

Topic 26

Dynamic Programming

"Thus, I thought *dynamic programming* was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman

Origins

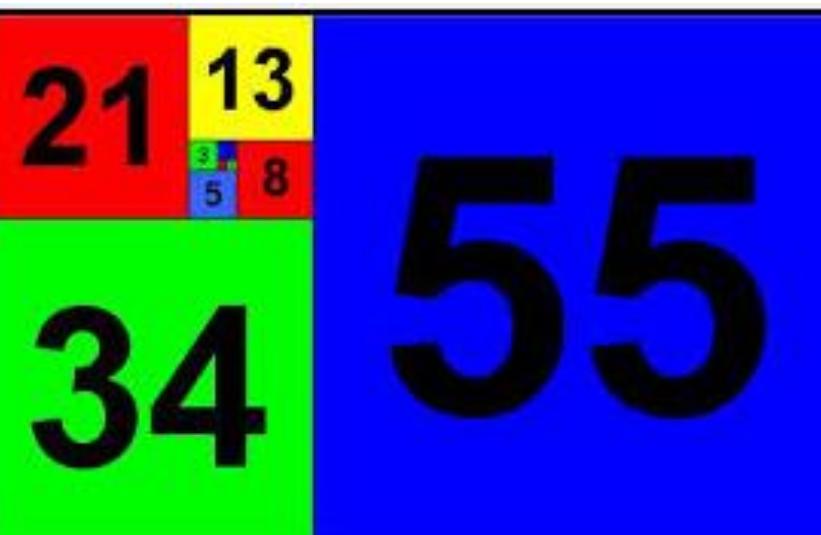
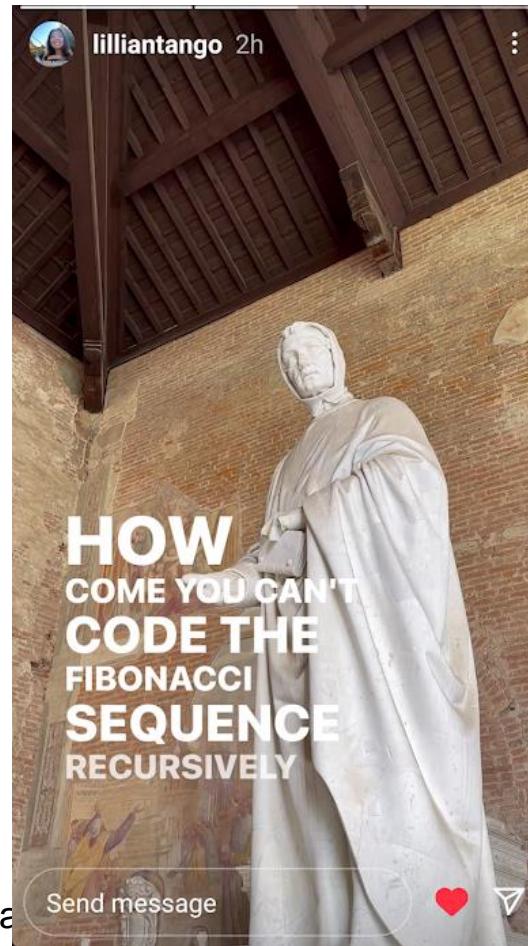
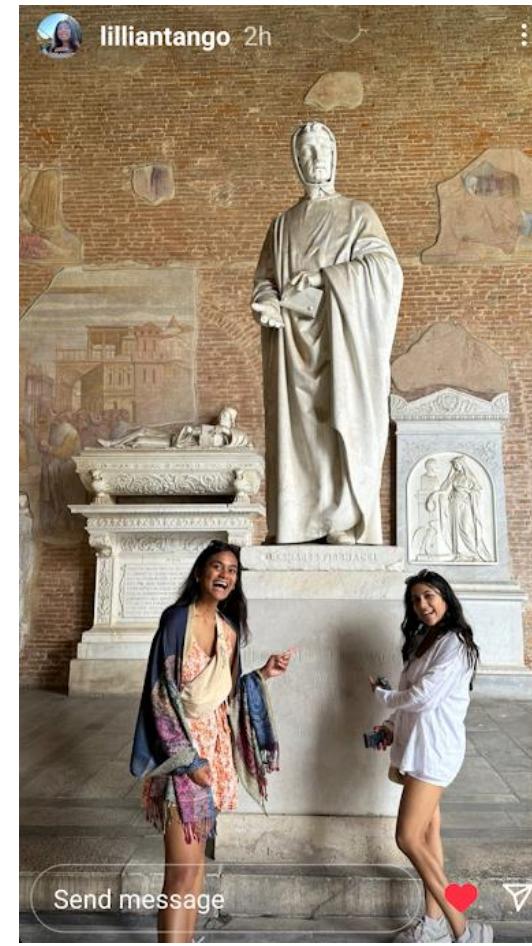
- ▶ A method for solving complex problems by breaking them into smaller, easier, sub problems
- ▶ Term *Dynamic Programming* coined by mathematician Richard Bellman in early 1950s
 - employed by Rand Corporation
 - Rand had many, large military contracts
 - Secretary of Defense, Charles Wilson “against research, especially mathematical research”
 - how could any one oppose “dynamic”?

