
Topic 25
Heaps

"You think you know when you can learn,
are more sure when you can write,
even more when you can teach,
but certain when you can program."

- Alan Perlis

Priority Queue
Recall priority queue

elements enqueued based on priority

dequeue removes the highest priority item

Options?
List? Binary Search Tree? Clicker 1

Array List enqueue BST enqueue
A. O(N) O(1)

B. O(N) O(logN)

C. O(N) O(N)

D. O(logN) O(logN)

E. O(1) O(logN)
CS314 Heaps 2

Another Option
The heap data structure

not to be confused with the runtime heap (portion
of memory for dynamically allocated variables)

Typically a complete binary tree (variations
with more than 2 children possible)

all levels have maximum number of nodes
except deepest where nodes are filled in from
left to right

Maintains the heap order property
in a min heap the value in the root of any subtree
is less than or equal to all other values in the
subtreeCS314 Heaps 3

Clicker 2
In a max heap with no duplicates where is
the largest value?

A. the root of the tree

B. in the left-most node

C. in the right-most node

D. a node in the lowest level

E. none of these

CS314 Heaps 4

Example Min Heap

CS314 Heaps 5

12

17 15

19 52 37 25

45 21

Add Operation
Add new element to next open spot in array

Swap with parent if new value is less
than parent

Continue back up the tree as long as the
new value is less than new parent node

CS314 Heaps 6

Add Example
Add 15 to heap (initially next left most node)

CS314 Heaps 7

12

17 15

19 52 37 25

45 21 15

Add Example
Swap 15 and 52

CS314 Heaps 8

12

17 15

19 15 37 25

45 21 52

Enqueue Example
Swap 15 and 17, then stop

CS314 Heaps 9

12

15 15

19 17 37 25

45 21 52

Add Example
Insert the following values 1 at a time into a
min heap:
16 9 5 8 13 8 8 5 5 19 27 9 3

CS314 Heaps 10

Internal Storage
Interestingly heaps are often implemented
with an array instead of nodes

CS314 Heaps 11

12

17 15

19 52 37 25

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 17 15 19 52 37 25 45 21

for element at index i:

parent index: i / 2

left child index: i * 2

right child index: i * 2 + 1

CS314 Heaps 12

In Honor of
Elijah,
The Meme King,

Spring 2020

PriorityQueue Class

CS314 Heaps 13

public class PriorityQueue<E extends Comparable<? super E>>
{

private int size;

private E[] con;

public PriorityQueue() {

con = getArray(2);

}

private E[] getArray(int size) {

return (E[]) (new Comparable[size]);

}

PriorityQueue enqueue / add

14

public void enqueue(E val) {
if (size >= con.length - 1)

enlargeArray(con.length * 2);

size++;
int indexToPlace = size;
while (indexToPlace > 1

&& val.compareTo(con[indexToPlace / 2]) < 0) {

con[indexToPlace] = con[indexToPlace / 2]; // swap
indexToPlace /= 2; // change indexToPlace to parent

}
con[indexToPlace] = val;

}

private void enlargeArray(int newSize) {
E[] temp = getArray(newSize);
System.arraycopy(con, 1, temp, 1, size);
con = temp;

}

Enqueue / add Example
With Array Shown

Add 15 to heap
(initially next
left most node)

12

17 15

19 52 37 25

45 21 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 17 15 19 52 37 25 45 21 15

10 / 2 = 5 (index of parent)

Enqueue Example
With Array Shown

Swap 15 and 52
12

17 15

19 15 37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 17 15 19 15 37 25 45 21 52

5 / 2 = 2 (index of parent)

Enqueue Example
With Array Shown

Swap 15 and 17
12

17

15

19

15

37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 15 15 19 17 37 25 45 21 52

2 / 2 = 1 (index of parent)

Enqueue Example
With Array Shown

15 !< 12 -> DONE
12

17

15

19

15

37 25

45 21 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 15 16 19 17 37 25 45 21 52

2 / 1 = 1 (index of parent)

Remove -> remove 12

CS314 Heaps 19

12

17

15

19

15

37 25

45 21 52

Remove / Dequeue
min value / front of queue is in root of tree

swap value from last node to root and move
down swapping with smaller child unless
values is smaller than both children

CS314 Heaps 20

Dequeue Example
Swap 35
into root
(save 12
to return)

12

15 13

17 23 45 53

45 21 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 15 13 17 23 45 53 45 21 35

Dequeue Example
Swap 35
into root
(save 12
to return)

35

15 13

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
35 15 13 17 23 45 53 45 21

Dequeue Example
Min child?

1 * 2 = 2 -> 15

1 * 2 + 1 = 3 -> 13

Swap with 13

35

15 13

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
35 15 13 17 23 45 53 45 21

Dequeue Example

13

15 35

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
13 15 35 17 23 45 53 45 21

Dequeue Example

13

15 35

17 23 45 53

45 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
13 15 35 17 23 45 53 45 21

Min child?

3 * 2 = 6 -> 45

3 * 2 + 1 = 7 -> 53

Less than or equal to
both of my children!
Stop!

Dequeue Code

26

public E dequeue() {
E top = con[1];
int hole = 1;
boolean done = false;
while (hole * 2 < size && ! done) {

int child = hole * 2;
// see which child is smaller
if (con[child].compareTo(con[child + 1]) > 0)

child++; // child now points to smaller

// is replacement value bigger than child?
if (con[size].compareTo(con[child]) > 0) {

con[hole] = con[child];
hole = child;

}
else

done = true;
}
con[hole] = con[size];
size--;
return top;

}

Clicker 3 - PriorityQueue Comparison
Run a Stress test of PQ implemented with
Heap and PQ implemented with
BinarySearchTree

What will result be?

A. Heap takes half the time or less of BST

B. Heap faster, but not twice as fast

C. About the same

D. BST faster, but not twice as fast

E. BST takes half the time or less of Heap

CS314 Heaps 27

Data Structures
Data structures we have studied

arrays, array based lists, linked lists, maps, sets,
stacks, queues, trees, binary search trees,
graphs, hash tables, red-black trees, priority
queues, heaps, tries

Most program languages have some built in
data structures, native or library

Must be familiar with performance of data
structures

best learned by implementing them yourself

CS314 Heaps 28

Data Structures
We have not covered every data structure

Heaps

http://en.wikipedia.org/wiki/List_of_data_structures

Data Structures
deque, b-trees, quad-trees, binary space
partition trees, skip list, sparse list, sparse
matrix, union-find data structure, Bloom
filters, AVL trees, 2-3-4 trees, and more!

Must be able to learn new and apply new
data structures

CS314 Heaps 30

