
Topic 21: Huffman Coding

The author should gaze at Noah, and ...
learn, as they did in the Ark, to crowd a
great deal of matter into a very small
compass.

Sydney Smith, Edinburgh Review

Agenda

Encoding

Compression

Huffman Coding

2

Encoding

UTCS
85 84 67 83
01010101 01010100 01000011 01010011

What is stored in a jpg file? A text file? A Java file?
A png file? A pdf file? An mp3 file? An mp4 file? An
excel spreadsheet file? A zip file?
open a bitmap in a text editor

3

ASCII - UNICODE

4

Text File

5

Text File???

6

Bitmap and JPEG File

7

Bitmap File????

8

JPEG File

9

JPEG VS BITMAP

JPEG File

10

Encoding Schemes

"It's all 1s and 0s"

What do the 1s and 0s mean?

50 121 109

ASCII -> 2ym

Red Green Blue->
dark teal?

11

Image file formats: bmp, png, jpg, gif, tiff,
svg, cgm, pgm

XKCD, Standards: https://xkcd.com/927/

Why So Many Encoding /
Decoding Schemes?

12

Agenda

Encoding

Compression

Huffman Coding

13

Compression

Compression: Storing the same information
but in a form that takes less memory

lossless and lossy compression

Recall:

14

Lossy Artifacts

15

Compression

00000000000000000000000000000000
111111111111111111111111111111

0 00100000 1 00011110

16

Why Bother?

Is compression really necessary?

5 Terabytes.
~5,000,000,000,0000 bytes 17

Clicker 1

With computer storage so cheap, is
compression really necessary?

A. No

B. Yes

C. It Depends

18

Little Pipes and Big Pumps

Home Internet Access
400 Mbps roughly $65
per month

12 months * 3 years *
$115 =

400,000,000 bits /second
= 5 * 107 bytes / sec

CPU Capability
$2,000 for a good laptop
or desktop

-7900X

Assume it lasts 3 years.

Memory bandwidth
40 GB / sec
= 4.0 * 1010 bytes / sec

on the order of
6.4 * 1011 instructions /
second

19

Mobile Devices?

Cellular Network

Mega bits per second

AT&T
17 mbps download, 7 mbps
upload

T-Mobile & Verizon
12 mbps download, 7 mbps
upload

17,000,000 bits per
second = 2.125 x 106

bytes per second
http://tinyurl.com/q6o7wan

iPhone CPU

Apple A6 System on a
Chip

Coy about IPS

2 cores

Rough estimates:
1 x 1010 instructions per
second

20

Little Pipes and Big Pumps

Data In
From Network

CPU

21

Agenda

Encoding

Compression

Huffman Coding

22

23

Huffman Coding

Proposed by Dr. David A. Huffman
Graduate class in 1951 at MIT with Robert Fano

term paper or final

term paper: prove min bits needed for binary
coding of data

A Method for the Construction of Minimum
Redundancy Codes

Applicable to many forms of data transmission
Our example: text files

still used in fax machines, mp3 encoding, others 24

The Basic Algorithm

Huffman coding is a form of statistical coding

Not all characters occur with the same
frequency, in typical text files. (can be true
when reading raw bytes as well)

Yet in ASCII all characters are allocated the
same amount of space

1 char = 1 byte, be it e or x

fixed width encoding

25

The Basic Algorithm

Any savings in tailoring codes to
frequency of character?

Code word lengths are no longer fixed like
ASCII or Unicode

Code word lengths vary and will be
shorter for the more frequently used
characters

Examples use characters for clarity, but in
reality just read raw bytes from file.

26

The Basic Algorithm

1. Scan file to be compressed and determine
frequency of all values.

2. Sort or prioritize values based on
frequency in file.

3. Build Huffman code tree based on
prioritized values.

4. Perform a traversal of tree to determine
new codes for values.

5. Scan file again to create new file
using the new Huffman codes

27

Building a Tree
Scan the original text

Consider the following short text

Eerie eyes seen near lake.

Determine frequency of all numbers (values
or in this case characters) in the text

28

Building a Tree
Scan the original text

Eerie eyes seen near lake.
What characters are present?

E e r i space

y s n a r l k .

29

Building a Tree
Scan the original text

Eerie eyes seen near lake.
What is the frequency of each character in the
text?

