

Topic 20

Red Black Trees

"Welcome to L.A.'s Automated Traffic Surveillance and Control Operations Center. See, they use video feeds from intersections and specifically designed algorithms to predict traffic conditions, and thereby control traffic lights. So all I did was come up with my own... **kick ass algorithm** to sneak in, and now we own the place."

-Lyle, the Napster, (Seth Green), *The Italian Job*

Red Black Trees were created by Leonidas J. Guibas and Robert Sedgewick in 1978

Binary Search Trees

- Average case and worst case Big O for
 - insertion
 - deletion
 - access
- Balance is important. Unbalanced trees give worse than $\log N$ times for the basic tree operations
- Can balance be guaranteed?

Clicker 1

- 2000 elements are inserted one at a time into an initially empty binary search tree using the simplenaive algorithm. What is the maximum possible height of the resulting tree?

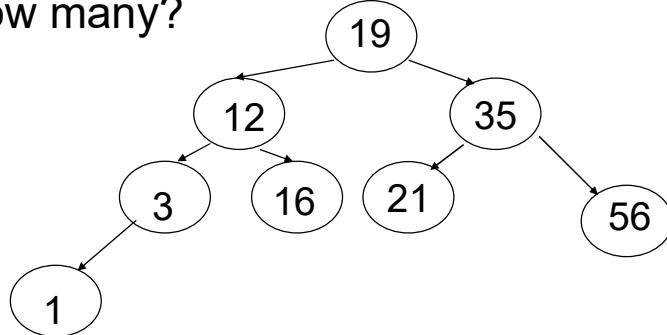
- A. 1
- B. 11
- C. 21
- D. 500
- E. 1999

Red Black Trees

- A BST with more complex algorithms to ensure balance
- Each node is labeled as **Red** or Black.
- Path: A unique series of links (edges) traverses from the root to each node.
 - The number of edges (links) that must be followed is the path length
- In **Red** Black trees paths from the root to elements with 0 or 1 child are of particular interest

Paths to Single or Zero Child Nodes

- How many?



CS314

Red Black Trees

5

Red Black Tree Rules

- Is a binary search tree
- Every node is colored either red or black
- The root of the whole tree is black
- If a node is red its children must be black. (a.k.a. the red rule)
- Every path from a node to a null link must contain the same number of black nodes (a.k.a. the path rule)

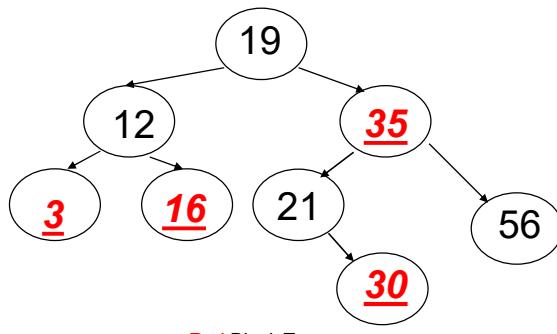
CS314

Red Black Trees

6

Example of a Red Black Tree

- The root of a Red Black tree is black
- Every other node in the tree follows these rules:
 - Rule 3: If a node is Red, all of its children are Black
 - Rule 4: The number of Black nodes must be the same in all paths from the root node to null nodes

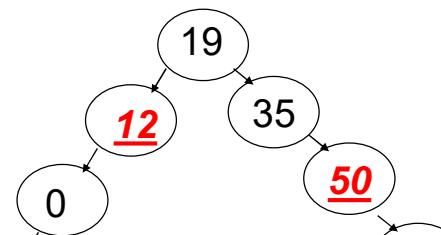


CS314

Red Black Trees

7

Red Black Tree?



CS314

Red Black Trees

8

Clicker 2

‣ Is the tree on the previous slide a binary search tree? Is it a red black tree?

BST? Red-Black?

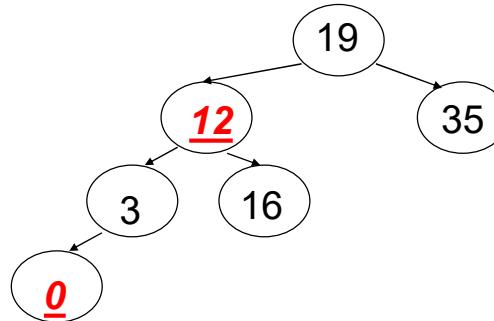
- A. No No
- B. No Yes
- C. Yes No
- D. Yes Yes

CS314

Red Black Trees

9

Red Black Tree?



Perfect?
Full?
Complete?

