
Graphs

Topic 22
" Hopefully, you've played around a bit with The Oracle of Bacon at

Virginia and discovered how few steps are necessary to link just about

anybody who has ever been in a movie to Kevin Bacon, but could there be

some actor or actress who is even closer to the center of the Hollywood

universe?.

By processing all of the almost half of a million people in the Internet

Movie Database I discovered that there are currently 1160 people who are

better centers than Kevin Bacon! … By computing the average of these

numbers we see that the average (Sean) Connery Number is about 2.682

making Connery a better center than Bacon"

-Who is the Center of the Hollywood Universe?,

University of Virginia

That was in 2001.

In 2013 Harvey Keitel has become the center of the Hollywood

Universe. Connery is 136th.

Bacon has moved up to 370th.

http://oracleofbacon.org/
http://www.imdb.com/
http://oracleofbacon.org/center.php
https://oracleofbacon.org/center_list.php

CS314 2

An Early Problem in

Graph Theory

Leonhard Euler (1707 - 1783)

– One of the first mathematicians to study graphs

The Seven Bridges of Konigsberg Problem

– Konigsberg is now called Kaliningrad

A puzzle for the residents of the city

The river Pregel flows through the city

7 bridges crossed the river

Can you cross all bridges while crossing
each bridge only once? An Eulerian Circuit

Graphs

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Kaliningrad

CS314 3

Konigsberg and the River Pregel

Graphs

A

B

C

D

Clicker 1
How many solutions does the Seven Bridges

of Konigsberg Problem have?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Graphs 4

CS314 5

How to Solve
Brute Force?

Euler's Solution

– Redraw the map as a graph

(really a multigraph as opposed

to a simple graph, 1 or 0 edges

per pair of vertices)

a

b

c

d

Graphs

CS314 6

Euler's Proposal
A connected graph has an Euler tour (cross

every edge exactly one time and end up at

starting node) if and only if every vertex has

an even number of edges

– Eulerian Circuit

Clicker 2 - What if we reduce the problem to

only crossing each edge (bridge) exactly

once?

– Doesn't matter if we end up where we started

– Eulerian Trail

A. 0 B. 1 C. 2 D. 3 E. >= 4
Graphs

CS314 7

Graph Definitions
A graph is comprised of a set of vertices

(nodes) and a set of edges (links, arcs)

connecting the vertices

– An edge connects 2 vertices

in a directed graph edges are one-way

– movement allowed from first node to second, but

not second to first

– directed graphs also called digraphs

in an undirected graph edges are two-way

– movement allowed in either direction

Graphs

Definitions
In a weighted graph the edge has cost or weight

that measures the cost of traveling along the edge

A path is a sequence of vertices connected by

edges

– The path length is the number of edges

– The weighted path length is the sum of the cost of the

edges in a path

A cycle is a path of length 1 or more that starts and

ends at the same vertex without repeating any

other vertices

– a directed acyclic graph is a directed graph with

no cycles

CS314 Graphs 8

CS314 9

Graphs We've Seen

link link link link

link link link

19

12 35

3 16 5621

Graphs

Example Graph
Scientists (and academics of ALL kinds) use

graphs to model all kinds of things.

CS314 Graphs 10

Arpanet 1969, 1971

Example Graph

CS314 Graphs 11

Roman

Transportation

Network

https://dhs.stanford.edu/spatial-humanities/visualization-of-network-distance/

Roman

Transportation Network

CS314 Graphs 12

Example Graph

CS314 Graphs 13

Enron emails 2001

http://hci.stanford.edu/~jheer/projects/enron/v1/
http://homes.cs.washington.edu/~jheer/projects/enron/
https://www.cs.cmu.edu/~./enron/

Example Graph

CS314 Graphs 14

US Airport Network

Example Graph

CS314 Graphs 15

Example Graph

"Jefferson" High School, Ohio Chains of Affection: The Structure of Adolescent Romantic

and Sexual Networks, 2005,

http://www.soc.duke.edu/~jmoody77/chains.pdf

CS314 17

How to store a graph as a data structure?



