
Graphs
Topic 22

" Hopefully, you've played around a bit with The Oracle of Bacon at
Virginia and discovered how few steps are necessary to link just about
anybody who has ever been in a movie to Kevin Bacon, but could there be
some actor or actress who is even closer to the center of the Hollywood
universe?.

By processing all of the almost half of a million people in the Internet
Movie Database I discovered that there are currently 1160 people who are
better
numbers we see that the average (Sean) Connery Number is about 2.682
making Connery a better center than Bacon"

-Who is the Center of the Hollywood Universe?,
University of Virginia

That was in 2001.
In 2013 Harvey Keitel has become the center of the Hollywood
Universe. Connery is 136th.
Bacon has moved up to 370th. CS314 2

An Early Problem in
Graph Theory

Leonhard Euler (1707 - 1783)
One of the first mathematicians to study graphs

The Seven Bridges of Konigsberg Problem
Konigsberg is now called Kaliningrad

A puzzle for the residents of the city
The river Pregel flows through the city
7 bridges crossed the river
Can you cross all bridges while crossing
each bridge only once? An Eulerian Circuit

Graphs

CS314 3

Konigsberg and the River Pregel

Graphs

A

B

C

D

Clicker 1
How many solutions does the Seven Bridges
of Konigsberg Problem have?

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Graphs 4

CS314 5

How to Solve
Brute Force?

Euler's Solution
Redraw the map as a graph
(really a multigraph as opposed
to a simple graph, 1 or 0 edges
per pair of vertices)

a

b

c

d

Graphs CS314 6

Euler's Proposal
A connected graph has an Euler tour (cross
every edge exactly one time and end up at
starting node) if and only if every vertex has
an even number of edges

Eulerian Circuit

Clicker 2 - What if we reduce the problem to
only crossing each edge (bridge) exactly
once?

Doesn't matter if we end up where we started

Eulerian Trail

A. 0 B. 1 C. 2 D. 3 E. >= 4
Graphs

CS314 7

Graph Definitions
A graph is comprised of a set of vertices
(nodes) and a set of edges (links, arcs)
connecting the vertices

An edge connects 2 vertices

in a directed graph edges are one-way
movement allowed from first node to second, but
not second to first

directed graphs also called digraphs

in an undirected graph edges are two-way
movement allowed in either direction

Graphs

Definitions
In a weighted graph the edge has cost or weight
that measures the cost of traveling along the edge

A path is a sequence of vertices connected by
edges

The path length is the number of edges

The weighted path length is the sum of the cost of the
edges in a path

A cycle is a path of length 1 or more that starts and
ends at the same vertex without repeating any
other vertices

a directed acyclic graph is a directed graph with
no cycles

CS314 Graphs 8

CS314 9

Graphs We've Seen

link link link link

link link link

19

12 35

3 16 5621

Graphs

Example Graph
Scientists (and academics of ALL kinds) use
graphs to model all kinds of things.

CS314 Graphs 10

Arpanet 1969, 1971

Example Graph

CS314 Graphs 11

Roman
Transportation

Network

Roman
Transportation Network

CS314 Graphs 12

Example Graph

CS314 Graphs 13

Enron emails 2001

Example Graph

CS314 Graphs 14

US Airport Network

Example Graph

CS314 Graphs 15

Example Graph

"Jefferson" High School, Ohio Chains of Affection: The Structure of Adolescent Romantic
and Sexual Networks, 2005,

CS314 17

How to store a graph as a data structure?

Representing Graphs

Graphs CS314 18

Adjacency Matrix
Representation

A Br Bl Ch Co E FG G Pa Pe S U V
A 0 1 1 1 0 0 0 0 1 0 0 1 0
Br 1 0 1 0 1 0 1 1 1 1 1 1 1
Bl 1 1 0 1 0 0 0 0 1 1 0 0 0
Ch 1 0 1 0 0 0 0 0 0 1 0 0 0
Co 0 1 0 0 0 1 0 0 0 1 0 0 1
E 0 0 0 0 1 0 0 0 0 1 0 0 0
FG 0 1 0 0 0 0 0 0 0 0 1 0 0
G 0 1 0 0 0 0 0 0 0 0 1 0 1
Pa 1 1 1 0 0 0 0 0 0 0 0 0 0
Pe 0 1 1 1 1 1 0 0 0 0 0 0 0
S 0 1 0 0 0 0 1 1 0 0 0 0 0
U 1 1 0 0 0 0 0 0 0 0 0 0 0
V 0 1 0 0 1 0 0 1 0 0 0 0 0