CS314

Red Black Trees

10

Clicker 3

‣ Is the tree on the previous slide a binary search tree? Is it a red black tree?

BST? Red-Black?

- A. No No
- B. No Yes
- C. Yes No
- D. Yes Yes

CS314

Red Black Trees

11

Implications of the Rules

- If a **Red** node has any children, it must have two children and they must be **Black**. (Why?)
- If a **Black** node has only one child that child must be a **Red** leaf. (Why?)
- Due to the rules there are limits on how unbalanced a **Red Black** tree may become.
 - on the previous example may we hang a new node off of the leaf node that contains **0**?

CS314

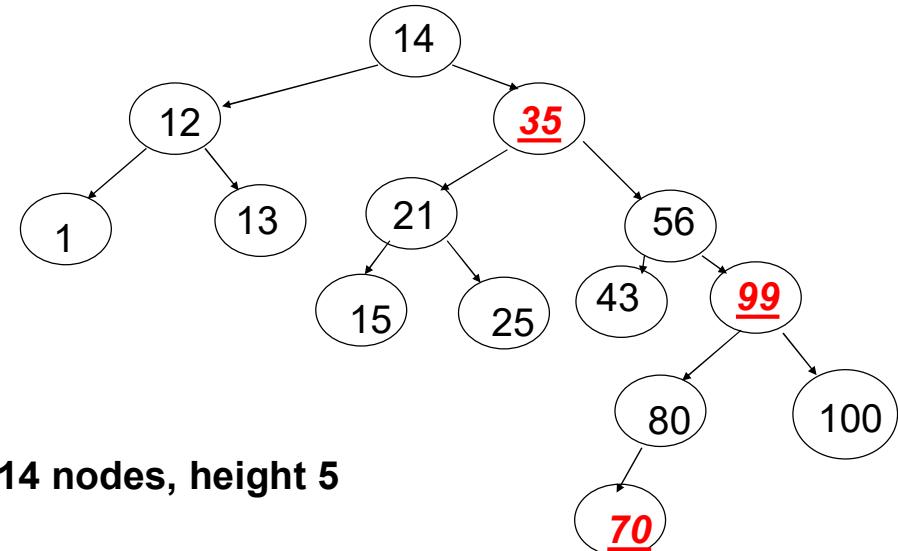
Red Black Trees

12

Properties of Red Black Trees

- › If a Red Black Tree is complete, with all Black nodes except for Red leaves at the lowest level the height will be minimal, $\sim \log N$
- › To get the max height for N elements there should be as many Red nodes as possible down one path and all other nodes are Black
 - This means the max height would be approximately $2 * \log N$ (don't use this as a formula)
 - typically less than this
 - see example on next slide
 - interesting exercise, draw max height tree with N nodes

Max Height Red Black Tree



CS314

14

Red Black Trees

Maintaining the Red Black Properties in a Tree

- › Insertions
- › Must maintain rules of Red Black Tree.
- › New Value always in a new leaf, to start
 - can't be black or we will violate rule 4
 - therefore the new leaf must be red
 - If parent is black, done (trivial case)
 - if parent red, things get interesting because a red leaf with a red parent violates rule 3

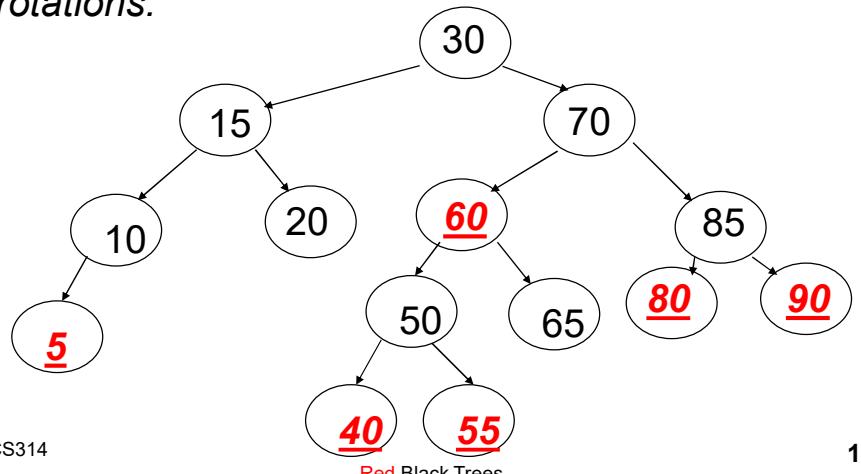
CS314

Red Black Trees

15

Insertions with Red Parent - Child

Must modify tree when insertion would result in Red Parent - Child pair using color changes and rotations.



