NUMBER 1, SHORT ANSWER:

A.N2 + 2N + 5 (+/- 0.5 on first two terms, +/- 1 on last term)
B. O(N) (dependent loop 1 + 2 + 4 + 8 + ... + N/4 + N/2 + N = 2N - 1)
C. O(N?)
D. 8 seconds (algo is N?2)
E. 21 or not a valid postfix expression
F. 1. The root isn't black 2. 2 paths with 1 black nodes (2 -> 1, 2 -> 4 ->
left) and 2 paths with 2 black nodes (2 -> 4 -> 6 -> 5 or 7)
G. 10
H. A stack to track nodes we need to back track to. nil - | i~ ,
e I
J. 4 seconds (code is best case, O(N)) AR “c
K. 21 seconds (code is O(Nlog:N)
S > i
M. O(N?) n2 [!
N. {-3=Z, 2=B, 5=C} (differences in spacing,
separators ok, any quotes wrong)
o (D
P. 8 seconds (Method is 0(2Y)) °
A > (2
R. Singly linked to save space. Only need to ° °
access first element (Or words to that effect.)
OXO
S. - >
T. average number of edges in shortest paths to other nodes (OWTTE)
U. 40 seconds (method is O(N))
V. 3 (Only. Return type of get for av is Object, no charAt method.)
W. 9
X. The header information that was included in the compressed file.
(OWTTE)

CS314 Final - Fall 2018 - Suggested Solution and Criteria 1

2. Suggested Solution
// pre: at least 2 vertices
public boolean isConnected(String ignore)
clearAll () ;
Iterator<String> it = vertices.keySet () .iterator();
Vertex start = vertices.get(it.next());
if (ignore.equals(start.name)) {
start = vertices.get (it.next());
}
Queue<Vertex> g = new LinkedList<>();
g.add (start) ;

I~

int visited 0;
int required = vertices.size() - 1;
while (visited < required && !g.isEmpty()) {
Vertex current = g.remove ()
if (current.scratch == 0) {
visited++;
current.scratch = 1;
for (Edge e : current.adjacent) {
if (!ignore.equals (e.dest.name)) {

g.add(e.dest) ;

}
}

return visited == required;

16 points, Criteria:
e correctly get first node, checking it isn't ignore. 2 points
e call clearAll and create Queue, 1 point
e loop while g not empty and still vertices to visit, 2 points total
o -1if don't stop when visited all vertices
e check current vertex has not yet been visited, 2 points
e when visiting vertex:
o update scratch for vertex, 1 point
o increment number vertices visited, 1 point
o loop through edges and add destinations, 1 point (okay to check scratch)
e correctly ignores any edges going to the vertex to be ignored, 5 points
e return correct answer

Other penalties: e Only checking edges (friends of friends
only), MCE, -10
e altering graph, -6 (including remove ignore) e OBOE -2
* using recursion, -5 (space) e enqueue all vertices to start, -8

2)
e O(N%),-5 e don'tenqueue atall, -5

CS314 Final - Fall 2018 - Suggested Solution and Criteria 2

3. Suggested Solution:

public int removeAll (E tgt) {
Node<E> temp = header.next;

int numRemoved = 0;
while (temp != header) {
boolean match = (tgt == null) ? temp.data == null

tgt.equals (temp.data);
if (match) {
numRemoved++;
temp.prev.next = temp.next;
temp.next.prev temp.prev;

}

temp = temp.next;

}

return numRemoved;

16 points, Criteria:
e var to track num removed, 1 point
e temp node var, initialized correctly, 1 point
e loop until back to header node, 3 points
e handle cases when tgt is null, 3 points
e handle cases when tgt isn't null, 1 point (lose if ==
e if node contains data that matches tgt, correctly remove it, 3 points
e advance temp correctly, 2 points
e return correct result: 1 point

Other deductions:
e worse than O(N), -5
e infinite loop for any reason, -4 (== null for example)
e attempt to alter what node header refers to, -3
e use any methods besides equals, -2 to -6 depending on severity
e OBOE, -2
e assume header is first node with data, -4
e destroy all or most of list, -6

CS314 Final - Fall 2018 - Suggested Solution and Criteria

4. Suggested solution:

public int numPaths (int tgt, int
return pathHelp(tgt, req, 0,
}

req) {
false,

root) ;

private int pathHelp(int tgt, int req, int cur,

boolean regMet, BNode n) {

int result = 0;

if (n !'= null) {
cur += n.data;
regMet = regMet || n.data == reqg;
if (regMet && cur == tgt) {

result++;

}

result += pathHelp(tgt, req,
result += pathHelp(tgt, req,

}

return result;

}

13 points, Criteria:

create helper, 1 point
base case, return 0 if null, 2 points (or look ahead)

recursive case, add data in node to running total, 1 point
check if data in node meets requirement (if necessary), 3 points

check if current path meets target total, 2 points
correct recursive calls, 4 points

cur, regMet,
cur, regMet,

use any methods besides equals, -2 to -6 depending on severity
resetting boolean / flag for required value each time (-3)

early return, -5
using array, -3 (even length 1)

CS314 Final - Fall 2018 - Suggested Solution and Criteria

n.left);
n.right);

5. Suggested Solution:

public ArraylList<Integer> writeFile(BitInputStream in,
BitOutputStream out) throws IOException {

ArrayList<Integer> result = new ArrayList<>{();

int chunkSize = in.readBits(6) + 1;
int numChunks = in.readBits(32);
for (int 1 = 0; 1 < numChunks; 1i++) {
int numls = 0;
for (int 7 = 0; j < chunkSize; j++) {

int bit = in.readBits(1l);
out.writeBits (1, bit);
numls += bit; // if 0, doesn't change }
// Read the parity bit, but don't write it out to the file.
numls += in.readBits(1l);
// do we have the correct parity?
if (numls % 2 != 0) {
result.add(i); // chunk 1 has an error based on parity

}

return result;

}

15 points, Criteria:
e read in chunk size and +1, 1 point
e read in and store number of chunks, 1 point
e |oop for number of chunks, 1 point
e read 1 bit at a time, adding up number of 1s, 4 points
e write out data bits to output file, 2 point
e read parity bit and check parity correctly, 4 points
e add number of chunk with error to result, 1 point
e add number of errors to end of result and return, 1 point

e write parity bit to output file, -3

e try to read file multiple times, -5

e noreturn, -1

e scope wrong on variables, -3

e infinite loop, -5

e -7 assume a parity bit of 1 means error, 07
e write out parity bit, -3

e calculate powers of 2, eff, -3

e using methods not available, -5

CS314 Final - Fall 2018 - Suggested Solution and Criteria 5

6. Comments:

public List<String> getWords (String pre) {
List<String> result = new ArrayList<>();
TNode start = getNodeForPrefix (pre);
if (start != null) {
getWords (result, start, pre);
}

return result;

private void getWords (TNode n, List<String> result,
if (n.word) {
result.add (word) ;
}
if (n.children != null) {
for (TNode child : n.children) {

String word)

getWords (child, result, word + child.ch);

16 points, Criteria:
e check if TNode is null or not and make recursive call, 3 points
e add helper method with correct parameters, 2 points
e correctly check if current node is a word and add to result, 3 points
e check children list isn't null, 2 points
e |oop through children, 1 point
e change word by adding current char, 3 points
e recursive call correct, 2 points

e altering TRIE in any way, -6

CS314 Final - Fall 2018 - Suggested Solution and Criteria