Representing Graphs

Graphs

CS314 18

Adjacency Matrix

Representation
 A Br Bl Ch Co E FG G Pa Pe S U V

A 0 1 1 1 0 0 0 0 1 0 0 1 0

Br 1 0 1 0 1 0 1 1 1 1 1 1 1

Bl 1 1 0 1 0 0 0 0 1 1 0 0 0

Ch 1 0 1 0 0 0 0 0 0 1 0 0 0

Co 0 1 0 0 0 1 0 0 0 1 0 0 1

E 0 0 0 0 1 0 0 0 0 1 0 0 0

FG 0 1 0 0 0 0 0 0 0 0 1 0 0

G 0 1 0 0 0 0 0 0 0 0 1 0 1

Pa 1 1 1 0 0 0 0 0 0 0 0 0 0

Pe 0 1 1 1 1 1 0 0 0 0 0 0 0

S 0 1 0 0 0 0 1 1 0 0 0 0 0

U 1 1 0 0 0 0 0 0 0 0 0 0 0

V 0 1 0 0 1 0 0 1 0 0 0 0 0

Country Code

Argentina A

Brazil Br

Bolivia Bl

Chile Ch

Colombia Co

Ecuador E

French

Guiana
FG

Guyana G

Paraguay Pa

Peru Pe

Suriname S

Uruguay U

Venezuela V

Graphs

Undirected Graph?
Use a ragged 2d array to save space

CS314 Graphs 19

CS314 20

The Map Coloring Problem
How many colors do you need to color a

map, so that no 2 countries that have a

common border (not a point) are colored the

same?

How to solve using Brute Force?

Graphs

Example

Source: https://en.wikipedia.org/wiki/Four_color_theorem 21

CS314 22



A Solution

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue

Yellow

Yellow

Blue

Red

Graphs

CS314 23

What About the Ocean?
A Br Bl Ch Co E FG G Pa Pe S U V Oc

A 0 1 1 1 0 0 0 0 1 0 0 1 0 1

Br 1 0 1 0 1 0 1 1 1 1 1 1 1 1

Bl 1 1 0 1 0 0 0 0 1 1 0 0 0 0

Ch 1 0 1 0 0 0 0 0 0 1 0 0 0 1

Co 0 1 0 0 0 1 0 0 0 1 0 0 1 1

E 0 0 0 0 1 0 0 0 0 1 0 0 0 1

FG 0 1 0 0 0 0 0 0 0 0 1 0 0 1

G 0 1 0 0 0 0 0 0 0 0 1 0 1 1

Pa 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Pe 0 1 1 1 1 1 0 0 0 0 0 0 0 1

S 0 1 0 0 0 0 1 1 0 0 0 0 0 1

U 1 1 0 0 0 0 0 0 0 0 0 0 0 1

V 0 1 0 0 1 0 0 1 0 0 0 0 0 1

Oc 1 1 0 1 1 1 1 1 0 1 1 1 1 0

Graphs

CS314 24



Make the Ocean Blue

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue
Yellow

Yellow

Red

Graphs

Red

Red

Red

More Definitions
A dense graph is one with a "large" number

of edges

– maximum number of edges?

A "sparse" graph is one in which the number

of edges is "much less" than the maximum

possible number of edges

– No standard cutoff for dense and sparse graphs

– Although a common one is more than half the

possible edges

CS314 Graphs 25

Graph Representation
For dense graphs the adjacency matrix is a

reasonable choice

– For weighted graphs change booleans to double

or int

– Can the adjacency matrix handle

directed graphs?

Most graphs are sparse, not dense

For sparse graphs an adjacency list is an

alternative that uses less space

Each vertex keeps a list of edges to the

vertices it is connected to.
CS314 Graphs 26

Graph Implementation
public class Graph

private static final double INFINITY

= Double.MAX_VALUE;

private Map<String, Vertex> vertices;

public Graph() // create empty Graph

public void addEdge(String source,

String dest, double cost)

// find all paths from given vertex

public void findUnweightedShortestPaths

(String startName)

// called after findUnweightedShortestPath

public void printPath(String destName)

Graph Class
This Graph class stores vertices

Each vertex has an adjacency list

– what vertices does it connect to?

shortest path method finds all paths from

start vertex to every other vertex in graph

after shortest path method called queries

can be made for path length from start node

to destination node

CS314 Graphs 28

Vertex Class (nested in Graph)

CS314 Graphs 29

private static class Vertex

private String name;

private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms

private double distance;

private Vertex prev;

private int scratch;

// call before finding new paths

public void reset()

Edge Class (nested in Graph)