CS314

16

Case 1

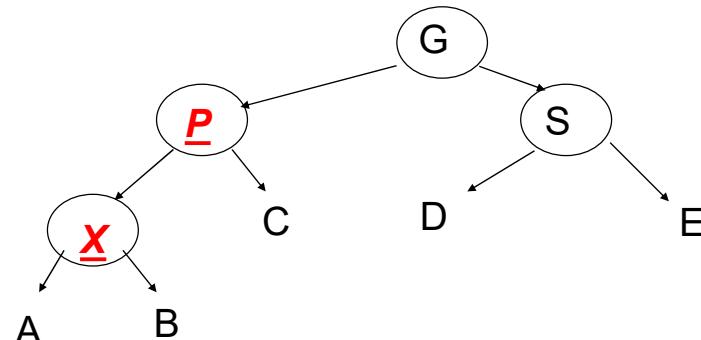
- Suppose sibling of parent is Black.
 - by convention null nodes are black
- In the previous tree, true if we are inserting a 3 or an 8.
 - What about inserting a 99? Same case?
- Let X be the new leaf Node, P be its Red Parent, S the Black sibling and G, P's and S's parent and X's grandparent
 - What color is G?

CS314

Red Black Trees

17

Case 1 - The Picture



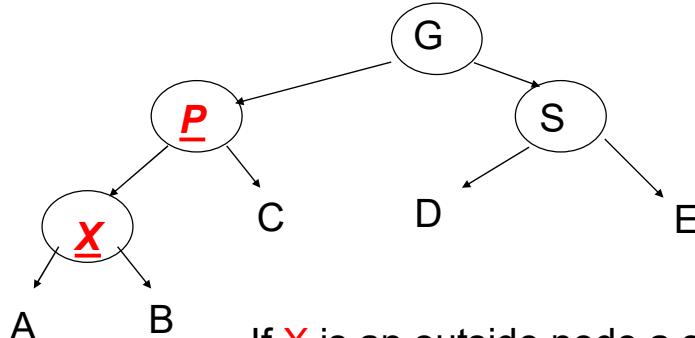
Relative to G, X could be an *inside* or *outside* node.
 Outside \rightarrow left left or right right moves
 Inside \rightarrow left right or right left moves

CS314

Red Black Trees

18

Fixing the Problem



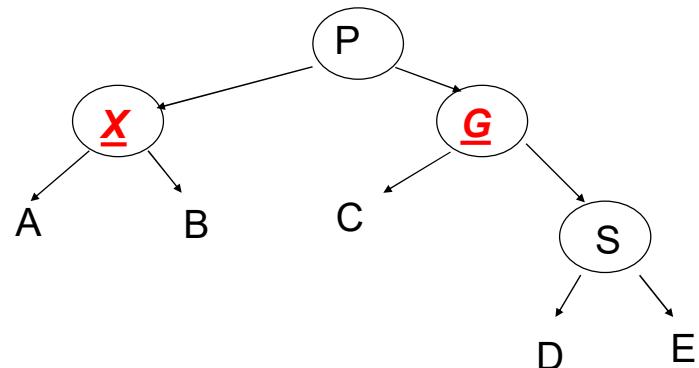
If X is an outside node a single rotation between P and G fixes the problem.
 A rotation is an exchange of roles between a parent and child node. So P becomes G's parent. Also must recolor P and G.

CS314

Red Black Trees

19

Single Rotation



Apparent rule violation?

Recall, S is null if X is a leaf, so no problem

If this occurs higher in the tree (why?) subtrees A, B, and C will have one more black node than D and E.

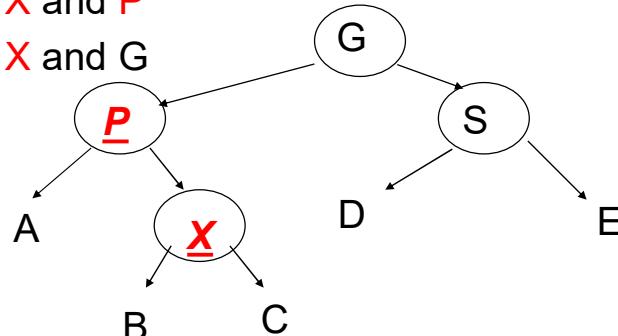
CS314

Red Black Trees

20

Case 2

- What if **X** is an inside node relative to **G**?
 - a single rotation will not work
- Must perform a double rotation
 - rotate **X** and **P**
 - rotate **X** and **G**



