
Learning Real-world Autonomous Navigation by
Self-Supervised Environment Synthesis

Zifan Xu∗1, Anirudh Nair∗1, Xuesu Xiao1, and Peter Stone1,2

Abstract— Machine learning approaches have recently en-
abled autonomous navigation for mobile robots in a data-
driven manner. Since most existing learning-based navigation
systems are trained with data generated in artificially created
training environments, during real-world deployment at scale,
it is inevitable that robots will encounter unseen scenarios,
which are out of the training distribution and therefore lead
to poor real-world performance. On the other hand, directly
training in the real world is generally unsafe and inefficient.
To address this issue, we introduce Self-supervised Environ-
ment Synthesis (SES), in which, after real-world deployment
with safety and efficiency requirements, autonomous mobile
robots can utilize experience from the real-world deployment,
reconstruct navigation scenarios, and synthesize representative
training environments in simulation. Training in these syn-
thesized environments leads to improved future performance
in the real world. In our experiments, the effectiveness of
SES in synthesizing representative simulation environments
and improving real-world navigation performance has been
verified by a large-scale deployment in a high-fidelity, realistic
simulator1.

I. INTRODUCTION

While classical navigation systems have been able to move
mobile robots from one point to another in a collision-free
manner for decades [2], [3], learning-based approaches to
navigation have recently gained traction [4] due to their
ability to learn navigation behaviors purely from data without
extensive engineering effort. For example, learned navigation
systems can learn from human demonstrations [5] or self-
supervised trial and error [6]; they can learn navigation cost
functions that consider social norms and human preferences
[7]. They can also be combined with classical navigation
systems to assure navigation safety and enable adaptive
behaviors in different scenarios [8]–[12].

Due to the expense of trial-and-error training in the real
world (e.g., safety concerns and sample efficiency), most
navigation behaviors are learned in artificially created en-
vironments in simulation, which may not generalize well to
the real world (shown in Fig. 1). Despite the effort in creating
simulation environments similar to the real world or enabling

∗ Equal contribution 1 Department of Computer Science, The University
of Texas at Austin, Austin, TX 78712 {zfxu, ani.nair}@utexas.edu,
{xiao, pstone}@cs.utexas.edu 2Sony AI

This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(CPS-1739964, IIS-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF-19-2-0333), DARPA, Lockheed Martin, GM,
and Bosch. Peter Stone serves as the Executive Director of Sony AI
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

1Due to the lack of access to large-scale real-world deployment data, we
use simulated Matterport environments [1] as a surrogate of the real world.

Fig. 1. A navigation policy trained in simulation is expected to be deployed
in completely different domains of navigation environments in the real world
(e.g., households, factories, and parks). The policy may also need to face
different real-world inter-domain deployments, in which a navigation policy
learned in one real-world domain will be deployed in another.

efficient sim-to-real transfer, it is inevitable that robots will
encounter unfamiliar scenarios, especially during large-scale
real-world deployment.

The goal of this work is to improve real-world autonomous
navigation with safety and efficiency requirements based on
mobile robots’ own navigation experiences during actual
deployment. These conservative, potentially suboptimal, real-
world experiences (without risky real-world exploration) may
not be sufficient to directly train an RL agent, but are
sufficient to reconstruct the real-world navigation scenarios
in simulation which an RL agent can interact with and
actively explore. On the other hand, given the large amount of
real-world deployment experiences available to many robots
deployed in the field (consider 7 million connected iRobot
Roombas vacuuming homes day to day), it is infeasible to
reconstruct all these deployment environments and train in
simulation on a daily basis. Therefore, using our approach,
Self-supervised Environment Synthesis (SES), mobile robots
deployed in the field can first reconstruct navigation scenar-
ios from experiences and then synthesize a representative set
of simulation environments that is feasible for RL training.
Training in these simulated environments, robots can learn
to address real-world challenges in the future. Moreover,
the distribution of real-world navigation scenarios is often
unbalanced, including mostly trivial open scenarios. There-
fore, we use an efficient strategy that filters out the trivial
scenarios by a measure of navigation difficulty and focus
learning on the difficult navigation scenarios. To synthesize
the training environment set from the reconstructed difficult