CS314 Graphs 30

private static class Edge

private Vertex dest;

private double cost;

private Edge(Vertex d, double c)

Unweighted Shortest Path
Given a vertex, S (for start) find the shortest

path from S to all other vertices in the graph

Graph is unweighted (set all edge costs to 1)

CS314 Graphs 31

S

V5

V3

V1 V6

V4

V2

V7

V8

6 Degrees of Wikipedia
https://www.sixdegreesofwikipedia.com/

CS314 Graphs 32

https://www.sixdegreesofwikipedia.com/

Word Ladders
Agree upon dictionary

Start word and end word of

same length

Change one letter at a time to

form step

Step must also be a word

Example: Start = silly, end =

funny

CS314 Graphs 33

silly

sully

sulky

hulky

hunky

funky

funny

Clicker 3 - Graph Representation
What are the vertices and when does

an edge exist between two vertices?

Vertices Edges

A. Letters Words

B. Words Words that share one or more letters

C. Letters Words that share one or more letters

D. Words Words that differ by one letter

E. Words Letters

CS314 Graphs 34

CS314 Graphs 35

smart

swart

start

smarm

smalt

scart

Portion of Graph

Clicker 4 - Size of Graph
Number of vertices and edges depends on dictionary

Modified Scrabble dictionary, 5 letter words

Words are vertices

– 8660 words, 7915 words that are one letter different from

at least one other word

Edge exists between words if they are one letter

different

– 24,942 edges

Is this graph sparse or dense?

A. Sparse

B. Dense
CS314 Graphs 36

Max number of edges =

N * (N - 1) / 2

37,493,470

Clicker 5 - Unweighted Shortest

Path Algorithm

Problem: Find the shortest word ladder

between two words if one exists

What kind of search should we use?

A. Breadth First Search

B. Depth First Search

C. Either one

CS314 Graphs 37

Unweighted Shortest Path Algorithm

Set distance of start to itself to 0

Create a queue and add the start vertex

while the queue is not empty

– remove front

– loop through all edges of current vertex

• get vertex edge connects to

• if this vertex has not been visited (have not found path

to the destination of the edge)

– sets its distance to current distance + 1

– sets its previous vertex to current vertex

– add new vertex to queue

CS314 Graphs 38

CS314 Graphs 39

smart

swart

start

smarm

smalt

scart

Portion of Graph

CS314 Graphs 40

smart

swart

start

smarm

smalt

scart

Start at "smart" and enqueue it

[smart]

CS314 Graphs 41

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart]

CS314 Graphs 42

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start]

CS314 Graphs 43

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart]

CS314 Graphs 44

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt]

CS314 Graphs 45

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt, smarm]

CS314 Graphs 46

smart

swart

start

smarm

smalt

scart

Done with smart, dequeue (swart)

[start, scart, smalt, smarm]

CS314 Graphs 47

smart

swart

start

smarm

smalt

scart

loop through edges of swart (start already present)

[start, scart, smalt, smarm]

CS314 Graphs 48

smart

swart

start

smarm

smalt

scart

loop through edges of swart (scart already present)

[start, scart, smalt, smarm]

CS314 Graphs 49

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm]

swarm

CS314 Graphs 50

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm, sware]

swarm

sware

Unweighted Shortest Path
Implement method

demo

how is path printed?

The diameter of a graph is the longest shortest

past in the graph

How to find?

How to find center of graph?

– many measures of centrality

– ours: vertex connected to the largest number of

other vertices with the shortest average path length
CS314 Graphs 51

Positive Weighted Shortest Path

Edges in graph are weighted and all weights

are positive

Similar solution to unweighted shortest path

Dijkstra's algorithm

Edsger W. Dijkstra, 1930–2002

UT Professor 1984 - 2000

Algorithm developed in 1956

and published in 1959.

– other algorithms developed

independently around this time
52

Dijkstra on Creating the Algorithm

 What is the shortest way to travel from Rotterdam to Groningen, in

general: from given city to given city. It is the algorithm for the

shortest path, which I designed in about twenty minutes. One

morning I was shopping in Amsterdam with my young fiancée, and

tired, we sat down on the café terrace to drink a cup of coffee and I

was just thinking about whether I could do this, and I then designed

the algorithm for the shortest path. As I said, it was a twenty-minute

invention. In fact, it was published in ’59, three years later. The

publication is still readable, it is, in fact, quite nice. One of the

reasons that it is so nice was that I designed it without pencil

and paper. I learned later that one of the advantages of designing

without pencil and paper is that you are almost forced to avoid all

avoidable complexities. Eventually that algorithm became, to my

great amazement, one of the cornerstones of my fame.