Dynamic Programming

- ▶ Break big problem up into smaller problems ...
- ▶ Sound familiar?
- ▶ Recursion?
 $N! = 1$ for $N == 0$
 $N! = N * (N - 1)!$ for $N > 0$

Fibonacci Numbers

- ▶ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- ▶ $F_1 = 1$
- ▶ $F_2 = 1$
- ▶ $F_N = F_{N-1} + F_{N-2}$
- ▶ Recursive Solution?



Failing Spectacularly

- ▶ Naïve recursive method

```
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
        return 1;
    else
        return fib(n - 1) + fib (n - 2);
}
```

- ▶ Clicker 1 - Order of this method?

- A. $O(1)$
- B. $O(\log N)$
- C. $O(N)$
- D. $O(N^2)$
- E. $O(2^N)$

Failing Spectacularly

```
1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7
3th fibonnaci number: 2 - Time: 4.46E-7
4th fibonnaci number: 3 - Time: 4.46E-7
5th fibonnaci number: 5 - Time: 4.47E-7
6th fibonnaci number: 8 - Time: 4.47E-7
7th fibonnaci number: 13 - Time: 1.34E-6
8th fibonnaci number: 21 - Time: 1.787E-6
9th fibonnaci number: 34 - Time: 2.233E-6
10th fibonnaci number: 55 - Time: 3.573E-6
11th fibonnaci number: 89 - Time: 1.2953E-5
12th fibonnaci number: 144 - Time: 8.934E-6
13th fibonnaci number: 233 - Time: 2.9033E-5
14th fibonnaci number: 377 - Time: 3.7966E-5
15th fibonnaci number: 610 - Time: 5.0919E-5
16th fibonnaci number: 987 - Time: 7.1464E-5
17th fibonnaci number: 1597 - Time: 1.08984E-4
```

Failing Spectacularly

```
36th fibonacci number: 14930352 - Time: 0.045372057
37th fibonacci number: 24157817 - Time: 0.071195386
38th fibonacci number: 39088169 - Time: 0.116922086
39th fibonacci number: 63245986 - Time: 0.186926245
40th fibonacci number: 102334155 - Time: 0.308602967
41th fibonacci number: 165580141 - Time: 0.498588795
42th fibonacci number: 267914296 - Time: 0.793824734
43th fibonacci number: 433494437 - Time: 1.323325593
44th fibonacci number: 701408733 - Time: 2.098209943
45th fibonacci number: 1134903170 - Time: 3.392917489
46th fibonacci number: 1836311903 - Time: 5.506675921
47th fibonacci number: -1323752223 - Time: 8.803592621
48th fibonacci number: 512559680 - Time: 14.295023778
49th fibonacci number: -811192543 - Time: 23.030062974
50th fibonacci number: -298632863 - Time: 37.217244704
51th fibonacci number: -1109825406 - Time: 60.224418869
```