navigation scenarios, three different environment synthesis
approaches—Generative Adversarial Networks (GAN), K-
means clustering with Principle Component Analysis (PCA),
and random sampling—are employed to represent the diffi-
cult scenarios with a concise training environment set that
is feasible for an RL agent to learn from. We evaluate all
three approaches in Matterport, a dataset of large number
of simulated realistic household environments (which serves
as a surrogate of real world), and show that SES improves
the deployment in these environments compared to policies
trained in artificially generated environments [13], and the
best synthesis approach generates more representative train-
ing environments and enables better deployment in Matter-
port.

II. RELATED WORK

This section reviews related work in classical and learning-
based navigation, Adaptive Planner Parameter Learning, and
domain adaptation.

A. Classical and Learning-Based Navigation

Mobile robot navigation has been investigated by roboti-
cists for decades [2], [3]. Classical approaches can move
robots from one point to another with a reasonable degree
of confidence that they won’t collide with any obstacles.
However, these approaches require extensive engineering
effort to develop and to adapt the system to different envi-
ronments. When encountering the same environment where
a robot has already failed or achieved suboptimal behavior
before, without re-engineering the system, the robot will
likely repeat the same mistake again.

Inspired by the success of machine learning in other
domains, roboticists have also applied machine learning to
autonomous navigation [4]. Most learning approaches to
navigation adopt an end-to-end approach, i.e., learning a
mapping from perceptual input directly to motion commands.
Such approaches do not require much engineering effort, and
learn navigation behaviors purely from data [14], e.g., from
expert demonstrations [5], [15] or from trial and error [6],
[16]. However, these approaches often lack safety guarantees
and explainability, as provided by their classic counterparts.
Therefore, roboticists have also investigated more structured
ways of integrating learning with classical navigation, e.g.,
learning local planners [17]–[19], terrain-based cost func-
tions [20], planner parameters [12], driving styles [21],
and social norms [7]. Despite their success, learning-based
navigation approaches inherit one drawback from machine
learning approaches in general: poor generalizability when
facing out-of-distribution data. When deployed in the real
world, especially at large scale, it is inevitable that mobile
robots will encounter scenarios that are not included in their
training distribution.

SES combats classical navigation’s inability to improve
from experience [22] and learning approaches’ poor gen-
eralizability to real-world scenarios. It improves navigation
by synthesizing training environments from self-supervised
deployment experiences.

B. Adaptive Planner Parameter Learning

Adaptive Planner Parameter Learning (APPL) [12] is a
recently proposed paradigm to combine the benefits of
classical navigation (e.g., safety and explainability) and
learning-based navigation (e.g., adaptivity and improvement
from experience). An APPL agent learns a parameter policy
(in contrast to an end-to-end motion policy [23]), which
interacts with a classical navigation system by dynamically
adjusting the planner parameters to adapt to different envi-
ronments. APPL can leverage non-expert human demonstra-
tions (APPLD) [8], corrective intervention (APPLI) [9], and
evaluative feedback (APPLE) [10] in the deployment environ-
ment to improve navigation performance. APPL can also use
Reinforcement Learning (APPLR) [11] to learn a parameter
policy before deployment in a randomly generated set of
simulation environments via Cellular Automata (BARN) [13].

Because APPL combines the best of both worlds and is
therefore more practical to be deployed at large scale in
the real world, SES builds upon an APPLR agent pre-trained
in the randomly generated BARN dataset [13] and improves
navigation performance when facing realistic (likely out-of-
distribution) navigation environments in the real world. Note
that in principle SES is also applicable to end-to-end motion
policies, but we leave evaluating its effectiveness in this case
to future work.

C. Sim-to-real Transfer

Limited by the safety and efficiency requirements in the
real world, a learning-based navigation system is usually
trained in simulation. However, policies trained in simulation
can perform poorly in the real world due to the mismatch
between the simulation and the real world. This phenomenon
is commonly referred to as the sim-to-real gap.