 — Edsger Dijkstra, in an interview with Philip L. Frana,

Communications of the ACM, 2001 (wiki page on the algorithm)

https://en.wikipedia.org/wiki/Dijkstra's_algorithm

Vertex Class (nested in Graph)

CS314 Graphs 54

private static class Vertex

private String name;

private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms

private double distance;

private Vertex prev;

private int scratch;

// call before finding new paths

public void reset()

Dijkstra's Algorithm
Pick the start vertex

Set the distance of the start vertex to 0 and all

other vertices to INFINITY

While there are unvisited vertices:

– Let the current vertex be the vertex with the lowest cost

path from start to it that has not yet been visited

– mark current vertex as visited

– for each edge from the current vertex

• if the sum of the cost of the current vertex and the cost of the

edge is less than the cost of the destination vertex

– update the cost of the destination vertex

– set the previous of the destination vertex to the current vertex

– enqueue this path (not vertex) to the priority queue

– THIS IS NOT VISITING THE NEIGHBORING VERTEX
55

Dijkstra's Algorithm
Example of a Greedy Algorithm

– A Greedy Algorithm does what appears to be the

best thing at each stage of solving a problem

Gives best solution in Dijkstra's Algorithm

Does NOT always lead to best answer

Fair teams:

– (10, 10, 8, 8, 8), 2 teams

Making change with fewest coins

(1, 5, 10) 15 cents

(1, 5, 12) 15 cents
CS314 Graphs 56

57

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 6 - What is the cost of the lowest

cost path from A to E?

A. 5

B. 17

C. 20

D. 28

E. 37

58

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A is start vertex

Set cost of A to 0, all others to INFINITY

Place A in a priority queue

0

∞

∞

∞

∞

∞

∞

59

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(A,0)] pq

dequeue (A,0)

Mark A as visited

∞

∞

0

∞

∞

∞

∞

60

[] pq

current vertex A:

loop through A's edges

if sum of cost from A to dest is less than current cost

update cost and prev

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

∞

∞

0

∞

∞

∞

∞

61

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[] pq

A -> C, 0 + 7 < INFINITY

[(C,7)] pq

7

∞

∞

∞

∞

0

∞

62

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C,7)] pq

A -> B, 0 + 1 < INFINITY

[(B,1), (C, 7)] pq (Note, the (B,1) jumps in front of (C,7)

0

1

7

∞

∞

∞

∞

63

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7)] pq

A -> G, 0 + 17 < INFINITY

[(B,1), (C, 7), (G, 17)] pq

0

1

7

17

∞

∞

∞

64

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7), (G, 17)] pq

current vertex B:

loop through B's edges

if sum of cost from B to edge is less than current cost

update cost and prev

0

1

7

17

∞

∞

∞

65

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17)] pq

B -> C, 1 + 3 < 7

update C's cost and previous

[(C, 4), (C, 7), (G, 17)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

∞

∞

∞

66

[(C, 4), (C, 7), (G, 17)] pq

B -> D, 1 + 21 < INFINITY

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

67

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

current vertex is C, cost 4

loop through C's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

68

[(C, 7), (G, 17), (D, 22)] pq

C -> A, 7 + 4 !< 0, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

69

[(C, 7), (G, 17), (D, 22)] pq

C -> B, 4 + 3 !< 1, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

∞

70

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17), (D, 22)] pq

C -> F, 4 + 3 < INFINITY

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

71

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

current vertex is C

Already visited so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

72

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(F, 7), (G, 17), (D, 22)] pq

current vertex is F

loop through F's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

73

[(G, 17), (D, 22)] pq

F -> C, 7 + 3 !< 4, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

22

∞

7

74

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (D, 22)] pq

F -> D, 7 + 4 < 22

update D's cost and previous

[(D, 11), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

∞

7

Aside - Implementing Dijkstra's
Create a Path class to allow for multiple

paths and distances (costs) to a given vertex

private static class Path

implements Comparable<Path> {

private Vertex dest;

private double cost;

Use a priority queue of Paths to store the

vertices and distances

CS314 Graphs 75

Why? References!!!
Slide 74 and 78, adding new, lower cost path

to Vertex D

Abstractly: [(G, 17), (D, 22)] becomes

[(D, 11) (G, 17), (D, 22)]

What does priority queue store? References

to Vertex Objects

[,]

76distance 17

Vertex

name G

distance 22

Vertex

name D

Lower Cost Path to D
New, lower cost path to D. Alter Vertex D's

distance to 11 and add to priority queue

 [, ,]

PROBLEMS?????