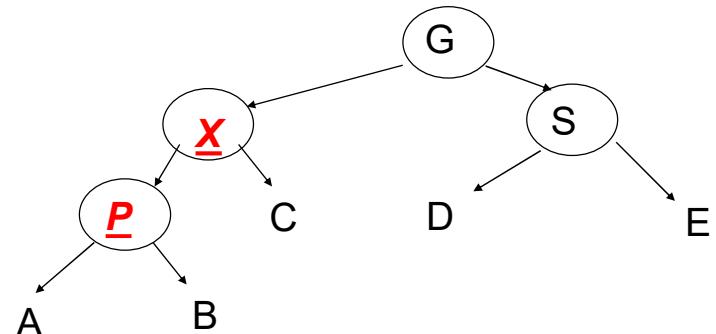
CS314

21

Red Black Trees

First Rotation

- Rotate **P** and **X**, no color change



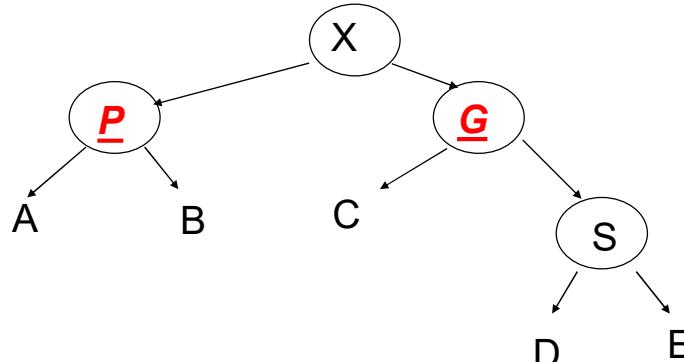
- What does this actually do?

CS314

22

Red Black Trees

After Double Rotation

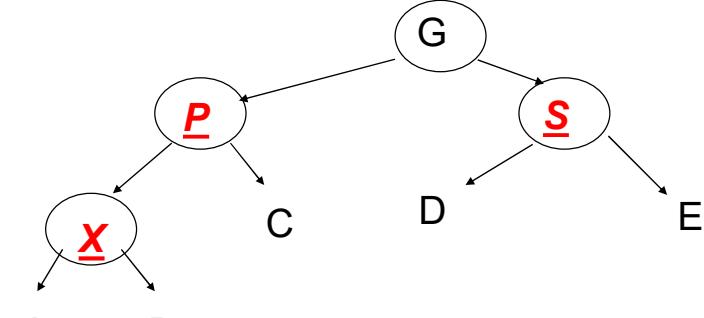


CS314

23

Red Black Trees

Case 3 Sibling is **Red**, not Black



Any problems?

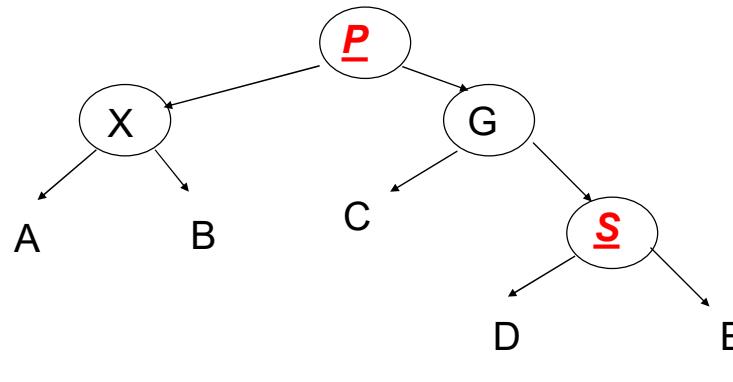
CS314

24

Red Black Trees

Fixing Tree when S is Red

- Must perform single rotation between parent, P and grandparent, G, and then make appropriate color changes



CS314

Red Black Trees

25

More on Insert

- Problem: What if on the previous example G's parent (GG!) had been red?
- Easier to never let Case 3 ever occur!
- On the way down the tree, if we see a node X that has 2 Red children, we make X Red and its two children black.
 - if recolor the root, recolor it to black
 - the number of black nodes on paths below X remains unchanged
 - If X's parent was Red then we have introduced 2 consecutive Red nodes.(violation of rule)
 - to fix, apply rotations to the tree, same as inserting node

CS314

Red Black Trees

26

Example of Inserting Sorted Numbers

- 1 2 3 4 5 6 7 8 9 10

Insert 1. A leaf so red. Realize it is root so recolor to black.

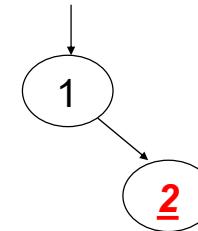
CS314

Red Black Trees

27

Insert 2

make 2 red. Parent is black so done.