Clicker 2 - Failing Spectacularly

50th fibonnaci number: -298632863 = Time: 37.217

- ▶ How long to calculate the 70th Fibonacci Number with this method?
 - 37 seconds
 - 74 seconds
 - 740 seconds
 - 14,800 seconds
 - None of these

Aside - Overflow

- ▶ at 47th Fibonacci number overflows int
- ▶ Could use BigInteger class instead

```
private static final BigInteger one
    = new BigInteger("1");

private static final BigInteger two
    = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```

Aside - BigInteger

- ▶ Answers correct beyond 46th Fibonacci number
- ▶ Even slower, math on BigIntegers, object creation, and garbage collection

```
37th fibonnaci number: 24157817 - Time: 2.406739213
38th fibonnaci number: 39088169 - Time: 3.680196724
39th fibonnaci number: 63245986 - Time: 5.941275208
40th fibonnaci number: 102334155 - Time: 9.63855468
41th fibonnaci number: 165580141 - Time: 15.659745756
42th fibonnaci number: 267914296 - Time: 25.404417949
43th fibonnaci number: 433494437 - Time: 40.867030512
44th fibonnaci number: 701408733 - Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924
46th fibonnaci number: 1836311903 - Time: 178.981819822
47th fibonnaci number: 2971215073 - Time: 287.052365326
```

Slow Fibonacci

- ▶ Why so slow?
- ▶ Algorithm keeps calculating the same value over and over
- ▶ When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number 24,157,817 times!!!

Fast Fibonacci

- ▶ Instead of starting with the big problem and working down to the small problems
- ▶ ... start with the small problem and work up to the big problem

```
public static BigInteger fastFib(int n) {  
    BigInteger smallTerm = one;  
    BigInteger largeTerm = one;  
    for (int i = 3; i <= n; i++) {  
        BigInteger temp = largeTerm;  
        largeTerm = largeTerm.add(smallTerm);  
        smallTerm = temp;  
    }  
    return largeTerm;  
}
```

Fast Fibonacci

1th fibonnaci number:	1	-	Time:	4.467E-6
2th fibonnaci number:	1	-	Time:	4.47E-7
3th fibonnaci number:	2	-	Time:	7.146E-6
4th fibonnaci number:	3	-	Time:	2.68E-6
5th fibonnaci number:	5	-	Time:	2.68E-6
6th fibonnaci number:	8	-	Time:	2.679E-6
7th fibonnaci number:	13	-	Time:	3.573E-6
8th fibonnaci number:	21	-	Time:	4.02E-6
9th fibonnaci number:	34	-	Time:	4.466E-6
10th fibonnaci number:	55	-	Time:	4.467E-6
11th fibonnaci number:	89	-	Time:	4.913E-6
12th fibonnaci number:	144	-	Time:	6.253E-6
13th fibonnaci number:	233	-	Time:	6.253E-6
14th fibonnaci number:	377	-	Time:	5.806E-6
15th fibonnaci number:	610	-	Time:	6.7E-6
16th fibonnaci number:	987	-	Time:	7.146E-6
17th fibonnaci number:	1597	-	Time:	7.146E-6

Fast Fibonacci

```
45th fibonnaci number: 1134903170 - Time: 1.7419E-5
46th fibonnaci number: 1836311903 - Time: 1.6972E-5
47th fibonnaci number: 2971215073 - Time: 1.6973E-5
48th fibonnaci number: 4807526976 - Time: 2.3673E-5
49th fibonnaci number: 7778742049 - Time: 1.9653E-5
50th fibonnaci number: 12586269025 - Time: 2.01E-5
51th fibonnaci number: 20365011074 - Time: 1.9207E-5
52th fibonnaci number: 32951280099 - Time: 2.0546E-5
```