One major source of the sim-to-real gap is the discrepan-
cies between the sensor input rendered in simulation and
the real robot’s sensors. For example, to bridge the gap
between real-world and synthetic camera images of a robotic
system, prior work has employed techniques such as pixel-
level domain adaptation, which translates synthetic images
to realistic ones at the pixel level [24], [25]. These adapted
pseudo-realistic images bridge the sim-to-real gap to some
extent, so policies learned in simulation can be executed
more successfully on real robots by adapting the images
to be more realistic. Another source of the sim-to-real gap
is caused by dynamics mismatch between simulation and
the real world e.g., due to an imperfect physics engine.
A common paradigm to reduce the dynamics mismatch is
Grounded Simulation Learning (GSL), which either directly
modifies (i.e., grounds) the simulator to better match the
real world [26], or learns an action transformer that induces
simulator transitions that more closely match the real world
[27], [28].

In contrast to the two sim-to-real gaps introduced above,
this work addresses a gap caused by the environmental
mismatch (e.g., differences in the configurations and shapes
of obstacles, and start-goal locations). Our method SES can
be thought of as an environmental grounding method that



minimizes the differences in navigation environments be-
tween simulation and the real world based on the navigation
experiences collected during real-world deployment.

III. APPROACH

In this section, We first formulate large-scale real-world
navigation as a multi-task RL problem in an unknown
navigation domain, which is defined as a distribution of
navigation tasks. Sec. III-A formally defines the navigation
task and describes how a distribution of navigation tasks
forms a navigation domain. Then, Sec. III-B and III-C
discuss the two stages of SES: real-world navigation domain
extraction from real-world deployment data and environment
synthesis that generates a representative set of navigation
tasks. The whole pipeline of SES is summarized in Alg. 1.

A. Navigation Task and Navigation Domain

We focus on a standard goal-oriented navigation task, in
which a robot navigates in a navigation environment e from
a provided starting pose α to a goal pose β. Each navigation
task T is instantiated as a tuple T = (e, α, β). In real-
world applications, robots are not deployed to navigate in
one single environment or with the same start and goal
all the time. Instead, actual deployment in the real world
usually form a distribution over multiple environments with
many start and goal poses. In this case, we represent the
real-world deployment as a navigation domain preal defined
as a distribution of navigation tasks T ∼ preal(T ). SES
generates a new navigation domain pSES in simulation that
resembles preal as much as possible so that the navigation
performance of policies trained in pSES will be maximized
in the real-world navigation domain preal. SES uses APPLR
[11] as the learning approach that solves the navigation tasks
by training a parameter policy that dynamically adjusts the
hyper-parameters of a classical navigation stack. Although
our implementation of SES is based on a specific learning
approach (APPLR), we leave the formulation sufficiently
broad so that APPLR can be replaced with any RL approaches
for autonomous navigation.

B. Real-world Navigation Domain Extraction

SES seeks to explore the distribution of the real-world
navigation domain during real deployment of an existing
navigation policy π0 (e.g., a policy pretrained on artificially
created environments or a classical navigation system). In
each real-world deployment, a navigation task Tn ∼ preal(T )
is sampled from the real-world navigation domain. At each
deployment time step, SES records the sensory input x, the
robot’s actual position s, and the number of suboptimal or
failed behaviors c (in our case, the negative linear velocity
command is employed as an indicator of suboptimal nav-
igation performance). Each deployment will return a tra-
jectory τ = (x0, s0, c0, ..., xk, sk, ck, ..., xK , sK , cK). Then,
the trajectories are segmented into different scenarios η as
follows: (1) starting from an initial step (xi, si, ci), iterate
the trajectory until a final step (xf , sf , cf ) where the robot
is 5m away from the initial step; (2) record a scenario η as a

Fig. 2. An example of scenario segmentation and environment construction:
dashed line denotes the actual trajectory of the robot. Three scenarios are
segmented and constructed as navigation environments at the bottom. Red
dots mark the positions of the start and goal in the environments. The failed
motion command counts c are noted at the bottom.

sub-trajectory of all the steps between step i and step f ; (3)
after one scenario is recorded, set the final step as the new
initial step for the next iteration. The procedure is repeated
until the whole trajectory is processed. Assuming a total of
N rounds of deployments with trajectories segmented into J
scenarios, a trajectory set {τn}Nn=1 is collected and converted
into a scenario set {ηj}Jj=1.