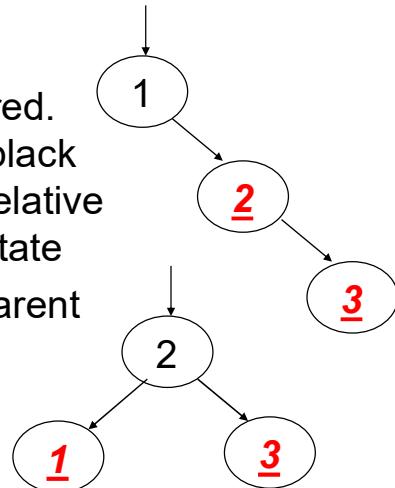
CS314

Red Black Trees

28

Insert 3

Insert 3. Parent is red.
Parent's sibling is black
(null) 3 is outside relative
to grandparent. Rotate
parent and grandparent



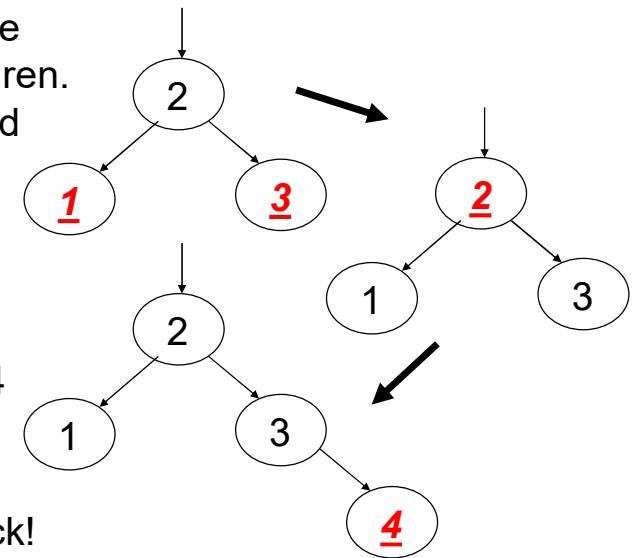
CS314

Red Black Trees

29

Insert 4

On way down see
2 with 2 red children.
Recolor 2 red and
children black.



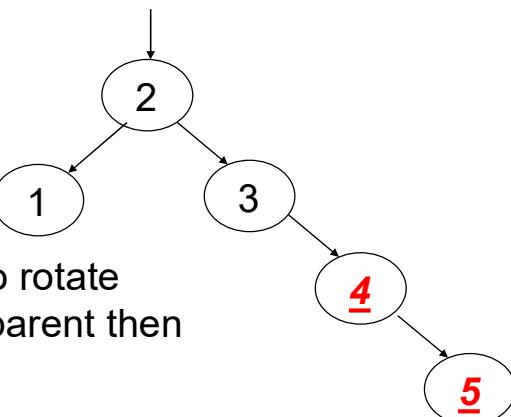
CS314

Red Black Trees

30

Insert 5

5's parent is red.
Parent's sibling is
black (null). 5 is
outside relative to
grandparent (3) so rotate
parent and grandparent then
recolor

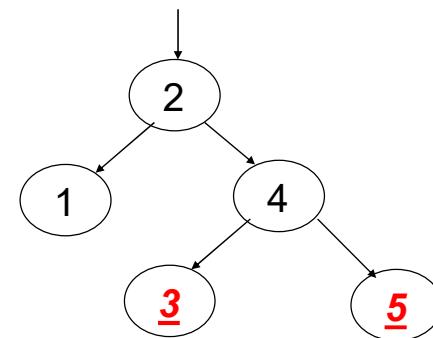


CS314

Red Black Trees

31

Finish insert of 5



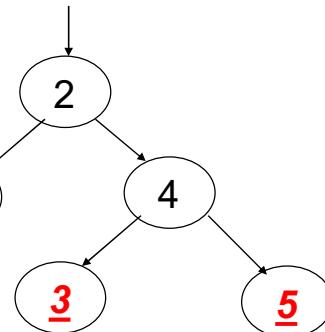
CS314

Red Black Trees

32

Insert 6

On way down see 4 with 2 red children. Make 4 red and children black. 4's parent is black so no problem.