Abstractly [(D, 11), (G, 17), (D, 11)] 77

distance 17

Vertex

name G

distance 11

Vertex

name D

78

[(D, 11), (G, 17), (D, 22)] pq

current vertex is D

loop through D's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

∞

7

79

[(G, 17), (D, 22)] pq

D -> B, 11 + 21 !< 1, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

∞

7

80

[(G, 17), (D, 22)] pq

D -> E, 11 + 6 < INFINITY

update E's cost and previous

[(G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

17

7

81

[(G, 17), (E, 17), (D, 22)] pq

D -> F, 4 + 11 !< 7, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

17

11

17

7

82

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

D -> G, 11 + 5 < 17

update G's cost and previous

[(G, 16), (G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

83

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

current vertex is G

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

84

[(E, 17), (D, 22)] pq

current vertex is E

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

85

No unvisited vertices.

Each Vertex stores cost (distance) of lowest cost

path from start Vertex to itself and previous vertex

in path from start vertex to itself.

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

0

1

4

16

11

17

7

Alternatives to Dijkstra's Algorithm
A*, pronounced "A Star"

A heuristic, goal of finding shortest weighted path

from single start vertex to goal vertex

Uses actual distance like Dijkstra's but also

estimates remaining cost or distance

– distance is set to current distance from start PLUS the

estimated distance to the goal

For example when finding a path between towns,

estimate the remaining distance as the straight-line

(as the crow flies) distance between current

location and goal.

CS314 Graphs 86

Spanning Tree
Spanning Tree: A tree of edges that

connects all the vertices in a graph

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 7 -

Minimum Spanning Tree
Minimum Spanning Tree: A spanning tree in

a weighted graph with the lowest total cost
used in network design, taxonomy, Image registration,

and more!

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7
Cost of spanning

tree shown?

A. 6

B. 7

C. 29

D. 61

E. None of These

Is it a MST for the

graph?

Prim's Algorithm
Initially created by Vojtěch Jarník

Rediscovered by Prim (of Sweetwater, TX)

and Dijkstra

Pick a vertex arbitrarily from graph

– In other words, it doesn't matter which one

Add lowest cost edge between the tree and

a vertex that is not part of the tree UNTIL

every vertex is part of the tree

Greedy Algorithm, very similar to Dijkstra's

CS314 Graphs 89

https://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk

Prim's Algorithm

CS314 Graphs 90

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Pick D as root

5 8 4

Prim's Algorithm

CS314 Graphs 91

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

2 from D to A (or C)

5 8 4

Prim's Algorithm

CS314 Graphs 92

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

2 from D to C (OR from A to B)

5 8 4

Prim's Algorithm

CS314 Graphs 93

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

2 from A to B

5 8 4

Prim's Algorithm

CS314 Graphs 94

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

5 from D to G

5 8 4

Prim's Algorithm

CS314 Graphs 95

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

1 from G to F

5 8 4

Prim's Algorithm

CS314 Graphs 96

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?

6 from G to E

5 8 4

Prim's Algorithm

CS314 Graphs 97

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Pick D as root

Prim's Algorithm

CS314 Graphs 98

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

4 from D to F

Prim's Algorithm

CS314 Graphs 99

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from F to C

Prim's Algorithm

CS314 Graphs 100

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from C to B

Prim's Algorithm

CS314 Graphs 101

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

1 from B to A

Prim's Algorithm

CS314 Graphs 102

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

5 from D to G

Prim's Algorithm

CS314 Graphs 103

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

6 from D to E

Prim's Algorithm

CS314 Graphs 104

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Cost of Spanning Tree?

Other Graph Algorithms
Lots!
http://en.wikipedia.org/wiki/Category:Graph_algorithms

CS314 Graphs 105

http://en.wikipedia.org/wiki/Category:Graph_algorithms