```
67th fibonnaci number: 44945570212853 - Time: 2.3673E-5
68th fibonnaci number: 72723460248141 - Time: 2.3673E-5
69th fibonnaci number: 117669030460994 - Time: 2.412E-5
70th fibonnaci number: 190392490709135 - Time: 2.4566E-5
71th fibonnaci number: 308061521170129 - Time: 2.4566E-5
72th fibonnaci number: 498454011879264 - Time: 2.5906E-5
73th fibonnaci number: 806515533049393 - Time: 2.5459E-5
74th fibonnaci number: 1304969544928657 - Time: 2.546E-5
```

```
200th fibonnaci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-5
```

Memoization

- ▶ Store (cache) results from computations for later lookup
- ▶ Memoization of Fibonacci Numbers

```
public class FibMemo {  
  
    private static List<BigInteger> lookupTable;  
  
    private static final BigInteger ONE  
        = new BigInteger("1");  
  
    static {  
        lookupTable = new ArrayList<>();  
        lookupTable.add(null);  
        lookupTable.add(ONE);  
        lookupTable.add(ONE);  
    }  
}
```

Fibonacci Memoization

```
public static BigInteger fib(int n) {  
    // check lookup table  
    if (n < lookupTable.size()) {  
        return lookupTable.get(n);  
    }  
  
