
CS314 Final - Fall 2018 - Suggested Solution and Criteria 1

NUMBER 1, SHORT ANSWER:

A. N2 + 2N + 5 (+/- 0.5 on first two terms, +/- 1 on last term)

B. O(N) (dependent loop 1 + 2 + 4 + 8 + ... + N/4 + N/2 + N = 2N - 1)

C. O(N2)

D. 8 seconds (algo is N2)

E. 21 or not a valid postfix expression

F. 1. The root isn't black 2. 2 paths with 1 black nodes (2 -> 1, 2 -> 4 ->

left) and 2 paths with 2 black nodes (2 -> 4 -> 6 -> 5 or 7)

G. 10

H. A stack to track nodes we need to back track to.

I. 3

J. 4 seconds (code is best case, O(N))

K. 21 seconds (code is O(Nlog2N)

L. --->

M. O(N2)

N. {-3=Z, 2=B, 5=C} (differences in spacing,

separators ok, any quotes wrong)

O. 12

P. 8 seconds (Method is O(2N))

Q. --->

R. Singly linked to save space. Only need to

access first element (Or words to that effect.)

S. ------------------------->

T. average number of edges in shortest paths to other nodes (OWTTE)

U. 40 seconds (method is O(N))

V. 3 (Only. Return type of get for av is Object, no charAt method.)

W. 9

X. The header information that was included in the compressed file.

(OWTTE)

CS314 Final - Fall 2018 - Suggested Solution and Criteria 2

2. Suggested Solution
 // pre: at least 2 vertices

 public boolean isConnected(String ignore) {

 clearAll();

 Iterator<String> it = vertices.keySet().iterator();

 Vertex start = vertices.get(it.next());

 if (ignore.equals(start.name)) {

 start = vertices.get(it.next());

 }

 Queue<Vertex> q = new LinkedList<>();

 q.add(start);

 int visited = 0;

 int required = vertices.size() - 1;

 while (visited < required && !q.isEmpty()) {

 Vertex current = q.remove();

 if (current.scratch == 0) {

 visited++;

 current.scratch = 1;

 for (Edge e : current.adjacent) {

 if (!ignore.equals(e.dest.name)) {

 q.add(e.dest);

 }

 }

 }

 }

 return visited == required;

 }

16 points , Criteria:

• correctly get first node, checking it isn't ignore. 2 points

• call clearAll and create Queue, 1 point

• loop while q not empty and still vertices to visit, 2 points total
o -1 if don't stop when visited all vertices

• check current vertex has not yet been visited, 2 points

• when visiting vertex:
o update scratch for vertex, 1 point
o increment number vertices visited, 1 point
o loop through edges and add destinations, 1 point (okay to check scratch)

• correctly ignores any edges going to the vertex to be ignored, 5 points

• return correct answer

Other penalties:

• altering graph, -6 (including remove ignore)

• using recursion, -5 (space)

• O(N2), -5

• Only checking edges (friends of friends
only), MCE, -10

• OBOE, -2

• enqueue all vertices to start, -8

• don't enqueue at all , -5

CS314 Final - Fall 2018 - Suggested Solution and Criteria 3

3. Suggested Solution:

public int removeAll(E tgt) {

 Node<E> temp = header.next;

 int numRemoved = 0;

 while (temp != header) {

 boolean match = (tgt == null) ? temp.data == null

 : tgt.equals(temp.data);

 if (match) {

 numRemoved++;

 temp.prev.next = temp.next;

 temp.next.prev = temp.prev;

 }

 temp = temp.next;

 }

 return numRemoved;

}

16 points, Criteria:

• var to track num removed, 1 point

• temp node var, initialized correctly, 1 point

• loop until back to header node, 3 points

• handle cases when tgt is null, 3 points

• handle cases when tgt isn't null, 1 point (lose if ==)

