level, strategic decision-making. The architecture enjoys the
robustness of a modular approach, uses separately trained
RL policies to achieve flexibility and versatility, and allows
for improvement at deployment time.

To effectively train behaviors, we adopt a sim2real ap-
proach and use simulators of different fidelities. A lower fi-
delity simulator enables extensive full field training, whereas
a higher fidelity simulator enables the robot to learn more
precise ball control in critical situations. Furthermore, instead
of training a monolithic policy for all game scenarios, we de-
compose the overall behavior into four learned sub-behaviors
with different action and observation spaces. During games,
we heuristically select between behaviors to integrate human
knowledge into our strategy and enable rapid adjustment.

In this paper, we fully describe the key components of
our architecture and training framework and then empirically
study the importance of key design decisions. Specifically,
the main contributions of our work are:

• We detail our novel RL-based robot behavior architec-
ture and training framework that led to winning the
RoboCup SPL Challenge Shield Division.

• We identify and describe key design choices in the
architecture: multifidelity RL training, behavior decom-
position into sub-behaviors, heuristic selection of sub-
behaviors during deployment, and usage of different
action and observation spaces across sub-behaviors.

• We analyze our key design choices in a series of
ablation experiments. Our experiments validate the ef-
fectiveness of key aspects of our architecture, comple-
menting our victory in the 2024 SPL Challenge Shield
Division.



II. BACKGROUND

In this section, we provide background on reinforcement
learning and describe related work on enabling RL in
robotics and other use-cases of RL to target similar domains.

A. Reinforcement Learning

Reinforcement learning algorithms enable an agent to
learn optimal actions in sequential decision-making en-
vironments. We formalize this environment as a Par-
tially Observable Markov Decision Process (POMDP)
(S,A,P,R,O,Ω, γ), where S is the state space, A is the
action space, P : S × A → ∆(S) is the transition function,
R : S ×A → R is the reward function, O is the observation
space, Ω : S × A → ∆(O) is the observation model, and
γ is the discount factor. In a POMDP, the agent takes in
the history of observations or a belief state and outputs an
action. The objective is to maximize the expected cumulative
reward, defined as J(π) := E[

∑∞
t=0 γ

tR(st, at)]. It should
be noted that even though we are interested in the multi-robot
SPL domain, from the point of view of any single robot, the
actions of other robots are represented as just part of the
state transition function.

B. Related Work

In this section we discuss related work in RL for robotics,
multi-fidelity simulation, and robot soccer.

1) Reinforcement Learning in Robotics: Reinforcement
Learning (RL) has significantly advanced robot learning [6].
Specifically, the paradigm of sim2real transfer has shown
success on a body of work on locomotion for bipedal robots
[2], [7]–[13]; however, these works do not use RL for high-
level learning or in a domain as challenging as the SPL robot
soccer league.

Other research has explored high-level decision-making
with hierarchical approaches [14]–[16], but these works did
not deal with bipedal robots and studied domains with stable
and predictable dynamics unlike in the SPL. Some works
have investigated training exclusively high-level behaviors
in abstract simulations [17], [18], but they also do not
address many of the SPL domain complexities. Our work
also distinguishes itself by manually decomposing behaviors
rather than training a single high-level policy. This approach
allows for more fine-grained control and potentially better
transferability to real-world scenarios.

2) Multi-fidelity Simulation: Our approach utilizes two
levels of simulation fidelity. Many works use multi-fidelity
simulation with RL to maximize sample efficiency and policy
performance [19]–[23], however, most do not apply the
approach to physical robots. A few works have applied multi-
fidelity simulation to sim2real transfer [24], [25] but they
have trained a single policy through increasing levels of
realism. In contrast, our work focuses on training multiple
decomposed policies across different fidelities.

3) Robot Soccer: Within the domain of robot soccer [5],
[26]–[28], numerous studies have applied RL techniques.
Many of these works are conducted in simulation environ-
ments [29]–[34], as opposed to physical robots. Others focus

on wheeled or quadrupedal robots [35]–[40] rather than a
bipedal system.

Haarnoja et al. [41] learn joint movements directly such
that a bipedal robot was able to learn a policy that demon-
strates strong performance 1 vs 1 robot soccer. This work is
limited with the use of a global motion capture system to
provide precise state estimates and therefore does not solve
many of the challenges present in the SPL. Heuristics have
been explored for teamwork in the robot soccer domain [42],
but have not been combined with RL policies.

