Topic 26
Dynamic Programming

"Thus, | thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So |
used It as an umbrella for my activities"

- Richard E. Bellman

Origins
> A method for solving complex problems by

breaking them into smaller, easier, sub
problems

» Term Dynamic Programming coined by
mathematician Richard Bellman in early

1950s

— employed by Rand Corporation
— Rand had many, large military contracts

— Secretary of Defense, Charles Wilson “"against research,
especially mathematical research”

— how could any one oppose "dynamic"?

CS314 Dynamic Programming 2

https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Charles_Erwin_Wilson

Dynamic Programming

» Break big problem up into smaller
problems ...

» Sound familiar?

» Recursion?
N! =1 for N =
NI =N~* (N—l)!forN>O

CS314 Dynamic Programming

Fibonacci Numbers

*»1.1,2, 3,5, 8,13, 21, 34, 55, 89, 114,
YE. =1
1

} - 1 ‘T lilliantango 2h : f lilliantango, 2h

1t Fnoo

(S d es
_\enm sage

https://en.wikipedia.org/wiki/Camposanto_Monumentale_di_Pisa
https://en.wikipedia.org/wiki/Fibonacci

Failing Spectacularly
> Naive recursive method

// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
if (n <= 2)
return 1;
else
return fib(n - 1) + fib (n - 2);

}

» Clicker 1 - Order of this method?
A.O(1) B.O(logN) C.O(N) D.O(N?3) E.O(2V)

CS314 Dynamic Programming 5

1th
2th
3th
4th
5th
oth
7th
8th
9th
10th
11th
12th
13th
14th
15th
l6th
17th

Failing Spectacularly

fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci

number:
number:
number:
number:
number:
number:
number:
number:
number:

fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci

number:
number:
number:
number:
number:
number:
number:
number:

1

W N =

8
1
2
3

- Time: 4.467E-6

- Time: 4.47E-7

- Time: 4.46E-7

- Time: 4.406E-7

- Time: 4.47E-7

- Time: 4.47E-7

3 — Time: 1.34E-0

1 - Time: 1.787E-0

4 - Time: 2.233E-0

55 = Time: 3.573E-6
89 - Time: 1.2953E-5
144 - Time: 8.934E-6
233 - Time: 2.9033E-5
377 - Time: 3.7966E-5
610 - Time: 5.0919E-5
987 - Time: 7.1464E-5
1597 - Time: 1.08984E-4

3o6th
37th
38th
39th
40th
41th
42th
43th
44th
45th
4oth
47th
48th
49th
50th
o1th

Failing Spectacularly

.045372057
.071195386
.116922086
.186926245

fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci

CS314

number:
number :
number:
number:
number:
number :
number:
number:
number:
number :
number:
number:
number:
number :
number:
number:

14930352 -
24157817 -
39088169 -
©32459860 -

102334155
165580141
267914296
433494437
701408733

1134903170 -
1836311903 -
1323752223 -

512559680

-811192543 -
-298632863 -
-11098254006 -

Dynamic Programming

Time:
Time:
Time:
Time:

o O O O

Time:
Time:
Time:
Time:
Time:
Time:
Time:

[”\JI——‘DDD

Time:
14.295023778

Time:
Time:
Time:

Time:

.308602967
.498588795
. 7193824734
.323325593

.098209943

3.392917489
5.5060675921
8.803592621

23.030062974
37.2172447°704
00.224418869

v

Clicker 2 - Falling Spectacularly
50th fibonnacl number: -298632863 - Time: 37.21°

» How long to calculate the 70" Fibonacci
Number with this method?

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these

CS314 Dynamic Programming 8

Aside - Overflow

> at 47" Fibonacci number overflows int
» Could use Biginteger class instead

private static final BigInteger one
= new BigInteger("1");

private static final BigInteger two
= new BigInteger("2") ;

public static BigInteger fib (BigInteger n) ({
if (n.compareTo (two) <= 0)
return one;
else {
BigInteger firstTerm = fib (n.subtract(two))
BigInteger secondTerm = fib(n.subtract(one));
return firstTerm.add (secondTerm) ;

