Topic 25
Heaps

"You think you know when you can learn,
are more sure when you can write,
even more when you can teach,

Priority Queue

> Recall priority queue

— elements enqueued based on priority

— dequeue removes the highest priority item
> Options?

— List? Binary Search Tree? Clicker 1

but certain when you can program.” Array List enqueue BST enqueue
- Alan Perlis A. ON) O(1)
- B. O(N) O(logN)
- 4 C. O(N) O(N)
D. O(logN) O(logN)
E. O(1) O(logN)
Another Option Clicker 2

» The heap data structure

— not to be confused with the runtime heap (portion
of memory for dynamically allocated variables)

» Typically a complete binary tree (variations
with more than 2 children possible)

— all levels have maximum number of nodes
except deepest where nodes are filled in from
left to right

» Maintains the heap order property

—in a min heap the value in the root of any subtree
is less than or equal to all other values in the

css14 SUbtree Heaps 3

> In @ max heap with no duplicates where is
the largest value?

the root of the tree

in the left-most node

in the right-most node

a node in the lowest level
none of these

moow:>»

CS314 Heaps

Example Min Heap

OO
=) ()

CS314 Heaps 5

Add Operation

> Add new element to next open spot in array

» Swap with parent if new value is less
than parent

» Continue back up the tree as long as the
new value is less than new parent node

CS314 Heaps 6

Add Example
» Add 15 to heap (initially next left most node)

B
=
ORoloIo

CS314 Heaps 7

Add Example
» Swap 15 and 52

o
=
ool

CS314 Heaps 8

Enqueue Example
» Swap 15 and 17, then stop

O
@
oo

CS314 Heaps

Add Example

> Insert the following values 1 at a time into a
min heap:
16 95813885519 27 9 3

CS314 Heaps 10

Internal Storage

> Interestingly heaps are often implemented
with an array instead of nodes

for element at index i:
parent index: i/ 2

left child index: i * 2
right child index: i *2 + 1

0(1/2|3|4|5|6|7]8|9|10/11|12|13|14|15

1217/15(19|52|37|25|45| 21

Heaps

1"

AR

TRl

In Honor of
Elijah,

- The Meme King,
— Spring 2020

; -
Corporate needs you to find the differences
between this picture and this picture.

12

PriorityQueue Class

public class PriorityQueue<E extends Comparable<? super E>>

{

private int size;

private E[] con;

public PriorityQueue() {
con = getArray(2);
}

private E[] getArray(int size) {

return (E[]) (new Comparable[size]);

}

CS314 Heaps 13

PriorityQueue enqueue / add

public void enqueue(E val) {
if (size >= con.length - 1)
enlargeArray (con.length * 2);

size++;
int indexToPlace = size;
while (indexToPlace > 1

&& val.compareTo (con[indexToPlace / 2]) < 0) {

con[indexToPlace] = con[indexToPlace / 2]; // swap
indexToPlace /= 2; // change indexToPlace to parent
}
con[indexToPlace] = val;

}

private void enlargeArray (int newSize) {
E[] temp = getArray(newSize);
System.arraycopy(con, 1, temp, 1, size);
con = temp;

14

Enqueue / add Example

With Array Shown
» Add 15 to heap

(initially next
left most node)

G 10/ 2 = 5 (index of parent)

0(1/2|3/4|5|6|7]8|9(10(1112|13|14|15
12|17|15|19|52/37(25/45/21/15

Enqueue Example

With Array Shown
» Swap 15 and 52

@ 5/2 =2 (index of parent)

0(1/2|3/4|5|6|7]8|9(10/1112/13|14|15
12|17|15(19|15|37|25/45/21/52

» Swap 15 and 17

Enqueue Example
With Array Shown

@ 2 /2 =1 (index of parent)

9

10

11

12

13

14

15

12

17(37\25

45

21

52

Enqueue Example
With Array Shown
»151< 12 -> DONE

@ 2/1 =1 (index of parent)

0(1/2|/3/4|5|6|7]8|9(10/1112/13|14|15

12|15(16|19(17|37|25/45/21 52

CS314

Remove / Dequeue

> min value / front of queue is in root of tree

» swap value from last node to root and move
down swapping with smaller child unless
values is smaller than both children

CS314 Heaps 20

» Swap 35
into root
(save 12
to return)

Dequeue Example

0
) ()

Dequeue Example

» Swap 35
into root
(save 12
to return)

0(1(2|3|4(5|6|7|8|9|10{11/12{13(14/15 0(1(2|3[4(5|6|7|8|9|10/11/12|13/14/15
12/15/13(17|23|45/53/45/21|35 35|15(13|17|23|45|53|45| 21
Dequeue Example
> Min child?
»1*2=2->15
»1*2+1=3->13
» Swap with 13
0(1(2|3[4(5|6|7|8|9|10{11/12/13(14/15 0(1(2|3(4(5|6|7|8|9|10[11/12|13/14/15
35|15(13|17|23|45|53|45| 21 13/15|35(17|23|45/53|45| 21

Dequeue Example

> Min child?
»3*2=6->45
»3*2+1=7->53

’ Less than or equal to
both of my children!

i Stop!