III. ROBOCUP STANDARD PLATFORM LEAGUE: DOMAIN
CHALLENGES AND REINFORCEMENT LEARNING

INTEGRATION

In this section, we describe the robotics challenges raised
by the SPL and then describe the additional challenges that
must be overcome to develop an RL-based architecture for
the domain.

A. RoboCup Standard Platform League

The SPL presents a challenging robotics task for numerous
reasons. First, all of the robots must be fully autonomous,
with all perception and the control onboard the robot. Sec-
ond, sparse wireless communication is available but limited
by competition rules, delayed, and unreliable at a competition
venue. Third, the domain requires real-time perception from
visual and proprioceptive data processed on a CPU so the
robots operate with significant uncertainty about the full
state of the world. Fourth, the domain is highly-dynamic
because the positions of the robots and ball are constantly
changing. Fifth, effective team behavior requires each robot
to coordinate to fill the right role at the right time under
these dynamic match conditions. Last, robots must react to
unpredictable opponent behaviors and balance assertiveness
with penalty avoidance.

This combination of factors creates a challenging decision-
making domain where robots must rapidly process incom-
plete information to formulate strategies.

The SPL consists of two divisions: the Champion’s Cup
Division features 7v7 games, and the Challenge Shield
Division is for 5v5 games. While the former is generally
more competitive, the Challenge Shield still serves as a
strong baseline since all teams have access to code from
previous years’ top performers. As we describe below, we
based our RL-based architecture on Team B-Human’s pub-
licly available architecture that was used to win the 2023
Champion’s Cup [43]. Other teams in both divisions also
built their approach upon code from B-Human.

B. Challenges with Applying RL in the SPL Domain

Despite RL demonstrating success in simulated 2D and 3D
domains and showing promise for skills such as walking, no
SPL team, to the best of our knowledge, has successfully
used RL to develop the primary strategic decision-making
of their robots. In this section, we describe the challenges
with applying RL in the SPL domain.



1) Challenge of Using RL for End-to-End Learning:
Much robot RL research has focused on end-to-end learning
where a single neural network controls a robot at the lowest
level of control. For instance, in the soccer domain, Tirumala
et al. [44] showed that robots could be trained end-to-end to
play short 1 vs. 1 matches from vision. While impressive,
SPL games span 20 minutes and require multiple robots to
coordinate under more complex rules. These factors make
end-to-end RL learning for the SPL require prohibitively
high compute resources.

2) Challenges with Integrating RL for High-Level Deci-
sion Making in SPL: Integrating RL into high-level decision-
making for robot soccer presents several interconnected chal-
lenges. While the SPL community has access to refined low-
level skills from previous teams, developing RL policies that
effectively utilize these skills is difficult due to the sim2real
gap and limitations in simulation technology. Specifically, the
available high-fidelity simulator, though relatively accurate
in modeling physics, is computationally inefficient and does
not parallelize for GPU-training. As well, the competitive
dynamics, complexity, and multi-agent interactions inherent
in robot soccer make training a monolithic RL policy that
handles all situations infeasible in the high-fidelity simulator.

IV. REINFORCEMENT LEARNING WITHIN A
COMPLETE ROBOT SYSTEM

In this section we describe our system and the key design
decisions that contributed to winning the SPL Challenge
Shield Division.

A. Robot Architecture Setup

We build our system architecture (Figure 1) on top of
an existing classical robotics framework. Specifically, we
leverage the complete robot architecture developed by the
B-Human team [43], which includes finely tuned motion
primitives, robot localization, and object perception modules.
In doing so, we avoid the need to learn robot perception and
locomotion and can avoid the computational expense of end-
to-end RL. Instead, the RL policies we train take high-level
aspects of the game as input (e.g., ball and robot positions)
and output high-level controls (see Table I).

B. Simulation Environments

To enable RL-trained behaviors on physical robots, we
adopt the sim2real paradigm – train RL in simulation and de-
ploy on physical robots. A challenge is that our high-fidelity
simulator is prohibitively slow for RL training (Figure 2. To
address this challenge, we observe that the full complexity
and precision of high-fidelity simulation is unnecessary in
most gameplay scenarios. Instead, the primary requirement
is to choose the direction for a better position and thus a
simplified simulation is generally sufficient for training.

Our low-fidelity simulation, AbstractSim, is a lightweight
system that we developed to enable fast and efficient training
(see Figure 3). In AbstractSim, robots are represented as
simple rectangles; their movement is modeled without con-
sidering the complexity of joints, legs, or feet; and the ball

follows simple kinematic motion. This simulator drastically
reduces the computational load, allowing us to efficiently
train agents across the entire field.

