
Topic 23 
Hash Tables

"hash collision n.  [from the techspeak] (var. `hash clash') When 
used of people, signifies a confusion in associative memory or 
imagination, especially a persistent one (see thinko). 

True story: One of us was once on the phone with a friend 
about to move out to Berkeley. When asked what he expected 
Berkeley to be like, the friend replied: 'Well, I have this mental 
picture of naked people throwing Molotov cocktails, but I think 
that's just a collision in my hash tables.'"

-The Hacker's Dictionary 

CS314 Hash Tables 2

Programming Pearls by Jon Bentley

Jon was senior programmer on a 
large programming project. 

Senior programmer spend a lot of 
time helping junior programmers.

Junior programmer to Jon: "I need 
help writing a sorting algorithm."

CS314 Hash Tables 3

A Problem
From Programming Pearls (Jon in Italics)
Why do you want to write your own sort at all? Why not use a sort 
provided by your system? 
I need the sort in the middle of a large system, and for obscure 
technical reasons, I can't use the system file-sorting program. 
What exactly are you sorting? How many records are in the file? 
What is the format of each record? 
The file contains at most ten million records; each record is a 
seven-digit integer. 
Wait a minute. If the file is that small, why bother going to disk at 
all? Why not just sort it in main memory? 
Although the machine has many megabytes of main memory, 
this function is part of a big system. I expect that I'll have only 
about a megabyte free at that point. 
Is there anything else you can tell me about the records? 
Each one is a seven-digit positive integer with no other associated 
data, and no integer can appear more than once. 

System Sort

CS314 Hash Tables 4



Starting Other Programs

CS314 Hash Tables 5

Starting Other Programs

CS314 Hash Tables 6

CS314 Hash Tables 7

Clicker 1 and 2
When did this conversation take place?

A. circa 1965

B. circa 1975

C. circa 1985

D. circa 1995

E. circa 2005

What were they sorting?

A. SSNs.  B. Random values  C. Street Addresses

D. Personal Incomes   E. Phone Numbers
CS314 Hash Tables 8

A Solution
/* phase 1: initialize set to empty */ 
for i = [0, n) 

bit[i] = 0 

/* phase 2: insert present elements into the set */ 
for each num_in_file in the input file 

bit[num_in_file] = 1 

/* phase 3: write sorted output */ 
for i = [0, n) 

if bit[i] == 1 write i on the output file 



CS314 Hash Tables 9

Some Structures so Far
ArrayLists

O(1) access
O(N) insertion (average case), better at end
O(N) deletion (average case)

LinkedLists
O(N) access
O(N) insertion (average case), better at front and back
O(N) deletion (average case), better at front and back

Binary Search Trees
O(log N) access if balanced
O(log N) insertion if balanced
O(log N) deletion if balanced

10

Why are Binary Trees Better?
Divide and Conquer - splitting problem into 
smaller problems

Can we reduce the work by a bigger factor? 
3? 10? More?

An ArrayList does this in a way when 
accessing elements

but must use an integer value

each position holds a single element

given the index in an array, I can access that 
element rather quickly

determining the address of the element 
requires a multiply op and an add op 

Hash Tables
Hash Tables maintaining the fast access of 
arrays but improve the order for insertion, 
and deletion compare to array based lists.

Hash tables use an array and hash functions 
to determine the index for each element.

CS314 Hash Tables 12

Hash Functions
Hash: "From the French hatcher, 
which means 'to chop'. "

to hash to mix randomly or shuffle (To cut 
up, to slash or hack about; to mangle)

Hash Function: Take a piece of data and 
transforms it to a different piece of data 
(typically smaller), usually a single integer. 

A function or algorithm

The input need not be integers!



CS314 Hash Tables 13

Hash Function

"Mike Scott"

Manchester, VT

mscott61729@gmail.com

12
hash
function

"Olivia"

5/17/1971

555389085

"Kelly"

"Isabelle"

Hash Functions
Like a fingerprint

134 Megabytes
CS314 Hash Tables 14

Hash Function
SHA 512 Hash code

CS314 Hash Tables 15 CS314 Hash Tables 16

Simple Example
Assume we are using names as our key

take 3rd letter of name, take int value of letter 
(a = 0, b = 1, ...), divide by 6 and take remainder

What does "Bellers" hash to?