• if node contains data that matches tgt, correctly remove it, 3 points

• advance temp correctly, 2 points

• return correct result: 1 point

Other deductions:

• worse than O(N), -5

• infinite loop for any reason, -4 (== null for example)

• attempt to alter what node header refers to, -3

• use any methods besides equals, -2 to -6 depending on severity

• OBOE, -2

• assume header is first node with data, -4

• destroy all or most of list, -6

•

CS314 Final - Fall 2018 - Suggested Solution and Criteria 4

4. Suggested solution:
 public int numPaths(int tgt, int req) {

 return pathHelp(tgt, req, 0, false, root);

 }

 private int pathHelp(int tgt, int req, int cur,

 boolean reqMet, BNode n) {

 int result = 0;

 if (n != null) {

 cur += n.data;

 reqMet = reqMet || n.data == req;

 if (reqMet && cur == tgt) {

 result++;

 }

 result += pathHelp(tgt, req, cur, reqMet, n.left);

 result += pathHelp(tgt, req, cur, reqMet, n.right);

 }

 return result;

 }

13 points, Criteria:

• create helper, 1 point

• base case, return 0 if null, 2 points (or look ahead)

• recursive case, add data in node to running total, 1 point

• check if data in node meets requirement (if necessary), 3 points

• check if current path meets target total, 2 points

• correct recursive calls, 4 points

Other:

• use any methods besides equals, -2 to -6 depending on severity

• resetting boolean / flag for required value each time (-3)

• early return, -5

• using array, -3 (even length 1)

CS314 Final - Fall 2018 - Suggested Solution and Criteria 5

5. Suggested Solution:

public ArrayList<Integer> writeFile(BitInputStream in,

 BitOutputStream out) throws IOException {

 ArrayList<Integer> result = new ArrayList<>();

 int chunkSize = in.readBits(6) + 1;

 int numChunks = in.readBits(32);

 for (int i = 0; i < numChunks; i++) {

 int num1s = 0;

 for (int j = 0; j < chunkSize; j++) {

 int bit = in.readBits(1);

 out.writeBits(1, bit);

 num1s += bit; // if 0, doesn't change }

 // Read the parity bit, but don't write it out to the file.

 num1s += in.readBits(1);

 // do we have the correct parity?

 if (num1s % 2 != 0) {

 result.add(i); // chunk i has an error based on parity

 }

 }

 return result;

 }

15 points, Criteria:

• read in chunk size and +1, 1 point

• read in and store number of chunks, 1 point

• loop for number of chunks, 1 point

• read 1 bit at a time, adding up number of 1s, 4 points

• write out data bits to output file, 2 point

• read parity bit and check parity correctly, 4 points

• add number of chunk with error to result, 1 point

• add number of errors to end of result and return, 1 point

Other:

• write parity bit to output file, -3

• try to read file multiple times, -5

• no return, -1

• scope wrong on variables, -3

• infinite loop, -5

• -7 assume a parity bit of 1 means error, 07

• write out parity bit, -3

• calculate powers of 2, eff, -3

• using methods not available, -5

CS314 Final - Fall 2018 - Suggested Solution and Criteria 6

6. Comments:

public List<String> getWords(String pre) {

 List<String> result = new ArrayList<>();

 TNode start = getNodeForPrefix(pre);

 if (start != null) {

 getWords(result, start, pre);

 }

 return result;

}

 private void getWords(TNode n, List<String> result, String word) {

 if (n.word) {

 result.add(word);

 }

 if (n.children != null) {

 for (TNode child : n.children) {

 getWords(child, result, word + child.ch);

 }

 }

 }

16 points, Criteria:

• check if TNode is null or not and make recursive call, 3 points

• add helper method with correct parameters, 2 points

• correctly check if current node is a word and add to result, 3 points

• check children list isn't null, 2 points

• loop through children, 1 point

• change word by adding current char, 3 points

• recursive call correct, 2 points

Other:

• altering TRIE in any way, -6

•