For each of the scenarios, we reconstruct a 5m-by-5m nav-
igation environment with start and goal set to be the positions
of the initial and final steps, and we re-orient the environment
so that the start and goal are located at the middle points of
the bottom and top edges respectively. The obstacles and free
spaces can be reconstructed from the recorded sensory inputs
or from available maps. The constructed environment set is
denoted as {ej , c̄j}. Each environment is associated with a
total number of suboptimal navigation behaviors c̄j between
the initial step and final step. Fig. 2 shows an example of
such a scenario segmentation and environment construction
process. The benefits of such scenario segmentation are:
(1) encoding the start and goal into the orientation of the
environment so that a single environment distribution can
represent the real-world navigation domain distribution; (2)
the segmented navigation environments have roughly the
same length, which makes it easier for an RL agent to learn
a universal value function. Alg. 2 summarizes the above
process of generating an environment set that represents the
real-world navigation domain distribution.

Since it is likely that the real-world navigation domain preal
includes many trivial navigation tasks (e.g., open spaces),
efficient training should focus on the difficult navigation
tasks. We use a threshold of 50 suboptimal behaviors within a
scenario η as an indication of easy and difficult environments.
Those difficult environments, {ej , c̄j |c̄j > 50}, form a
set for further environment synthesis. Our empirical results
indicate that including the navigation tasks with only difficult
scenarios instead of all the real-world scenarios is essential
for improving the real-world deployment.



C. Environment Synthesis

While a large number of difficult environments can be
constructed to precisely represent the real-world navigation
domain distribution, it is impractical to train an RL agent in
all these environments. In this case, a smaller set of train-
ing environments that represents the real-world navigation
domain distribution is required. Therefore, we propose three
methods of environment synthesis that perform this training
data selection process and generate a concise and representa-
tive training environment set. The three environment synthe-
sis methods are: (1) Generative Adversarial Nets (GAN) [29];
(2) K-means clustering with Principal Component Analysis
(PCA) [30]; and (3) random sampling. We introduce the first
two methods as follows (the third is as it sounds).

GAN learns a generator’s distribution pg over the environ-
ment e to match a uniform distribution pdiff over the difficult
environment set. Given a prior on the input noise variables
pz(z), a generator G(z; θg) is defined as a mapping from
the input variable space to the environment space with θg
representing the parameters of the network. A discriminator
network D(e; θd) outputs the probability that e comes from
pdiff rather than pg . D is trained to maximize the probability
of assigning the correct label to both difficult environments
and generated environments from G. Simultaneously, G is
trained to minimize log(1 − D(G(z))). To summarize, D
and G play the following two-player minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ee∼pdiff(e)[log(D(e))]+

Ez∼pz(z)[log(1−D(G(z)))].
(1)

After a generator G is learned, we query the generator M
times to draw M environments as the training set, where M
is the size of the training environment set depending on the
training budget of the RL algorithm.

K-means clustering first reduces the dimensionality of the
original environment data by PCA so that each environment
can be represented by their principle components (we em-
pirically pick 100 principle components in our experiments
because they can reasonably reconstruct the original envi-
ronments). We then cluster the environments in the reduced
space into m clusters and sample n environments from each
cluster to select the m×n most representative environments
in the difficult environment set. We use the principle compo-
nents to reconstruct the representative environments and use
them as our training set.

Finally, an APPLR policy π is trained in the synthesized
training environments. In practice, the policy π is initialized
to be the deployed policy π0 that was trained on the artifi-
cially created environments to speed up the training.