0(1/2|3/4|5|6|7|8|9(10(1112|13|14|15
13|15|35(17|23/45|53/45| 21

Dequeue Code

public E dequeue() {
E top = con[l];
int hole = 1;
boolean done = false;
while (hole * 2 < size && ! done) {
int child = hole * 2;
// see which child is smaller
if (con[child].compareTo(con[child + 1]) > 0)
child++; // child now points to smaller

// 1is replacement value bigger than child?
if (con[size].compareTo(con[child]) > 0) {
conl[hole] = con[child];
hole = child;
}
else
done = true;
}
conl[hole]
size--;
return top; 26

= con[size];

Clicker 3 - PriorityQueue Comparison

» Run a Stress test of PQ implemented with
Heap and PQ implemented with
BinarySearchTree

» What will result be?

A. Heap takes half the time or less of BST
B. Heap faster, but not twice as fast

C. About the same

D. BST faster, but not twice as fast

E. BST takes half the time or less of Heap

CS314 Heaps 27

Data Structures

» Data structures we have studied

— arrays, array based lists, linked lists, maps, sets,
stacks, queues, trees, binary search trees,
graphs, hash tables, red-black trees, priority
queues, heaps, tries

Most program languages have some built in

data structures, native or library

> Must be familiar with performance of data
structures

— best learned by implementing them yourself

v

CS314 Heaps 28

Data Structures
> We have not covered every data structure

——
Arrays | edit source | edit b=tz |

Abstract data types |[edit source |edit s3] o Amay

Some properties of abstract data types:

Container
Map/Associative array/Dictionary
Multimap

List

Set

Multiset
Priority queue
Queue

Deque

Stack

String

Tree

Graph

Structure | Stable Unique Cells per Node

Bag (multiset) no no 1
Set no yes :1
List yes no | 1
Map no yes .2

« Bidirectional map
o Bitamay

* Bit field
 Bitboard

« Bitmap

o Gircular buffer

» Control table

o Image

« Dynamic array

« Gap buffer

o Hashed array tree
« Heightmap

o Lookup table

o Matrix

o Parallel array

o Sorted array

« Sparse armay

o Sparse matrix

o liifle vector

+ Variable-length anay
Lists [edit source | edit b=]
+ Doubly linked list
o Linked list

+ Selforganizing list
« Skip list

o Unrolled linked list
« VList

» Xor linked list

o Zipper

“Stable” means that input order is retained. Other strL . poubly connected edge list

» Difference list

Heaps [edit source | edit

« Heap
« Binary heap
o Weak heap
+ Binomial heap
» Fibonacci heap
o AF-heap
* 23 heap
« Soft heap
o Pairing heap
o Leftist heap
o Treap
o Beap
o Skew heap
« Temnary heap
« Deary heap
Trees |[edit source | edit t
In these data structures eacl
o Tree
« Radix tree
+ Suffix tree
o Suffix array
o Compressed suffix array
 FV-index
» Generalised suffix tree
o Biree
o Judy array
+ Kfast tree
» ‘fast tree
o Ciree

Multiwav treee | adit cnures

http://en.wikipedia.org/wiki/List_of_data_structures

Graphs [edit source | edit beta]

» Graph

Adjacency list

Adjacency matrix
Graph-structured stack

Scene graph

Binary decision diagram

Zero suppressed decision diagram
And-inverter graph

Directed graph

Directed acyclic graph
Propositional directed acyclic graph
Multigraph

Hypergraph

Other [edit source | edit beta]

» Lightmap

= Winged edge

= Doubly connected edge list
s Quad-edge

= Routing table

= Symbol table

Data Structures

» deque, b-trees, quad-trees, binary space
partition trees, skip list, sparse list, sparse
matrix, union-find data structure, Bloom
filters, AVL trees, 2-3-4 trees, and more!

> Must be able to learn new and apply new
data structures

CS314 Heaps 30