Char Freq. Char Freq. Char Freq.
E 1 y 1 k 1
e 8 s 2 . 1
r 2 n 2
i 1 a 2
space 4 l 1

30

Building a Tree
Prioritize values from file

Create binary tree nodes with a value
and the frequency for each value

Place nodes in a priority queue
The lower the frequency, the higher the
priority in the queue

31

The queue after enqueueing all nodes

Null Pointers are not shown

sp = space

See slide 67 for actual PQ and tree formed
by following assignment specification

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

front back

32

Building a Tree

While priority queue contains two or more
nodes

Create new node

Dequeue node and make it left child

Dequeue next node and make it right child

Frequency of new node equals sum of frequency of
left and right children

New node does not contain value

Enqueue new node back into the priority queue

33

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

34

Building a Tree

E
1

i
1

2

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

35

Building a Tree

E
1

i
1

k

1

l

1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8
2

36

Building a Tree

E
1

i
1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8
2

k
1

l
1

2

37

Building a Tree

E
1

i
1

y

1

.

1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

38

Building a Tree

E
1

i
1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

39

Building a Tree

E
1

i
1

a

2

n

2

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

40

Building a Tree

E
1

i
1

r

2

s

2
sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

41

Building a Tree

E
1

i
1

r

2

s

2

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

42

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

43

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

44

Building a Tree

E
1

i
1

sp

4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4

45

Building a Tree

E
1

i
1

sp

4

e

82

k
1

l
1

2
y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4

46

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4 4

6

47

Building a Tree

E
1

i
1

sp
4

e

8
2

k
1

l
1

2

y
1

.
1

2
a
2

n
2

4

r
2

s
2

4 4 6

48

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4 6

8

49

Building a Tree

E
1

i
1

sp
4

e

82

k
1

l
1

2

r
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4 6 8

50

Building a Tree

E
1

i
1

sp
4

e

8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10

51

Building a Tree

E
1

i
1

sp
4

e

8

2

k
1

l
1

2

y
1

.
1

2a
2

n
2

4

r
2

s
2

4 4
6

8 10

Clicker 2 - What is happening to the values with a
low frequency compared to values with a high freq.?

A. Smaller Depth B. Larger Depth
C. Something else

52

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10

16

53

Building a Tree

E
1

i
1

sp
4

e
82

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10 16

54

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6

8

10
16

26

55

Building a Tree

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

After
enqueueing
this node
there is only
one node left
in priority
queue.

56

Building a Tree
Dequeue the single node
left in the queue.

This tree contains the
new code words for each
character.

Frequency of root node
should equal number of
characters in text.

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

Eerie eyes seen near lake. 4 spaces,
26 characters total

57

Encoding the File
Traverse Tree for Codes

Perform a traversal of the tree
to obtain new code words
(sequence of 0's and 1's)

left, append a 0 to code word

right append a 1 to code word

code word is only complete
when a leaf node is reached

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

58

Encoding the File
Traverse Tree for Codes

Original Value New Code
E (0100 0101) 0000
i (0110 1001) 0001
k (0110 1011) 0010
l (0110 1100) 0011
y (0111 1001) 0100
. (0010 1110) 0101
space (0010 0000) 011
e (0110 0101) 10
a (0110 0001) 1100
n (0110 1110) 1101
r (0111 0010) 1110
s (0111 0011) 1111

Prefix free codes. The code for a value in never the prefix
of another code.

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

59

Encoding the File

Rescan original file and
encode file using new code
words

Eerie eyes seen near lake.

Char New Code
E 0000
i 0001
k 0010
l 0011
y 0100
. 0101
space 011
e 10
a 1100
n 1101
r 1110
s 1111

000010111000011001110
010010111101111111010
110101111011011001110
011001111000010100101

60

Encoding the File
Results

Have we made things any
better?

84 bits to encode the file

ASCII would take 8 * 26 =
208 bits

000010111000011001110
010010111101111111010
110101111011011001110
011001111000010100101

If modified code used 4 bits per
character are needed. Total bits
4 * 26 = 104. Savings not as great.

61

Decoding the File

How does receiver know what the codes are?