Country Code

Argentina A

Brazil Br

Bolivia Bl

Chile Ch

Colombia Co

Ecuador E

French
Guiana

FG

Guyana G

Paraguay Pa

Peru Pe

Suriname S

Uruguay U

Venezuela V

Graphs

Undirected Graph?
Use a ragged 2d array to save space

CS314 Graphs 19 CS314 20

The Map Coloring Problem
How many colors do you need to color a
map, so that no 2 countries that have a
common border (not a point) are colored the
same?

How to solve using Brute Force?

Graphs

Example

Source: https://en.wikipedia.org/wiki/Four_color_theorem 21 CS314 22

A Solution

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue

Yellow

Yellow

Blue

Red

Graphs

CS314 23

What About the Ocean?
A Br Bl Ch Co E FG G Pa Pe S U V Oc

A 0 1 1 1 0 0 0 0 1 0 0 1 0 1
Br 1 0 1 0 1 0 1 1 1 1 1 1 1 1
Bl 1 1 0 1 0 0 0 0 1 1 0 0 0 0
Ch 1 0 1 0 0 0 0 0 0 1 0 0 0 1
Co 0 1 0 0 0 1 0 0 0 1 0 0 1 1
E 0 0 0 0 1 0 0 0 0 1 0 0 0 1
FG 0 1 0 0 0 0 0 0 0 0 1 0 0 1
G 0 1 0 0 0 0 0 0 0 0 1 0 1 1
Pa 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Pe 0 1 1 1 1 1 0 0 0 0 0 0 0 1
S 0 1 0 0 0 0 1 1 0 0 0 0 0 1
U 1 1 0 0 0 0 0 0 0 0 0 0 0 1
V 0 1 0 0 1 0 0 1 0 0 0 0 0 1
Oc 1 1 0 1 1 1 1 1 0 1 1 1 1 0

Graphs CS314 24

Make the Ocean Blue

Green

Green

Green

Blue

Yellow

Blue

Yellow

Blue
Yellow

Yellow

Red

Graphs

Red

Red

Red

More Definitions
A dense graph is one with a "large" number
of edges

maximum number of edges?

A "sparse" graph is one in which the number
of edges is "much less" than the maximum
possible number of edges

No standard cutoff for dense and sparse graphs

Although a common one is more than half the
possible edges

CS314 Graphs 25

Graph Representation
For dense graphs the adjacency matrix is a
reasonable choice

For weighted graphs change booleans to double
or int

Can the adjacency matrix handle
directed graphs?

Most graphs are sparse, not dense

For sparse graphs an adjacency list is an
alternative that uses less space

Each vertex keeps a list of edges to the
vertices it is connected to.

CS314 Graphs 26

Graph Implementation
public class Graph

private static final double INFINITY
= Double.MAX_VALUE;

private Map<String, Vertex> vertices;

public Graph() // create empty Graph

public void addEdge(String source,
String dest, double cost)

// find all paths from given vertex
public void findUnweightedShortestPaths

(String startName)

// called after findUnweightedShortestPath
public void printPath(String destName)

Graph Class
This Graph class stores vertices

Each vertex has an adjacency list
what vertices does it connect to?

shortest path method finds all paths from
start vertex to every other vertex in graph

after shortest path method called queries
can be made for path length from start node
to destination node

CS314 Graphs 28

Vertex Class (nested in Graph)

CS314 Graphs 29

private static class Vertex
private String name;
private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms
private double distance;
private Vertex prev;
private int scratch;

// call before finding new paths
public void reset()

Edge Class (nested in Graph)

CS314 Graphs 30

private static class Edge
private Vertex dest;
private double cost;

private Edge(Vertex d, double c)

Unweighted Shortest Path
Given a vertex, S (for start) find the shortest
path from S to all other vertices in the graph

Graph is unweighted (set all edge costs to 1)

CS314 Graphs 31

S

V5
V3

V1 V6

V4

V2

V7

V8

6 Degrees of Wikipedia
https://www.sixdegreesofwikipedia.com/

CS314 Graphs 32

Word Ladders
Agree upon dictionary

Start word and end word of
same length

Change one letter at a time to
form step

Step must also be a word

Example: Start = silly, end =
funny

CS314 Graphs 33

silly
sully
sulky
hulky
hunky
funky
funny

Clicker 3 - Graph Representation
What are the vertices and when does
an edge exist between two vertices?