For high-fidelity training, we use the SimRobot simulator
(Figure 2), developed by the B-Human team. Training across
the entire field in such a high-fidelity environment would
be impractical, with runs taking weeks for a single robot.
Consequently, we restrict high-fidelity training to critical
near-goal scenarios where precision and fine-grained control
are paramount.

C. Reinforcement Learning Behavior Decomposition

Instead of training a monolithic policy for all game sce-
narios, we decompose the overall behavior into four sub-
behaviors trained with PPO [45], [46] which make use
of different simulator fidelities, and action and observation
spaces (Table I). Each policy is instantiated as a neural
network, and the output of the neural network is used as
input to a low-level skill.

The BALL DUEL policy, trained in a 2 vs. 0 AbstractSim
environment, develops ball control skills through velocity-
based maneuvering. During training, the policy is rewarded
for moving toward the ball, moving the ball toward the goal
and scoring. Despite the absence of opponents in training, its
proficiency in ball handling makes it effective in real-world
contested situations. However, we identified three respects in
which this policy underperformed due to the sim2real gap:
slow movement when far from the ball, imprecise kicking,
and struggles in near-goal situations.

The MID-FIELD policy addresses the BALL DUEL policy’s
limitations in walking and kicking. Developed in a 1 vs. 0
AbstractSim environment, it uses the B-Human robot archi-
tecture’s walk-and-kick skill. During training it is rewarded
for moving the ball toward the goal and scoring. The MID-
FIELD policy outputs a kick angle that parameterizes a low-
level walk-and-kick skill previously developed by the B-
Human team. The walk-and-kick skill incorporates a path
planner for obstacle avoidance. By employing a different
lower-level skill, the MID-FIELD policy sacrifices precise
velocity control in favor of enhanced movement speed and
kicking accuracy and excels in less contested scenarios.

The NEAR-GOAL policy is designed for critical situations
where the ball is close to the goal, often requiring decisive
and precise movement to score. To achieve the necessary
precision, we trained this policy using a 1 vs. 0 scenario
in the high-fidelity SimRobot simulator. During training, the
agent was given a positive reward for scoring and a negative
reward for moving the ball too far from the goal along
with shaping rewards to encourage learning. This approach
revealed subtle yet effective strategies; for instance, the
NEAR-GOAL policy learned to make small lateral movements
to effectively bump the ball towards the goal, proving more
efficient than actively kicking.

Finally, the POSITIONING policy guides the robot’s move-
ment when a teammate is closer to the ball. It considers both
the ball’s position and a manually defined strategy position.
This policy was rewarded for moving toward its predefined



Policy Action Space Action Space Description Observation Space
MID-FIELD [∆Θ] Adjusts the desired kicking angle relative to a

global reference frame. Action is clipped for
stability.

[Ball, Can kick 1-hot, Goal center, All goalposts,
Field sides, Last 3 ball positions]

BALL DUEL [∆X , ∆Y , ∆Θ] Controls the robot’s movement at an egocentric
(robot-centered) velocity in the x, y directions,
and adjusts its orientation (theta).

[Ball, Can kick 1-hot, Closest teammate to goal,
All goalposts, Field sides, Last 3 ball positions]

NEAR-GOAL [∆X , ∆Y , ∆Θ] Same as BALL DUEL. [Ball, Opponent goalposts, Last 3 ball positions]
POSITIONING [∆X , ∆Y , ∆Θ, Stand] Similar to BALL DUEL and NEAR-GOAL but

with the addition of a stand thresholded action.
[Ball, Strategy position, All defenders, All goal-
posts, Field sides, Last 3 ball positions]

TABLE I: Action and observation space details for each sub-policy.
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Fig. 1: Architecture of our training and deployment system for robot soccer. The left side illustrates our training setup, utilizing
both high-fidelity (SimRobot) and low-fidelity (AbstractSim) simulators to train policies with different action spaces under
various scenarios. The right side depicts our deployment architecture for real-world 5v5 games, built upon the B-Human
team’s classical robotics framework. It includes a Perception Module processing sensor data, a State-Estimation Module
computing robot and ball positioning, and our RL decision module. The RL module, receiving processed observations, uses
a heuristic Behavior Selection Policy to choose appropriate sub-behavior policies, which determine actions executed by the
low-level controller. Our heuristic approach allows for dynamic play style adjustments and easy integration of new policies,
and facilitates continuous improvement at deployment time.