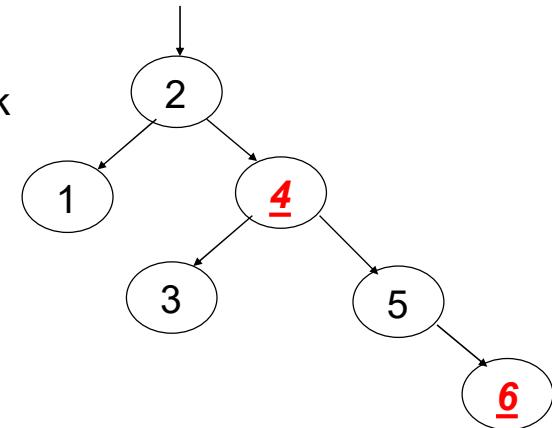
CS314

Red Black Trees

33

Finishing insert of 6

6's parent is black so done.



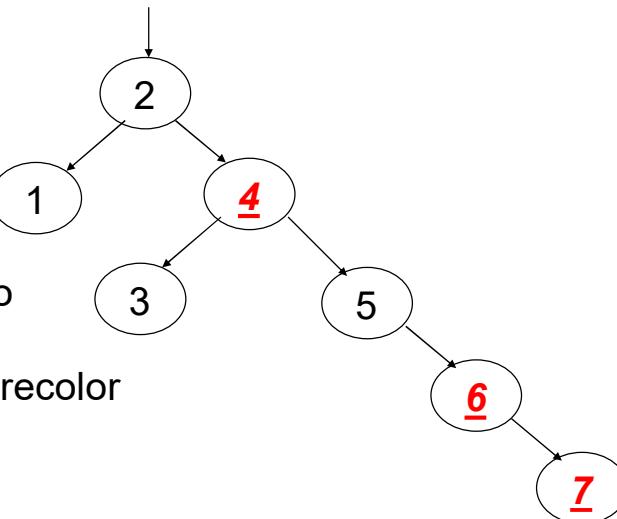
CS314

Red Black Trees

34

Insert 7

7's parent is red. Parent's sibling is black (null). 7 is outside relative to grandparent (5) so rotate parent and grandparent then recolor

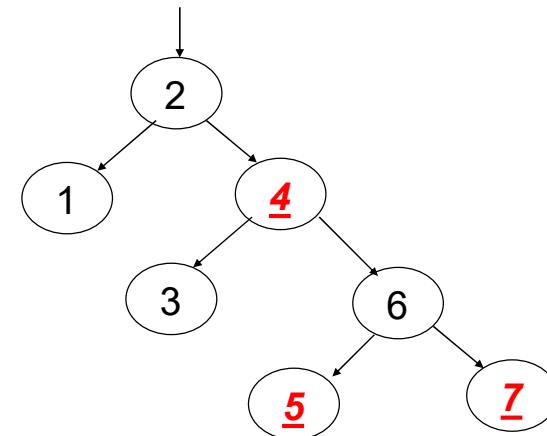


CS314

Red Black Trees

35

Finish insert of 7



CS314

Red Black Trees

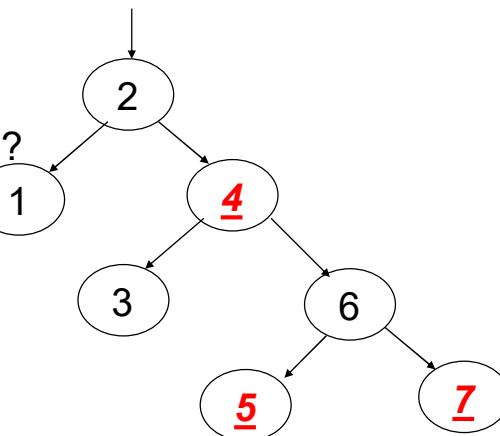
36

Insert 8

The caveat!!!
Getting unbalanced
on that right subtree?!?

On way down see 6
with 2 red children.
Make 6 red and
children black. This
creates a problem
because 6's parent, 4, is
also red. Must perform
rotation.

CS314



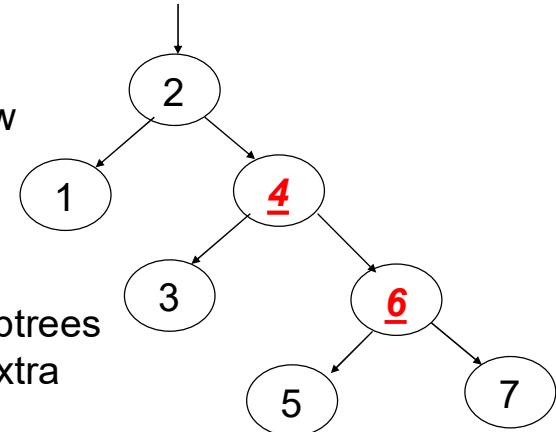
37

Red Black Trees

Still Inserting 8

Recolored now
need to
rotate.