    // Calculate nth Fibonacci.  
    // Don't repeat work. Start with the last known.  
    BigInteger smallTerm  
        = lookupTable.get(lookupTable.size() - 2);  
    BigInteger largeTerm  
        = lookupTable.get(lookupTable.size() - 1);  
    for(int i = lookupTable.size(); i <= n; i++) {  
        BigInteger temp = largeTerm;  
        largeTerm = largeTerm.add(smallTerm);  
        lookupTable.add(largeTerm); // memo  
        smallTerm = temp;  
    }  
    return largeTerm;  
}
```

Dynamic Programming

- ▶ When to use?
- ▶ When a big problem can be broken up into sub problems.
- ▶ **Solution to original problem can be calculated from results of smaller problems.**
 - larger problems depend on previous solutions
- ▶ **Sub problems must have a natural ordering from smallest to largest (simplest to hardest)**
- ▶ Multiple techniques within DP

DP Algorithms

- ▶ Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- ▶ Step 2: Show where the solution will be found.
- ▶ Step 3: Show how to set the first subproblem.
- ▶ Step 4: Define the order in which the subproblems are solved.
- ▶ Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

Dynamic Programming Requires:

- ▶ overlapping sub problems:
 - problem can be broken down into sub problems
 - obvious with Fibonacci
 - $\text{Fib}(N) = \text{Fib}(N - 2) + \text{Fib}(N - 1)$ for $N \geq 3$
- ▶ optimal substructure:
 - the optimal solution for a problem can be constructed from optimal solutions of its sub problems
 - In Fibonacci just sub problems, no optimality
 - min coins $\text{opt}(36) = 1_{12} + \text{opt}(24)$ [1, 5, 12]

Dynamic Programming Example

- ▶ Another simple example
- ▶ Finding the best solution involves finding the best answer to simpler problems
- ▶ Given a set of coins with values (V_1, V_2, \dots, V_N) and a target sum S , find the fewest coins required to equal S
- ▶ What is Greedy Algorithm approach?
- ▶ Does it always work?
- ▶ $\{1, 5, 12\}$ and target sum = 15 (12, 1, 1, 1)
- ▶ Could use recursive backtracking ...

Minimum Number of Coins

- ▶ To find minimum number of coins to sum to 15 with values {1, 5, 12} start with sum 0
 - recursive backtracking would likely start with 15
- ▶ Let $M(S)$ = minimum number of coins to sum to S
- ▶ At each step look at target sum, coins available, and previous sums
 - pick the smallest option

Minimum Number of Coins

- ▶ $M(0) = 0$ coins
- ▶ $M(1) = 1$ coin (1 coin)
- ▶ $M(2) = 2$ coins (1 coin + $M(1)$)
- ▶ $M(3) = 3$ coins (1 coin + $M(2)$)
- ▶ $M(4) = 4$ coins (1 coin + $M(3)$)
- ▶ $M(5) =$ interesting, 2 options available:
 1 + others OR single 5
 if 1 then $1 + M(4) = 5$, if 5 then $1 + M(0) = 1$
 clearly better to pick the coin worth 5

Minimum Number of Coins

- $M(0) = 0$
- $M(1) = 1$ (1 coin)
- $M(2) = 2$ (1 coin + $M(1)$)
- $M(3) = 3$ (1 coin + $M(2)$)
- $M(4) = 4$ (1 coin + $M(3)$)
- $M(5) = 1$ (1 coin + $M(0)$)
- $M(6) = 2$ (1 coin + $M(5)$)
- $M(7) = 3$ (1 coin + $M(6)$)
- $M(8) = 4$ (1 coin + $M(7)$)
- $M(9) = 5$ (1 coin + $M(8)$)
- $M(10) = 2$ (1 coin + $M(5)$)
options: 1, 5
- $M(11) = 2$ (1 coin + $M(10)$)
options: 1, 5
- $M(12) = 1$ (1 coin + $M(0)$)
options: 1, 5, 12
- $M(13) = 2$ (1 coin + $M(12)$)
options: 1, 12
- $M(14) = 3$ (1 coin + $M(13)$)
options: 1, 12
- $M(15) = 3$ (1 coin + $M(10)$)
options: 1, 5, 12

KNAPSACK PROBLEM - RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING

Knapsack Problem

- ▶ A variation of a *bin packing* problem
- ▶ Similar to fair teams problem from recursion assignment
- ▶ You have a set of items
- ▶ Each item has a weight and a value
- ▶ You have a knapsack with a weight limit
- ▶ Goal: Maximize the value of the items you put in the knapsack without exceeding the weight limit

Knapsack Example

- ▶ Items:

Item Number	Weight of Item	Value of Item	Value per unit Weight
1	1	6	6.0
2	2	11	5.5
3	4	1	0.25
4	4	12	3.0
5	6	19	3.167
6	7	12	1.714

- ▶ Weight Limit = 8

- ▶ A greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- ▶ Total value = $6 + 11 + 12 = 29$
- ▶ Clicker 3 - Is this optimal? A. No B. Yes

Knapsack - Recursive Backtracking

```
private static int knapsack(ArrayList<Item> items,
                           int current, int capacity) {