Fig. 2: High-fidelity simu-
lation SimRobot developed
by the B-Human RoboCup
Team. Physics are based on
the Open Dynamics Engine.

Fig. 3: Custom low-fidelity
simulation AbstractSim, in
which robots are modeled as
rectangles and joint move-
ments are abstracted.

strategy position, keeping the ball in view and avoiding
opponents.

D. Heuristic Policy Selection

Our system employs heuristic-based selection to dynam-
ically select from among the four specialized sub-behavior
policies based on specific game situations. The POSITION-
ING policy is activated when a teammate is estimated to
be closer to the ball and upright, guiding the agent to
supportive field positions. The NEAR-GOAL policy, trained
in high-fidelity SimRobot, takes over when the agent is near
the ball within the opposing goal box. The BALL DUEL
policy is engaged when an opponent robot is within half a



meter of the ball, managing contested situations with precise
ball control. The MID-FIELD policy serves as the default,
enabling efficient field navigation and accurate kicking when
no other conditions are met.

This heuristic approach enables dynamic playstyle ad-
justments and integration of new policies, enhancing our
team’s adaptability to various game scenarios. For instance,
after observing the NEAR-GOAL sub-behavior’s effective
performance, we expanded its activation region. Our sys-
tem’s flexibility allows for updates to existing policies and
integration of new ones between matches, facilitating con-
tinuous improvement. This adaptability proved crucial in our
performance evolution throughout the competition, enabling
us to turn a close 2-1 victory in our first game to a resounding
8-0 victory in our last against the same team.

V. EMPIRICAL ANALYSIS

In this section, we study the key decisions that led to
our first-place finish in the RoboCup competition. We fo-
cus on three elements that we hypothesized contributed to
our success: heuristic policy selection, training policies in
different simulation fidelities, and utilizing distinct action
spaces for the BALL DUEL and MID-FIELD policies. We
conduct experiments on physical robots and in high-fidelity
simulation (SimRobot).

A. Heuristic Policy Conditioning

Experiment Physical Successes
Full Suite 6/10± 3
No MID-FIELD 0/10± 0
No NEAR-GOAL 4/10± 3
No BALL DUEL 3/10± 3

Fig. 4: Evaluation of policy decomposition on success rate
against a defender robot. Success is a goal, failure is an out of
bounds or timeout of a minute. Higher is better. Confidence
intervals are 95% bootstrapped.

The first experiment evaluates the effectiveness of our
policy decomposition and heuristic-based policy selection.
We test each policy’s performance on physical robots against
a weakened defender and goalie1 with disabled kicking abil-
ities. The setup starts the attacker agent with possession of
the ball in a 1 vs. 2 scoring evaluation. The results, presented
in Figure 4, show that the full suite of policies outperforms
systems where one policy is removed, indicating that each
policy plays a crucial role in the overall performance of the
system.

B. Simulation Fidelity

The second experiment examines the impact of simulation
fidelity on policy performance. Specifically, we focus on
comparing the effectiveness of training the NEAR-GOAL
policy in high-fidelity SimRobot versus low-fidelity Ab-
stractSim. We trained policies to convergence, with initial-
ization within the goal box. We then tested these policies

1The goalie code in our system is manually defined, as the behavior for
this role is relatively simple to implement.

Experiment Training
Simulation

Physical
Success

Simulation
Success

Goalie AbstractSim 7/10± 3 77/100± 8
SimRobot 9/10± 1.5 62/100± 9

Goalie and
Defender

AbstractSim 4/10± 3 62/100± 9
SimRobot 9/10± 1.5 60/100± 10

(a) Simulation type success results. Higher is better.
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(b) Simulation type time to success results. Lower is better.

Fig. 5: Results from training simulation fidelity experiments.
We compare low-fidelity AbstractSim trained policies to
high-fidelity SimRobot trained policies. We test against a
setup with only a goalie and against a setup with a goalie and
defender. Success is a goal. Failure is a timeout of a minute
or out of bounds. Confidence intervals are 95% bootstrap
confidence intervals.

in two scenarios: a goalie only and a defender and goalie
together. In this evaluation we also perform a scoring test
with the evaluated policy given possession of the ball to
start. The results, shown in Figure 5, demonstrate that on
the physical robots, the SimRobot-trained policy achieves a
significantly higher success rate and shorter time to score,
showing the performance boost gained by using SimRobot-
trained policies. Interestingly, in the simulation experiments,
the AbstractSim-trained policies outperform the SimRobot-
trained policy. The experiment results indicate that the
AbstractSim-trained policy performs well in simulations but
fails to generalize to the real world.