CS314 Dynamic Programming

Aside - Biglnteger
> Answers correct beyond 46" Fibonacci number

> Even slower, math on BigIntegers,
object creation, and garbage collection

37th fibonnaci number: 24157817 - Time: 2.406739213
38th fibonnaci number: 39088169 - Time: 3.680196724
39th fibonnacli number: 63245986 - Time: 5.941275208
40th fibonnaci number: 102334155 Time: 9.63855468
41th fibonnaci number: 165580141 Time: 15.659745756
42th fibonnaci number: 267914296 Time: 25.404417949
43th fibonnacli number: 433494437 Time: 40.867030512
44th fibonnaci number: 701408733 Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924
46th fibonnaci number: 1836311903 - Time: 178.981819822
47th fibonnacli number: 2971215073 - Time: 287.052365326

CS314 Dynamic Programming 10

Slow Fibonacci

> Why so slow?

> Algorithm keeps calculating the same
value over and over

» When calculating the 40" Fibonacci
number the algorithm calculates the 4t
Fibonacci number 24,157,817 times!!!

CS314 Dynamic Programming 11

Fast Fibonaccl
> Instead of starting with the big problem

and working down to the small problems

> ... start with the small problem and
work up to the big problem

public static Biginteger fastFib(int n) {
Biginteger smallTerm = one;
Biginteger largeTerm = one;
for (inti =3;1<=n;i++){
Biginteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm =temp;

}

return largeTerm;

CS314 Dynamic Programming 12

1th
2th
3th
4th
5th
oth
Tth
8th
9th
10th
11th
12th
13th
14th
15th
loth
17th

Fast Fibonacci

flbDﬂﬂaCl
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnacil
fibonnaci

number

number:
number:
number:
number:
number:
number:
number:
number:

fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci
fibonnaci

number:
number:
number:
number:
number:
number :
number:
number:

N W N = =

8
1
2
3

- Time: 4.467E-6

- Time: 4.47E-7

- Time: 7.146E-6

- Time: 2.68E-6

- Time: 2.68E-6

- Time: 2.679E-6

3 — Time: 3.573E-6

1 - Time: 4.02E-0

4 - Time: 4.4660E-6
55 - Time: 4.467E-6
89 - Time: 4.913E-6
144 - Time: 6.253E-6
233 - Time: 6.253E-6
377 = Time: 5.806E-6
610 - Time: 6.7E-6
987 - Time: 7.146E-6
1597 - Time: 7.146E-6

Fast FlbonaCC|

45th fibonnaci number: 1134903170 Time: 1.7419E-5
4oth fibonnaci number: 1836311903 - Time: 1.6972E-5
47th fibonnaci number: 2971215073 - Time: 1.6973E-5
48th fibonnacli number: 4807526976 - Time: 2.3673E-5
49th fibonnaci number: 7778742049 - Time: 1.9653E-5
50th fibonnaci number: 12586269025 - Time: 2.01E-5
51th fibonnaci number: 20365011074 - Time: 1.9207E-5
52th fibonnacli number: 32951280099 - Time: 2.0546E-5
o7th fibonnaci number: 44945570212853 - Time: 2.3673E-5
08th fibonnaci number: 72723460248141 - Time: 2.3673E-5
09th fibonnaci number: 117669030460994 - Time: 2.412E-5
70th fibonnaci number: 190392490709135 - Time: 2.4566E-5
71th fibonnaci number: 308061521170129 - Time: 2.4566E-5
72th fibonnaci number: 498454011879264 - Time: 2.5906E-5
73th fibonnaci number: 806515533049393 - Time: 2.5459E-5
74th fibonnaci number: 1304969544928657 - Time: 2.546E-5
200th fibonnacl number: 280571172992510140037611932413038677189525 - Time: 1.0273E-:

Memoization

» Store (cache) results from
computations for later lookup

» Memoization of Fibonacci Numbers

public class FibMemo ({
private static List<BigInteger> lookupTable;

private static final BigInteger ONE
= new BigInteger ("1");

static {
lookupTable = new ArrayList<>();
lookupTable.add (null) ;
lookupTable.add (ONE) ;
lookupTable.add (ONE) ;

CS314 } Dynamic Programming

Fibonaccl Memoization

public static BigInteger fib(int n) {
// check lookup table
if (n < lookupTable.size()) {
return lookupTable.get(n);

// Calculate nth Fibonacci.
// Don't repeat work. Start with the last known.
BigInteger smallTerm
= lookupTable.get (lookupTable.size() - 2);
BigInteger largeTerm
= lookupTable.get (lookupTable.size() - 1);
for (int i = lookupTable.size(); i <= n; i++) {
BigInteger temp = largeTerm;
largeTerm = largeTerm.add (smallTerm) ;
lookupTable.add(largeTerm); // memo
smallTerm = temp;

}

return largeTerm;

Dynamic Programming

» When to use?