Vertices Edges
A. Letters Words

B. Words Words that share one or more letters

C. Letters Words that share one or more letters

D. Words Words that differ by one letter

E. Words Letters

CS314 Graphs 34

CS314 Graphs 35

smart

swart

start

smarm

smalt

scart

Portion of Graph

Clicker 4 - Size of Graph
Number of vertices and edges depends on dictionary

Modified Scrabble dictionary, 5 letter words

Words are vertices
8660 words, 7915 words that are one letter different from
at least one other word

Edge exists between words if they are one letter
different

24,942 edges

Is this graph sparse or dense?

A. Sparse

B. Dense
CS314 Graphs 36

Max number of edges =
N * (N - 1) / 2
37,493,470

Clicker 5 - Unweighted Shortest
Path Algorithm

Problem: Find the shortest word ladder
between two words if one exists

What kind of search should we use?

A. Breadth First Search

B. Depth First Search

C. Either one

CS314 Graphs 37

Unweighted Shortest Path Algorithm

Set distance of start to itself to 0

Create a queue and add the start vertex

while the queue is not empty
remove front

loop through all edges of current vertex
get vertex edge connects to

if this vertex has not been visited (have not found path
to the destination of the edge)

sets its distance to current distance + 1

sets its previous vertex to current vertex

add new vertex to queue

CS314 Graphs 38

CS314 Graphs 39

smart

swart

start

smarm

smalt

scart

Portion of Graph

CS314 Graphs 40

smart

swart

start

smarm

smalt

scart

Start at "smart" and enqueue it
[smart]

CS314 Graphs 41

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart]
CS314 Graphs 42

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start]

CS314 Graphs 43

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart]
CS314 Graphs 44

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt]

CS314 Graphs 45

smart

swart

start

smarm

smalt

scart

Dequeue (smart), loop through edges

[swart, start, scart, smalt, smarm]
CS314 Graphs 46

smart

swart

start

smarm

smalt

scart

Done with smart, dequeue (swart)

[start, scart, smalt, smarm]

CS314 Graphs 47

smart

swart

start

smarm

smalt

scart

loop through edges of swart (start already present)

[start, scart, smalt, smarm]
CS314 Graphs 48

smart

swart

start

smarm

smalt

scart

loop through edges of swart (scart already present)

[start, scart, smalt, smarm]

CS314 Graphs 49

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm]

swarm

CS314 Graphs 50

smart

swart

start

smarm

smalt

scart

loop through edges of swart

[start, scart, smalt, smarm, swarm, sware]

swarm

sware

Unweighted Shortest Path
Implement method

demo

how is path printed?

The diameter of a graph is the longest shortest
past in the graph

How to find?

How to find center of graph?
many measures of centrality

ours: vertex connected to the largest number of
other vertices with the shortest average path length

CS314 Graphs 51

Positive Weighted Shortest Path

Edges in graph are weighted and all weights
are positive

Similar solution to unweighted shortest path

Dijkstra's algorithm

Edsger W. Dijkstra, 1930 2002

UT Professor 1984 - 2000

Algorithm developed in 1956
and published in 1959.

other algorithms developed
independently around this time

52

Dijkstra on Creating the Algorithm
What is the shortest way to travel from Rotterdam to Groningen, in
general: from given city to given city. It is the algorithm for the
shortest path, which I designed in about twenty minutes. One
morning I was shopping in Amsterdam with my young fiancée, and
tired, we sat down on the café terrace to drink a cup of coffee and I
was just thinking about whether I could do this, and I then designed
the algorithm for the shortest path. As I said, it was a twenty-minute

publication is still readable, it is, in fact, quite nice. One of the
reasons that it is so nice was that I designed it without pencil
and paper. I learned later that one of the advantages of designing
without pencil and paper is that you are almost forced to avoid all
avoidable complexities. Eventually that algorithm became, to my
great amazement, one of the cornerstones of my fame.