C. Action Spaces

The third experiment examines the trade-offs between the
two action spaces used in our BALL DUEL and MID-FIELD
policies. We conduct two tests to evaluate these conditions
and the results are displayed in Figure 6.

The first test assesses the agent’s ability to move the
ball around an opposing robot. Here, we use our defender
code with kicking disabled as the opposing robot and the
attacking agent is started with the ball. In this scenario, the
walk-at-relative-speed action space has a significantly higher
success rate than the walk-to-point action space. This is due
to the limitations of the walk-to-point action space in precise
ball manipulation. In contrast, the dribble policy has precise
movement control.

The second test measures the time it takes for the robot
to walk to a point 4m away. A lower time indicates faster



Experiment Physical
Success

Simulation
Success

Walk at
Relative Speed 7/10± 3 41/100± 15

Walk to Point 1/10± 1.5 11/100± 6

(a) Evaluation of action spaces. Success moving the ball past the
opponent with control. Failure is a timeout at a minute or losing
control of the ball. Higher is better.
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(b) Walking Type Experimental Results. Time to reach a point on
the opposite side of the field as the robot. Lower is better.

Fig. 6: Results from action space experiments. In Figure 6a
we show the success of dribbling around an opponent. In
Figure 6b we show the time to walk to a point 4m away from
the robot. Confidence intervals are 95% bootstrap confidence
intervals.

walking. Qualitatively, the walk-to-point action space had
smoother movement because it has a more stable desired
location. In contrast, the walk-at-relative-speed action space
adjusts the desired velocity at every timestep, resulting in
slower movement.

VI. DISCUSSION AND LIMITATIONS

Our SPL case study offers lessons for similar domains. De-
composing complex RL tasks into learnable sub-behaviors al-
lows faster training and facilitates adjustments to the overall
behavior post-training. Bootstrapping off of existing classical
robotics stacks can also make RL more feasible with limited
resources. Our approach also shows that matching simulator
fidelity to the target task is crucial. For tasks requiring both
global coverage and local precision, using multiple fidelities
of simulation can enhance overall performance.

As an example real-world application where our lessons
could be applied, we consider a disaster response scenario.
Response teams with robots could use simplified simulators
to develop general exploration policies, while utilizing high-
fidelity simulations to refine task-specific sub-behaviors like
debris removal or medical assessment. These sub-behaviors
can be integrated together with the heuristic-based sub-
behavior selection scheme. By combining existing modules
for perception and low-level control with RL-trained high-
level decision-making, teams can reduce the computational
burden compared to end-to-end training. This framework
allows for rapid deployment and on-site fine-tuning of robot
behaviors without full retraining, thereby enhancing the
efficiency of joint rescue operations.

Our current approach faces several limitations that future
work could address. First, we aim to develop multi-agent
training methods for complex team behaviors. Currently, we
rely on hand-coded sub-policy decomposition and training
scenarios, which is effective but potentially leaves room for
improvement. Second, our heuristic approach also does not
take into account other agents sub-policy selection. As each
agent individually computes the role they are playing, the
role can change rapidly. Communication and a bidding sys-
tem is a future direction to implement for our role switching
heuristic. Other future work can explore learning of sub-
behavior selection, investigate methods for balancing high
and low-fidelity simulators, or explore human-in-the-loop
methods to further leverage expert knowledge in decision-
making and strategy control.

VII. CONCLUSION

Robot soccer and the annual RoboCup competition is a
research challenge task designed to spur innovation in build-
ing complete robot architectures that can operate in dynamic,
partially observable, and adversarial domains. In this paper,
we have described an RL approach for developing high-level
behaviors for the NAO robot that won the Challenge Shield
division of the 2024 RoboCup Standard Platform League
competition. This work provides insights and lessons for
using model-free RL as a primary driver of decision-making
in dynamic, multi-agent and partially observable robot tasks
where end-to-end RL may be intractable yet domain com-
plexity suggests that manual programming of behaviors is
likely suboptimal. In addition to describing our system, we
conducted empirical analysis of three critical components:
heuristic-based policy selection, varying simulation fidelity
and different action spaces. The results of this analysis
provide further lessons for the application of RL in domains
with similar challenges. This work demonstrates the promise
of RL for developing robot behaviors in complex, dynamic,
partially observable, and multi-agent domains.
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