IV. RESULTS

In this section, we describe an implementation of SES on
a ground robot and show that SES can efficiently synthesize
representative environments based on difficult navigation
scenarios during real-world deployment and successfully

Algorithm 1 Self-supervised Environment Synthesis
Require: Original policy π0 and real-world navigation do-

main distribution preal(T )
1: Environment set {en}rep ← Real-world Navigation Do-

main Extraction based on π0 and preal (Sec. III-B)
2: Training environment set {ej}train ← Environment Syn-

thesis based on {en}rep (Sec. III-C)
3: π ← Initialize with π0, then train on {ej}train
4: return π

Algorithm 2 Real-world Navigation Domain Extraction
Require: Original policy π0, real-world navigation domain

distribution preal(T ) and total number of deployments N .

1: E = ∅
2: for n ∈ {1, ..., N} do
3: Tn ∼ preal(T )
4: Trajectory τn ← deploy π0 on Tn

5: Initial step i = 0 and the scenario set η = ∅
6: for xk, sk, ck ∈ τn do
7: η ← η ∪ {(xk, sk, ck)}
8: if sk is 5m away from si then
9: e ← Construct Environment from η

10: c̄ =
∑k

i ci
11: E ← E ∪ {e, c̄}
12: i = k, η = ∅
13: end if
14: end for
15: end for
16: return E

improve navigation by learning from the synthesized en-
vironments. Due to the difficulty in accessing large-scale
physical robot deployment data in the real world, we choose
to use Matterport dataset [1], a set of high-fidelity simulation
environments as a surrogate of the large-scale real-world
deployment (see Fig. 3 (d)). We assume that this environment
set is not available before actual deployment, and the robot
needs to learn through its actual deployment experiences in
those environment to improve navigation.

A. Deployment in Matterport Navigation Domain

We employ SES on a ClearPath Jackal differential-drive
ground robot. The specifications of the robot are kept the
same as in APPLR [11], including the ROS move base
navigation stack, the underlying classical local planner DWA,
and the learned planner parameters.

The original APPLR policy was trained before any de-
ployment in the BARN dataset [13]. The dataset contains
300 simulated navigation environments randomly generated
by Cellular Automata. Even though those environments are
sufficiently diverse to cover different difficulty levels from
relatively open spaces to highly-constrained ones, when be-
ing deployed in Matterport at scale, the randomly generated
environments in BARN are still not guaranteed to cover some
specific navigation scenarios encountered by the robot. In



Fig. 3. Examples of training and deployment environments. (a), (b), (c):
example environments from the BARN dataset; (d): a top-down view of an
example Matterport environment created from the occupancy map shown at
the top-right corner.

Fig. 3, (a)-(c) show three example BARN environments, and
(d) shows a Matterport environment where Jackal will be
deployed. This realistic Matterport environment is unlikely
to be generated by random sampling.

After training the original APPLR policy with the BARN
dataset, the robot will be physically deployed in the real
world at scale. Due to the lack of access to large-scale
real-world physical deployment data, we use 55 simulated
house layouts from the Matterport dataset [1] as a surrogate
for physical real-world deployment. Fig. 3 (d) shows an
example of such a deployment environment. We randomly
sample 50 environments from the Matterport dataset [1] as
the environments where Jackal will be actually deployed.
During actual deployment, these environments serve as the
Matterport navigation domain and navigation experiences in
those environments during deployment provide data for SES
to synthesize representative environments of the Matterport
navigation domain and to improve navigation. We leave five
environments to test the learned policy on these held-out
Matterport environments.

B. SES Implementation

Matterport navigation domain representation: in the
large-scale deployment in Matterport environments, the robot
with the original policy π0 trained in BARN (artificially
created navigation domain) is deployed 5000 times to nav-
igate between different start-goal pairs in the Matterport
environments. We construct 16528 navigation scenarios from
the segmented trajectories using the method described in Sec.
III-B as the distribution of the Matterport navigation domain
preal. Then 3769 difficult scenarios are selected based on a
threshold 50 of the negative linear velocity count. Fig. 4
(left) demonstrates some examples out of the 3769 difficult
scenarios. Each of the scenarios is represented as a binary
matrix of size 30 × 30. Note that training in all 3769
environments is not computationally practical, and realistic

TABLE I
AVERAGE TIME COST AND SUCCESS RATE OF THE TESTED POLICIES

Time cost (s) Success rate (%)

GAN 27.23 85.0
K-means clustering 32.21 80.6
Random sampling 35.92 71.0
Learn from scratch 30.42 74.3

Original policy 36.33 71.9
DWA slow 43.76 75.5
DWA fast 31.72 67.2

large-scale robot deployment in the real world (in contrast to
our surrogate) may even generate more difficult scenarios.