L -> 11 -> 11 % 6 = 5



CS314 Hash Tables 17

Result of Hash Function
Mike = (10 % 6) = 4
Kelly = (11 % 6) = 5
Olivia = (8 % 6) = 2
Isabelle = (0 % 6) = 0
David = (21 % 6) = 3 
Margaret = (17 % 6) = 5 (uh oh)
Wendy = (13 % 6) = 1
This is an imperfect hash function. A perfect hash 
function yields a one to one mapping from the keys 
to the hash values.
What is the maximum number of values this 
function can hash perfectly?

Clicker 3 - Hash Function
Assume the hash function for String adds up 
the Unicode value for each character.

public static int hashCode(String s) {
int result = 0;
for (int i = 0; i < s.length(); i++) 

result += s.charAt(i);
return result;

}

Hashcode for "DAB" and "BAD"?
A. 301 103
B. 4 4
C. 412   214
D. 5       5
E. 199    199

18

CS314 Hash Tables 19

More on Hash Functions
transform the key (which may not be an 
integer) into an integer value

The transformation can use one of four 
techniques

Mapping

Folding

Shifting

Casting

CS314 Hash Tables 20

Hashing Techniques
Mapping

As seen in the example

integer values or things that can be easily 
converted to integer values in key

Folding
partition key into several parts and the integer 
values for the various parts are combined

the parts may be hashed first

combine using addition, multiplication, shifting, 
logical exclusive OR



CS314 Hash Tables 21

Shifting
More complicated with shifting

int hashVal = 0;
int i = str.length() - 1;
while(i > 0)
{ hashVal = (hashVal << 1) + (int) str.charAt(i);
i--;

}

different answers for "dog" and "god"

Shifting may give a better range of hash values 
when compared to just folding

Casts 
Very simple

essentially casting as part of fold and shift when working 
with chars.

CS314 Hash Tables 22

The Java String class 
hashCode method

public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {

char[] val = value;
for (int i = 0; i < val.length; i++) { 

h = 31 * h + val[i];
}
hash = h;

}
return h;

}

CS314 Hash Tables 23

Mapping Results
Transform hashed key value into a legal index in 
the hash table

Hash table is normally uses an array as its 
underlying storage container

Normally get location on table by taking result of 
hash function, dividing by size of table, and taking 
remainder
index = key mod n

n is size of hash table

empirical evidence shows a prime number is best

10 element hash table, move up to 11 or 13 elements

CS314 Hash Tables 24

Mapping Results

"Isabelle" 230492619
hashCode
method

230492619  %  997 = 177

0 1 2 3 .........177............ 996

"Isabelle"



CS314 Hash Tables 25

Handling Collisions
What to do when inserting an element and 
already something present?

CS314 Hash Tables 26

Open Addressing
Could search forward or backwards 
for an open space
Linear probing: 

move forward 1 spot. Open?, 2 spots, 3 
spots
reach the end?
When removing, insert a blank
null if never occupied, blank if once 
occupied

Quadratic probing
1 spot, 2 spots, 4 spots, 8 spots, 16 spots

Resize when load factor reaches 
some limit

CS314 Hash Tables 27

Closed Addressing: Chaining
Each element of hash table be 
another data structure

linked list, balanced binary tree

More space, but somewhat easier

everything goes in its spot

What happens when resizing? 
Why don't things just collide again?

CS314 Hash Tables 28

Hash Tables in Java
hashCode method in Object

hashCode and equals
"If two objects are equal according to the equals 
(Object) method, then calling the hashCode
method on each of the two objects must produce 
the same integer result. "
if you override equals you need to override 
hashCode

Overriding one of equals and hashCode, but not 
the other, can cause logic errors that are difficult to 
track down if objects added to hash tables.



CS314 Hash Tables 29

Hash Tables in Java
HashTable class

HashSet class
implements Set interface with internal storage 
container that is a HashTable

compare to TreeSet class, internal storage 
container is a Red Black Tree

HashMap class
implements the Map interface, internal storage 
container for keys is a hash table

Comparison
Compare these data structures for speed:

Java HashSet

Java TreeSet

our naïve Binary Search Tree

our HashTable

Insert random ints

CS314 Hash Tables 30

Clicker 4
What will be order from fastest to slowest?

A. HashSet TreeSet HashTable314  BST

B. HashSet HashTable314  TreeSet BST

C. TreeSet HashSet BST  HashTable314

D. HashTable314  HashSet BST  TreeSet

E. None of these

CS314 Hash Tables 31