» When a big problem can be broken up into sub

problems.

» Solution to original problem can be

calculated from results of smaller
— larger problems depend on previous so

oroblems.
utions

» Sub problems must have a natural ordering
from smallest to largest (simplest to

hardest)
» Multiple techniques within DP

CS314 Dynamic Programming

17

DP Algorithms

» Step 1: Define the *meaning* of the subproblems
(in English for sure, Mathematically as well if you
find it helpful).

» Step 2: Show where the solution will be found.
» Step 3: Show how to set the first subproblem.

» Step 4: Define the order in which the subproblems
are solved.

» Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)

CS314 Dynamic Programming 18

Dynamic Programming Requires:

> overlapping sub problems:
— problem can be broken down into sub problems
— obvious with Fibonacci
— Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

> optimal substructure:

— the optimal solution for a problem can be
constructed from optimal solutions of its sub
problems

— In Fibonacci just sub problems, no optimality
— min coins opt(36) = 1,, + opt(24) [1, 5, 12]

CS314 Dynamic Programming 19

Dynamic Programing Example

> Another simple example

» Finding the best solution involves finding the
best answer to simpler problems

» Given a set of coins with values (V{, V,, ... V)
and a target sum S, find the fewest coins
required to equal S

» What is Greedy Algorithm approach?

» Does it always work?

» {1, 5, 12} and target sum =15 (12, 1, 1, 1)
» Could use recursive backtracking ...

CS314 Dynamic Programming 20

Minimum Number of Coins

» To find minimum number of coins to sum to
15 with values {1, 5, 12} start with sum O

— recursive backtracking would likely start with 15

> Let M(S) = minimum number of coins to sum
to S

> At each step look at target sum,
coins available, and previous sums

— pick the smallest option

CS314 Dynamic Programming 21

Minimum Number of Coins
» M(0) = 0 coins
» M(1) = 1 coin (1 coin)
» M(2) = 2 coins (1 coin + M(1))
» M(3) = 3 coins (1 coin + M(2))
» M(4) = 4 coins (1 coin + M(3))

» M(5) = interesting, 2 options available:
1 + others OR single 5
If 1then1l+ M(4)=5,if 5then1l + M(0) =
clearly better to pick the coin worth 5

CS314 Dynamic Programming

1

22

v VvV VvV VvV VvV VvV VvV VvV V9V V9V VY

Minimum Number of Coins

M(0) =0 > M(11) = 2 (1 coin + M(10))
M(1) =1 (1 coin) options: 1, 5

M(2) = 2 (1 coin + M(1)) " M(12) =1 (1 coin + M(0))
M(3) = 3 (1 coin + M(2)) options: 4, 5, 12

M(4) = 4 (1 coin + M(3)) I(\)/gtllgzlsz i (izcom +M(12))
M(5) =1 (1 coin + M(0)) » M(14) = 3 (1 coin + M(13))
M(6) =2 (1 coin + M(5)) options: 1, 12

M(7) =3 (1 coin + M(6)) » M(15) = 3 (1 coin + M(10))
M(8) =4 (1 coin + M(7)) options: 1, 5, 12

M(9) =5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))
options: 1, 5

CS314 Dynamic Programming 23

KNAPSACK PROBLEM -
RECURSIVE BACKTRACKING
AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 24

Knapsack Problem

> A variation of a bin packing problem

» Similar to fair teams problem from
recursion assignment

> You have a set of items
» Each item has a weight and a value
» You have a knapsack with a weight limit

> Goal: Maximize the value of the items you
put In the knapsack without exceeding the
weight limit

CS314 Dynamic Programming 25

Knapsack Example

> Items: ltem Weight | Value of | Value
Number | of Item ltem per unit
Welght

1 1
2 2
) : 3 4 1 0.25
V_Ve_lght 4 4 12 3.0
Limit =8 5 6 19 3.167
6 7 12 1.714

» A greedy solution: Take the highest ratio
item that will fit: (1, 6), (2, 11), and (4, 12)