Environment synthesis: given the extracted Matterport
navigation domain distribution, the environment synthesis
method described in Sec. III-C generates 100 training envi-
ronments. More specifically, we use the difficult scenarios
as an image dataset to train GAN. To specify the GAN
method, We employ a normal distribution prior on the input
noise variables pz(z) := N (0, 1), where N is the stan-
dard normal distribution with mean and standard deviation
equal to 0 and 1 respectively. The generator G(z; θg) is
represented by a multilayer perceptron (MLP) of 256, 512,
and 1024-hidden-unit layers with batch normalization and
leaky ReLU activation function. The generator outputs a 900-
dimensional vector with a fully connected layer followed
by a Tanh activation function. The discriminator D(x; θd)
is represented by a second MLP of 512, 256, and 256-
hidden-unit layers with leaky ReLU activation function. Each
hidden layer is followed by a batch normalization layer and
a dropout layer with a dropout rate equal to 0.5. The dropout
serves as an ensemble strategy that prevents mode collapse
in the generated images. Fig. 2 (right) shows samples of
generated images drawn from the generator after training.
We set M = 100 (m = 20, n = 5,m × n = 100)
images of training environments, which are roughly in the
same order of magnitude as the BARN dataset. We leave the
investigation of how SES performs with different sizes of
training environments as future work. To train the new policy
π that solves the navigation in Matterport environments, we
use the same set of hyper-parameters as the training of π0

except for a smaller training step of one fourth of the original
training step.

C. Test Results

We train the new APPLR policy π with the 100 new train-
ing environments created by three methods: GAN, K-means
clustering, and random sampling. We compare the methods
with four baselines: the APPLR policy learned from scratch
on the training environments generated by GAN, the original
APPLR policy and the vanilla DWA with two sets of static
hyper-parameters, one with default parameters and the other
with a higher maximum linear velocity and sampling rates.
We call the two classical motion planners DWA slow and
DWA fast respectively. We use learn from scratch to denote
the first baseline which is designed to verify the importance



Fig. 4. Examples of difficult scenarios (left 6 columns, 12 out of 3769) and generated scenarios (right 6 columns, 12 out of 100).

of initializing the policy with the pre-trained policy π0. Then
we deployed the three adapted RL policies and four baselines
in 5 held-out Matterport environments to test deployment
performance. For each of the environments, we randomly
sample five start-goal pairs, and deploy each policy 20 times
for each pair. During deployment, we measure the success
rate and the total time cost of the successful trials.

Table I presents the average time cost and success rate over
all trials.2 The policy trained by the GAN method achieves
the best performances of a 27.23s average time cost and a
85% success rate. K-means clustering follows with a 32.21s
average time cost and a 80.6% success rate. Learn from
scratch shows worse performance on both metrics compared
to GAN which indicates the importance of initializing the
model with the pre-trained policy π0. The policy trained
on the randomly sampled training environments basically
is comparable with the original policy, which manifests an
inefficient transfer based on randomly sampling. While the
DWA slow achieves an acceptable success rate of 75.5%, it
takes much more time (43.76s) to finish the navigation. On
the other hand, DWA fast can navigate relatively quickly, but
more easily fails with the lowest success rate of 67.2%.

To analyze performance variance, we randomly select one
start-goal pair from each environment and show the average
time cost and success rate of 20 independent trials in Fig.
5. GAN and K-means clustering policies, in general, use
less time to finish the navigation task and achieve higher
success rate. Among five test environments, the GAN policy
achieves the lowest time cost in three environments and
the highest success rate in all the five environments. The
proposed methods tend to show larger improvements in the
difficult environments (environments 1 and 2) but also larger
performance variance.

2Standard deviation is not included in the table due to the large variance
between different environments and start-goal pairs, but we analyze the
variance of the performance in every individual environment in Fig. 5.