Tree constructed for each file.
Considers frequency for each file

Big hit on compression, especially for smaller files

Tree predetermined
based on statistical analysis of text files
or other file types

62

Clicker 3 - Decoding the File

Once receiver has tree it
scans incoming bit stream
0 go left
1 go right

1010001001111000111111
11011100001010

A. elk nay sir
B. eek a snake
C. eek kin sly
D. eek snarl nil
E. eel a snarl

E
1

i
1

sp
4

e
8

2

k
1

l
1

2

y
1

.
1

2

a
2

n
2

4

r
2

s
2

4

4
6 8

10
16

26

Alex Fall 2022

63

Assignment Hints

reading chunks not chars

header format

the pseudo eof value

the GUI

64

Assignment Example

"Eerie eyes seen near lake." will result in different
codes than those shown in slides due to:

adding elements in order to PriorityQueue

required pseudo eof value (PEOF)

65

Assignment Example

66

Char Freq. Char Freq. Char Freq.
E 1 y 1 k 1
e 8 s 2 . 1
r 2 n 2 PEOF 1
i 1 a 2
space 4 l 1

Assignment Example

67

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

Assignment Example

68

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8

2

Assignment Example

69

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8
2

Assignment Example

70

.

1

y

1

E

1

i

1

k

1

l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8
2 2

Assignment Example

71

.

1

y

1
E

1

i

1

k

1
l

1

PEOF

1

a

2

n

2

r

2

s

2

SP

4

e

8
2 2 2

Assignment Example

72

.

1

y

1
E

1

i

1

k

1
l

1
PEOF

1
a

2

n

2

r

2

s

2

SP

4

e

8
2 2 2 3

Assignment Example

73

.

1

y

1
E

1

i

1

k

1
l

1
PEOF

1
a

2
n

2

r

2

s

2

SP

4
e

8

2 2 2 3 4

Assignment Example

74

.

1

y

1

E

1

i

1

k

1
l

1
PEOF

1
a

2
n

2

r

2

s

2

SP

4
e

8
2

2 2 3 4 4

75

.

1

y

1
E

1

i

1

k

1
l

1 PEOF

1
a

2

n

2

r

2

s

2
SP

4

e

8
2

2 2
3

4 4 4 7

76

y

1

i

1

k

1
l

1
PEOF

1
a

2

SP

4

e

8

2 2 3

4
7

.

1

E

1

n

2

r

2
s

2
2

4 4

8

77

y

1

i

1

k

1
l

1 PEOF

1
a

2

SP

4

e

8

2 2
3

4 7

.

1

E

1

n

2

r

2
s

2
2

4 4

8 11

y

1

i

1

k

1
l

1 PEOF

1
a

2

SP

4

e

8

2 2
3

4 7

.

1

E

1

n

2

r

2

s

2
2

4 4

8

11 16

78

y

1

i

1

k

1
l

1 PEOF

1
a

2

SP

4

e

8

2 2
3

4 7

.

1

E

1

n

2

r

2

s

2
2

4 4

8

11 16

27

79

Codes

80

value: 32, equivalent char: , frequency: 4, new code 011

value: 46, equivalent char: ., frequency: 1, new code 11110

value: 69, equivalent char: E, frequency: 1, new code 11111

value: 97, equivalent char: a, frequency: 2, new code 0101

value: 101, equivalent char: e, frequency: 8, new code 10

value: 105, equivalent char: i, frequency: 1, new code 0000

value: 107, equivalent char: k, frequency: 1, new code 0001

value: 108, equivalent char: l, frequency: 1, new code 0010

value: 110, equivalent char: n, frequency: 2, new code 1100

value: 114, equivalent char: r, frequency: 2, new code 1101

value: 115, equivalent char: s, frequency: 2, new code 1110

value: 121, equivalent char: y, frequency: 1, new code 0011

value: 256, equivalent char: ?, frequency: 1, new code 0100

Altering files

Tower bit map (Eclipse/Huffman/Data).
Alter the first 300 characters of line
16765 to this

81

~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00~00~00~00~00
~00~00~00~00~00~00~00~00~00 xxx

Compression - Why Bother?

82

Apostolos "Toli" Lerios

Facebook Engineer

Heads image storage group

jpeg images already
compressed

look for ways to compress even
more

1% less space = millions of
dollars in savings