Edsger Dijkstra, in an interview with Philip L. Frana,
Communications of the ACM, 2001 (wiki page on the algorithm)

Vertex Class (nested in Graph)

CS314 Graphs 54

private static class Vertex
private String name;
private List<Edge> adjacent;

public Vertex(String n)

// for shortest path algorithms
private double distance;
private Vertex prev;
private int scratch;

// call before finding new paths
public void reset()

Dijkstra's Algorithm
Pick the start vertex

Set the distance of the start vertex to 0 and all
other vertices to INFINITY

While there are unvisited vertices:
Let the current vertex be the vertex with the lowest cost
path from start to it that has not yet been visited

mark current vertex as visited

for each edge from the current vertex
if the sum of the cost of the current vertex and the cost of the
edge is less than the cost of the destination vertex

update the cost of the destination vertex

set the previous of the destination vertex to the current vertex

enqueue this path (not vertex) to the priority queue

THIS IS NOT VISITING THE NEIGHBORING VERTEX
55

Dijkstra's Algorithm
Example of a Greedy Algorithm

A Greedy Algorithm does what appears to be the
best thing at each stage of solving a problem

Gives best solution in Dijkstra's Algorithm

Does NOT always lead to best answer

Fair teams:
(10, 10, 8, 8, 8), 2 teams

Making change with fewest coins
(1, 5, 10) 15 cents

(1, 5, 12) 15 cents
CS314 Graphs 56

57

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 6 - What is the cost of the lowest
cost path from A to E?
A. 5
B. 17
C. 20
D. 28
E. 37

58

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A is start vertex

Set cost of A to 0, all others to INFINITY

Place A in a priority queue

0

59

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(A,0)] pq

dequeue (A,0)

Mark A as visited
60

[] pq

current vertex A:

loop through A's edges

if sum of cost from A to dest is less than current cost

update cost and prev

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

61

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[] pq

A -> C, 0 + 7 < INFINITY

[(C,7)] pq

62

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C,7)] pq

A -> B, 0 + 1 < INFINITY

[(B,1), (C, 7)] pq (Note, the (B,1) jumps in front of (C,7)

63

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7)] pq

A -> G, 0 + 17 < INFINITY

[(B,1), (C, 7), (G, 17)] pq

64

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(B,1), (C, 7), (G, 17)] pq

current vertex B:

loop through B's edges

if sum of cost from B to edge is less than current cost

update cost and prev

65

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17)] pq

B -> C, 1 + 3 < 7

update C's cost and previous

[(C, 4), (C, 7), (G, 17)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

66

[(C, 4), (C, 7), (G, 17)] pq

B -> D, 1 + 21 < INFINITY

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

67

[(C, 4), (C, 7), (G, 17), (D, 22)] pq

current vertex is C, cost 4

loop through C's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

68

[(C, 7), (G, 17), (D, 22)] pq

C -> A, 7 + 4 !< 0, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

69

[(C, 7), (G, 17), (D, 22)] pq

C -> B, 4 + 3 !< 1, skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

70

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(C, 7), (G, 17), (D, 22)] pq

C -> F, 4 + 3 < INFINITY

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

71

[(C, 7), (F, 7), (G, 17), (D, 22)] pq

current vertex is C

Already visited so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

72

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(F, 7), (G, 17), (D, 22)] pq

current vertex is F

loop through F's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

73

[(G, 17), (D, 22)] pq

F -> C, 7 + 3 !< 4, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

74

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (D, 22)] pq

F -> D, 7 + 4 < 22

update D's cost and previous

[(D, 11), (G, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Aside - Implementing Dijkstra's
Create a Path class to allow for multiple
paths and distances (costs) to a given vertex

private static class Path

implements Comparable<Path> {

private Vertex dest;

private double cost;

Use a priority queue of Paths to store the
vertices and distances

CS314 Graphs 75

Why? References!!!
Slide 74 and 78, adding new, lower cost path
to Vertex D

Abstractly: [(G, 17), (D, 22)] becomes
[(D, 11) (G, 17), (D, 22)]

What does priority queue store? References
to Vertex Objects

[,]

76distance 17

Vertex
name G

distance 22

Vertex
name D

Lower Cost Path to D
New, lower cost path to D. Alter Vertex D's
distance to 11 and add to priority queue

[, ,]

PROBLEMS?????