Fig. 5. The average time cost (top) and the success rate (bottom) of 5
policies tested in 5 held-out Matterport environments.

V. CONCLUSIONS

In this paper, we present a self-supervised environment
synthesis approach that improves the real-world naviga-
tion performance of a learning-based navigation system
by synthesizing realistic simulation environments based on
navigation experiences during real-world deployment. To
address the inevitable environmental mismatch between sim-
ulation and real world deployment environments, especially
for large-scale real-world deployment, our SES method can
successfully identify difficult navigation scenarios during
real-world deployment and synthesize representative envi-
ronments to be added to the training distribution. While this
paper uses high-fidelity Matterport environments as a surro-
gate for the real world, future work should collect real-world
large-scale deployment data (e.g., from robotics companies)
to implement SES. Moreover, the environmental mismatch
introduced in this paper may not only exist between simula-
tion and the real world, but may also exist between different
deployment scenarios in the real world (shown in Fig. 1).
One interesting future direction is to develop new domain
adaptation approaches so that the learned navigation policies
can be adapted between different real-world scenarios.

REFERENCES

[1] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d
data in indoor environments,” International Conference on 3D Vision
(3DV), 2017.

[2] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.



[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[4] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion control for mobile
robot navigation using machine learning: a survey,” arXiv preprint
arXiv:2011.13112, 2020.

[5] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 ieee
international conference on robotics and automation (icra). IEEE,
2017, pp. 1527–1533.

[6] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 2371–2378.

[7] N. Pérez-Higueras, F. Caballero, and L. Merino, “Teaching robot
navigation behaviors to optimal rrt planners,” International Journal
of Social Robotics, vol. 10, no. 2, pp. 235–249, 2018.

[8] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[9] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “APPLI:
Adaptive planner parameter learning from interventions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

[10] Z. Wang, X. Xiao, G. Warnell, and P. Stone, “APPLE: Adaptive plan-
ner parameter learning from evaluative feedback,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[11] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “APPLR: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[12] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” arXiv
preprint arXiv:2105.07620, 2021.

[13] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2020, pp. 116–121.

[14] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Carnegie Mellon University, Tech. Rep., 1989.

[15] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” IEEE
Robotics and Automation Letters, 2021.

[16] H. Karnan, G. Warnell, X. Xiao, and P. Stone, “Voila: Visual-
observation-only imitation learning for autonomous navigation,” arXiv
preprint arXiv:2105.09371, 2021.

[17] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1503–1510, 2021.

[18] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

[19] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[20] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment, “Robot
navigation from human demonstration: Learning control behaviors,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1150–1157.

[21] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
2641–2646.

[22] B. Liu, X. Xiao, and P. Stone, “A lifelong learning approach to mobile
robot navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1090–1096, 2021.

[23] Z. Xu, X. Xiao, G. Warnell, A. Nair, and P. Stone, “Machine
learning methods for local motion planning: A study of end-to-end
vs. parameter learning,” in 2021 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR). IEEE, 2021.

[24] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation

and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[25] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 11 157–11 166.

[26] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone, “Humanoid robots
learning to walk faster: From the real world to simulation and back,”
in Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, 2013, pp. 39–46.

[27] H. Karnan, S. Desai, J. P. Hanna, G. Warnell, and P. Stone, “Reinforced
grounded action transformation for sim-to-real transfer,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems(IROS
2020), October 2020.

[28] J. P. Hanna, S. Desai, H. Karnan, G. Warnell, and P. Stone, “Grounded
action transformation for sim-to-real reinforcement learning,” Special
Issue on Reinforcement Learning for Real Life, Machine Learning,
2021, May 2021.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.


	INTRODUCTION
	RELATED WORK
	Classical and Learning-Based Navigation
	Adaptive Planner Parameter Learning
	Sim-to-real Transfer

	APPROACH
	Navigation Task and Navigation Domain
	Real-world Navigation Domain Extraction
	Environment Synthesis

	RESULTS
	Deployment in Matterport Navigation Domain
	ses Implementation
	Test Results

	CONCLUSIONS
	References