    int result = 0;
    if (current < items.size()) {
        // don't use item
        int withoutItem
            = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if (currentItem.weight <= capacity) {
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1,
                                  capacity - currentItem.weight);
        }
        result = Math.max(withoutItem, withItem);
    }
    return result;
}
```

Knapsack - Dynamic Programming

- ▶ Recursive backtracking starts with max capacity and makes choice for items: choices are:
 - take the item if it fits
 - don't take the item
- ▶ Dynamic Programming, start with simpler problems
- ▶ Reduce number of items available
- ▶ ... AND Reduce weight limit on knapsack
- ▶ Creates a 2d array of possibilities

Knapsack - Optimal Function

- ▶ `OptimalSolution(items, weight)` is best solution given a subset of items and a weight limit
- ▶ 2 options:
- ▶ `OptimalSolution` does not select i^{th} item
 - select best solution for items 1 to $i - 1$ with weight limit of w
- ▶ `OptimalSolution` selects i^{th} item
 - New weight limit = $w - \text{weight of } i^{\text{th}} \text{ item}$
 - select best solution for items 1 to $i - 1$ with new weight limit

Knapsack Optimal Function

► $\text{OptimalSolution}(\text{items}, \text{weight limit}) =$

0 if 0 items

$\text{OptimalSolution}(\text{items} - 1, \text{weight})$ if weight of
ith item is greater than allowed weight
 $w_i > w$ (In others i^{th} item doesn't fit)

max of $(\text{OptimalSolution}(\text{items} - 1, w),$
value of i^{th} item +
 $\text{OptimalSolution}(\text{items} - 1, w - w_i)$

Knapsack - Algorithm

- ▶ Create a 2d array to store value of best option given subset of items and possible weights
- ▶ In our example 0 to 6 items and weight limits of 0 to 8
- ▶ Fill in table using OptimalSolution Function

Item Number	Weight of Item	Value of Item
1	1	6
2	2	11
3	4	1
4	4	12
5	6	19
6	7	12

Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit

$M[0, w] = 0$

For item = 1 to N

 for weight = 1 to WeightLimit

 if(weight of ith item > weight)

$M[item, weight] = M[item - 1, weight]$

 else

$M[item, weight] = \max \text{ of}$

$M[item - 1, weight]$ AND

 value of item + $M[item - 1, weight - \text{weight of item}]$

Knapsack - Table

Item	Weight	Value
1	1	6
2	2	11
3	4	1
4	4	12
5	6	19
6	7	12

Knapsack - Completed Table

items / weight	0	1	2	3	4	5	6	7	8
{}	0	0	0	0	0	0	0	0	0
{1} [1, 6]	0	6	6	6	6	6	6	6	6
{1,2} [2, 11]	0	6	11	17	17	17	17	17	17
{1, 2, 3} [4, 1]	0	6	11	17	17	17	17	18	18
{1, 2, 3, 4} [4, 12]	0	6	11	17	17	18	23	29	29
{1, 2, 3, 4, 5} [6, 19]	0	6	11	17	17	18	23	29	30
{1, 2, 3, 4, 5, 6} [7, 12]	0	6	11	17	17	18	23	29	30

Knapsack - Items to Take

items / weight	0	1	2	3	4	5	6	7	8
{}	0	0	0	0	0	0	0	0	0
{1} [1, 6]	0	6	6	6	6	6	6	6	6
{1,2} [2, 11]	0	6	11	17	17	17	17	17	17
{1, 2, 3} [4, 1]	0	6	11	17	17	17	17	17	17
{1, 2, 3, 4} [4, 12]	0	6	11	17	17	18	23	29	29
{1, 2, 3, 4, 5} [6, 19]	0	6	11	17	17	18	23	29	30
{1, 2, 3, 4, 5, 6} [7, 12]	0	6	11	17	17	18	23	29	30

Dynamic Knapsack

```
// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];
    // first row and first column all zeros

    for(int item = 1; item <= items.size(); item++) {
        for(int capacity = 1; capacity <= maxCapacity; capacity++) {
            Item currentItem = items.get(item - 1);
            int bestSoFar = partialSolutions[item - 1][capacity];
            if( currentItem.weight <= capacity) {
                int withItem = currentItem.value;
                int capLeft = capacity - currentItem.weight;
                withItem += partialSolutions[item - 1][capLeft];
                if (withItem > bestSoFar) {
                    bestSoFar = withItem;
                }
            }
            partialSolutions[item][capacity] = bestSoFar;
        }
    }
    return partialSolutions[ROWS - 1][COLS - 1];
}
```

Dynamic vs. Recursive Backtracking Timing Data

Number of items: 32. Capacity: 123

Recursive knapsack. Answer: 740, time: 10.0268025

Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210

Recursive knapsack. Answer: 893, time: 23.0677814

Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173

Recursive knapsack. Answer: 941, time: 89.8400178

Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219

Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4

- ▶ Which approach to the knapsack problem uses more memory?
 - A. the recursive backtracking approach
 - B. the dynamic programming approach
 - C. they use about the same amount of memory