» Total value =6 + 11 + 12 = 29
> Clicker 3 - Is this optimal? A.No B. Yes

Knapsack - Recursive Backtracking

private static int knapsack (ArrayList<Item> items,
int current, int capacity) {

int result = 0;
if (current < items.size()) {
// don't use item
int withoutItem
= knapsack(items, current + 1, capacity);
int withItem = O0;
// if current item will fit, try it
Item currentItem = items.get (current);
if (currentItem.weight <= capacity) {
withItem += currentlItem.value;
withItem += knapsack(items, current + 1,
capacity - currentItem.weight);

}
result = Math.max (withoutItem, withItem) ;

}

return result;

Knapsack - Dynamic Programming

» Recursive backtracking starts with max
capacity and makes choice for items:
choices are:

— take the item If 1t fits
— don't take the item

» Dynamic Programming, start with
simpler problems

» Reduce number of items available
> ... AND Reduce weight limit on knapsack
» Creates a 2d array of possibilities

CS314 Dynamic Programming 28

Knapsack - Optimal Function

» OptimalSolution(items, weight) is best
solution given a subset of items and a weight
limit

» 2 options:

> OptimalSolution does not select it" item
— select best solution for items 1 to | - 1with weight

Imit of w

» OptimalSolution selects it" item
— New weight limit = w - weight of it" item

— select best solution for items 1 to 1 - 1with new
weight limit ’9

Knapsack Optimal Function
» OptimalSolution(items, weight limit) =

O iIf O items

OptimalSolution(items - 1, weight) if weight of
ith item Is greater than allowed weight
w; > w (In others it item doesn't fit)

max of (OptimalSolution(items - 1, w),
value of ith item +
OptimalSolution(items - 1, w - w))

CS314 Dynamic Programming 30

Knapsack - Algorithm

> Create a 2d array to store

value of best option given ”mber f K em
subset of items and 1
possible weights

1

12
19
12

O O B~ W DN
~N oo A~ BN

> In our example 0 to 6
items and weight limits of of O to 8

> Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Knapsack Algorithm

Given N items and WeightLimit
Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
M[O,w] =0

Foritem=1to N
for weight = 1 to WeightLimit
If(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]
else

M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]

Knapsack - Table

2 2 11
3 4 1

4 4 12
S 6 19
6 7 12

1,2}

1,2, 3

1,2, 3,4}
{1, 2,3, 4,5
{1,2,3,4,5, 6}

Knapsack - Completed Table

O 0 0 0 0 O O O
6 6 6 6 6 6 6 6
6 11 17 17 17 17 17 17
6 11 17 17 17 17 18 18
6 11 17 17 18 23 29 29
6 11 17 17 18 23 29 30
6 11 17 17 18 23 29 30

11}

[1, 6]
11,2}
[2, 11]

{1, 2, 3}

[4, 1]

{1, 2, 3, 4}

{1, 2, 3, 4, 5}
[6, 19]

{1, 2,3, 4,5, 6}

[7,12]

© O O O O O O

Knapsack - Iltems to Take

ooooooooo
66666666

11,2}

6 (11) 17

{1, 2, 3, 4}
[4, 12]

17
17
17

17
17
18

17
17
23

17 17
17 17
29 29

{1, 2, 3,4,5}
[6, 19]

{1, 2, 3,4,5, 6}
[7,12]

o O O O O
»
\l

17
17

18
18

23
23

29 (30)

29 30

Dynamic Knapsack

// dynamic programming approach
public static int knapsack (ArrayList<Item> items, int maxCapacity) ({
final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS] [COLS] ;
// first row and first column all zeros

for (int item = 1; item <= items.size(); item++) {
for (int capacity = 1; capacity <= maxCapacity; capacity++) ({
Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1] [capacity];
if(currentItem.weight <= capacity) {
int withItem = currentItem.value;
int caplLeft = capacity - currentlItem.weight;
withItem += partialSolutions[item - 1] [capLeft];
if (withItem > bestSoFar) {
bestSoFar = withItem;

}

partialSolutions|[item] [capacity] = bestSoFar;

}
return partialSolutions[ROWS - 1] [COLS - 1];

Dynamic vs. Recursive
Backtracking Timing Data

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4

CS314 Dynamic Programming

Clicker 4

» Which approach to the knapsack problem
uses more memory?

A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory

CS314 Dynamic Programming 38