Recall, the subtrees
and the one extra
black node.



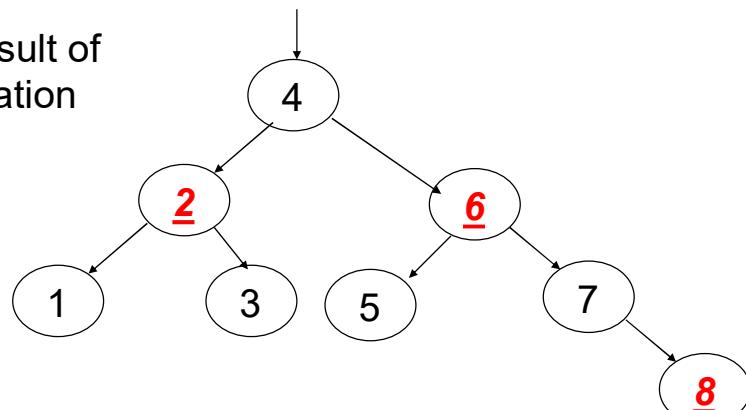
38

CS314

Red Black Trees

Finish inserting 8

Result of
rotation

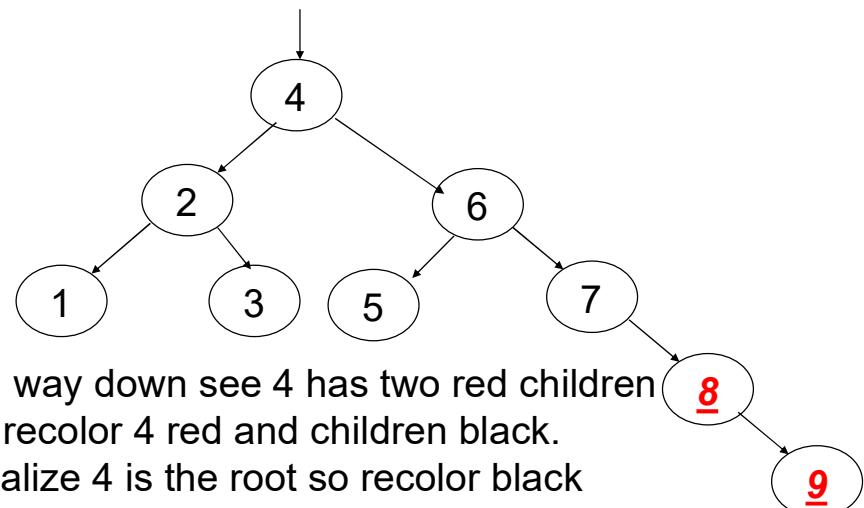


39

Red Black Trees

Insert 9

On way down see 4 has two red children
so recolor 4 red and children black.
Realize 4 is the root so recolor black