Abstractly [(D, 11), (G, 17), (D, 11)] 77

distance 17

Vertex
name G

distance 11

Vertex
name D

78

[(D, 11), (G, 17), (D, 22)] pq

current vertex is D

loop through D's edges

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

79

[(G, 17), (D, 22)] pq

D -> B, 11 + 21 !< 1, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

80

[(G, 17), (D, 22)] pq

D -> E, 11 + 6 < INFINITY

update E's cost and previous

[(G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

81

[(G, 17), (E, 17), (D, 22)] pq

D -> F, 4 + 11 !< 7, so skip

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

82

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

D -> G, 11 + 5 < 17

update G's cost and previous

[(G, 16), (G, 17), (E, 17), (D, 22)] pq

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

83

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

[(G, 17), (E, 17), (D, 22)] pq

current vertex is G

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

84

[(E, 17), (D, 22)] pq

current vertex is E

loop though edges, already visited all neighbors

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

85

No unvisited vertices.

Each Vertex stores cost (distance) of lowest cost

path from start Vertex to itself and previous vertex

in path from start vertex to itself.

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7
Alternatives to Dijkstra's Algorithm

A*, pronounced "A Star"

A heuristic, goal of finding shortest weighted path
from single start vertex to goal vertex

Uses actual distance like Dijkstra's but also
estimates remaining cost or distance

distance is set to current distance from start PLUS the
estimated distance to the goal

For example when finding a path between towns,
estimate the remaining distance as the straight-line
(as the crow flies) distance between current
location and goal.

CS314 Graphs 86

Spanning Tree
Spanning Tree: A tree of edges that
connects all the vertices in a graph

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Clicker 7 -
Minimum Spanning Tree

Minimum Spanning Tree: A spanning tree in
a weighted graph with the lowest total cost

used in network design, taxonomy, Image registration,
and more!

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7
Cost of spanning
tree shown?
A. 6

B. 7
C. 29
D. 61

E. None of These

Is it a MST for the
graph?

Prim's Algorithm
Initially created by Jarník

Rediscovered by Prim (of Sweetwater, TX)
and Dijkstra

Pick a vertex arbitrarily from graph
In other words, it doesn't matter which one

Add lowest cost edge between the tree and
a vertex that is not part of the tree UNTIL
every vertex is part of the tree

Greedy Algorithm, very similar to Dijkstra's

CS314 Graphs 89

Prim's Algorithm

CS314 Graphs 90

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Pick D as root

5 8 4

Prim's Algorithm

CS314 Graphs 91

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
2 from D to A (or C)

5 8 4

Prim's Algorithm

CS314 Graphs 92

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
2 from D to C (OR from A to B)

5 8 4

Prim's Algorithm

CS314 Graphs 93

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
2 from A to B

5 8 4

Prim's Algorithm

CS314 Graphs 94

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
5 from D to G

5 8 4

Prim's Algorithm

CS314 Graphs 95

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
1 from G to F

5 8 4

Prim's Algorithm

CS314 Graphs 96

A B

C

F

D E

G

2
3

11

2

7

6

2

1

4

Lowest cost edge from tree to vertex not in Tree?
6 from G to E

5 8 4

Prim's Algorithm

CS314 Graphs 97

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Pick D as root

Prim's Algorithm

CS314 Graphs 98

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?
4 from D to F

Prim's Algorithm

CS314 Graphs 99

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from F to C

Prim's Algorithm

CS314 Graphs 100

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

3 from C to B

Prim's Algorithm

CS314 Graphs 101

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

1 from B to A

Prim's Algorithm

CS314 Graphs 102

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

5 from D to G

Prim's Algorithm

CS314 Graphs 103

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Lowest cost edge from tree to vertex not in Tree?

6 from D to E

Prim's Algorithm

CS314 Graphs 104

A

B

C

F

D
E

G

1

3

3

21
4

6

17 5

7

Cost of Spanning Tree?

Other Graph Algorithms
Lots!
http://en.wikipedia.org/wiki/Category:Graph_algorithms

CS314 Graphs 105