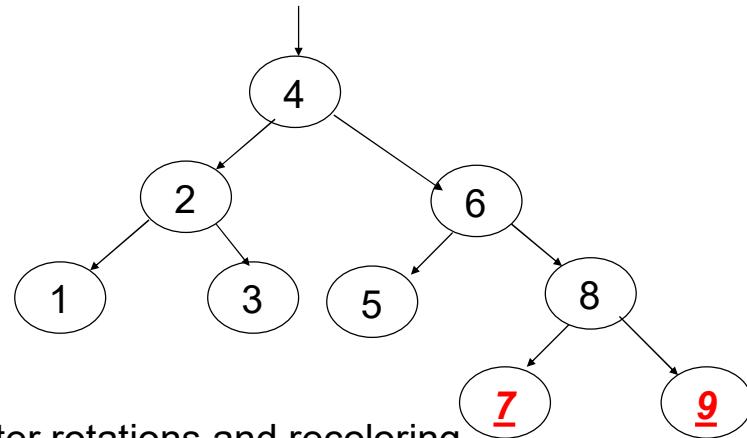


40

CS314

Red Black Trees

Finish Inserting 9



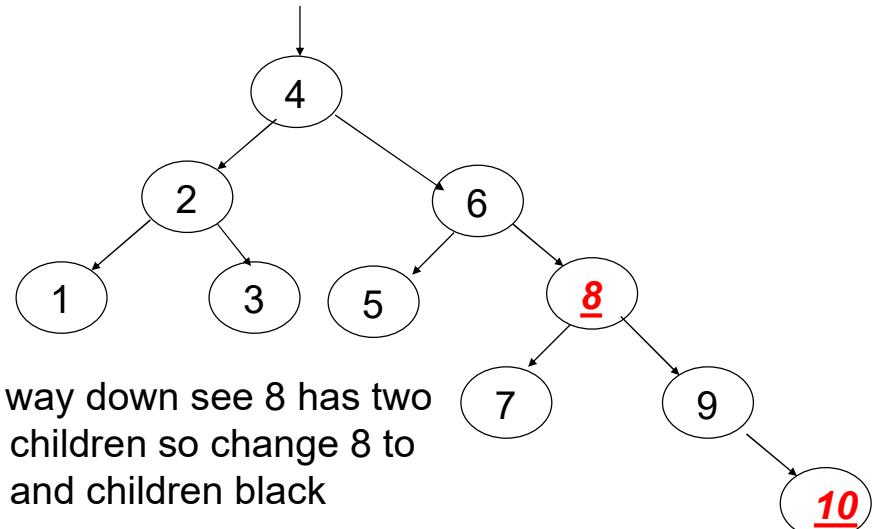
After rotations and recoloring

CS314

Red Black Trees

41

Insert 10



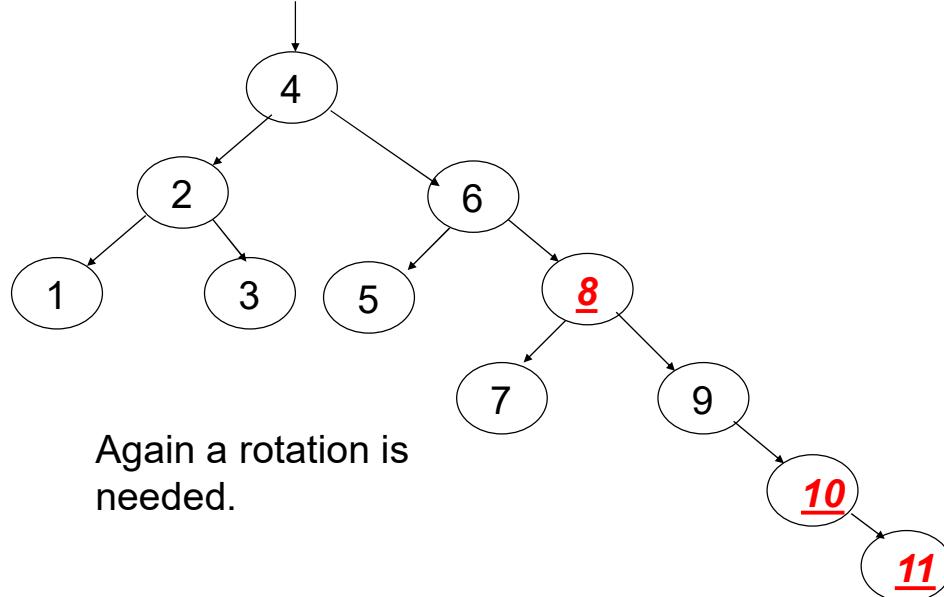
On way down see 8 has two red children so change 8 to red and children black

CS314

Red Black Trees

42

Insert 11



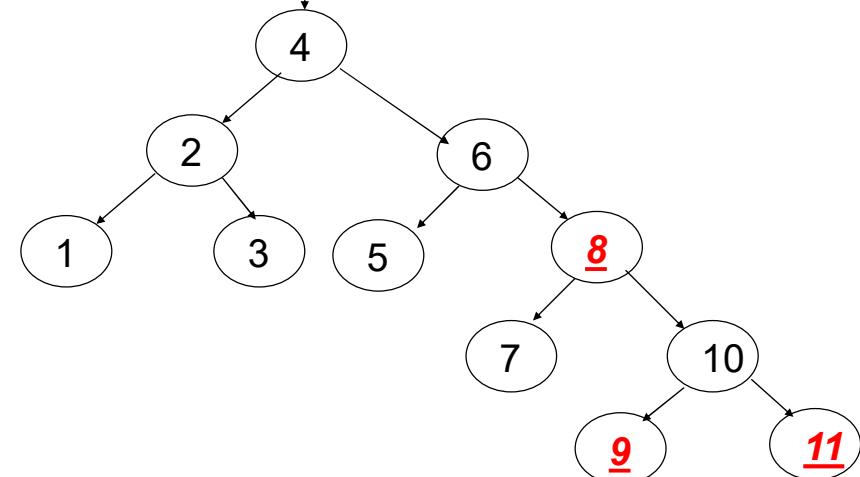
Again a rotation is needed.

CS314

Red Black Trees

43

Finish inserting 11



CS314

Red Black Trees

44