Topic 26
Dynamic Programming

"Thus, | thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So |
used It as an umbrella for my activities"

- Richard E. Bellman




Origins
> A method for solving complex problems by

breaking them into smaller, easier, sub
problems

» Term Dynamic Programming coined by
mathematician Richard Bellman in early

1950s

— employed by Rand Corporation
— Rand had many, large military contracts

— Secretary of Defense, Charles Wilson “"against research,
especially mathematical research”

— how could any one oppose "dynamic"?
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https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Charles_Erwin_Wilson

Dynamic Programming

» Break big problem up into smaller
problems ...

» Sound familiar?

» Recursion?
N! =1 for N =
NI =N~* (N—l)!forN>O
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Fibonacci Numbers
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https://en.wikipedia.org/wiki/Camposanto_Monumentale_di_Pisa
https://en.wikipedia.org/wiki/Fibonacci

Failing Spectacularly
> Naive recursive method

// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
if (n <= 2)
return 1;
else
return fib(n - 1) + fib (n - 2);

}

» Clicker 1 - Order of this method?
A.O(1) B.O(logN) C.O(N) D.O(N?3) E.O(2V)
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- Time: 4.47E-7
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55 = Time: 3.573E-6
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233 - Time: 2.9033E-5
377 - Time: 3.7966E-5
610 - Time: 5.0919E-5
987 - Time: 7.1464E-5
1597 - Time: 1.08984E-4
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Clicker 2 - Falling Spectacularly
50th fibonnacl number: -298632863 - Time: 37.21°

» How long to calculate the 70" Fibonacci
Number with this method?

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these
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Aside - Overflow

> at 47" Fibonacci number overflows int
» Could use Biginteger class instead

private static final BigInteger one
= new BigInteger("1");

private static final BigInteger two
= new BigInteger("2") ;

public static BigInteger fib (BigInteger n) ({
if (n.compareTo (two) <= 0)
return one;
else {
BigInteger firstTerm = fib (n.subtract(two))
BigInteger secondTerm = fib(n.subtract(one));
return firstTerm.add (secondTerm) ;
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Aside - Biglnteger
> Answers correct beyond 46" Fibonacci number

> Even slower, math on BigIntegers,
object creation, and garbage collection

37th fibonnaci number: 24157817 - Time: 2.406739213
38th fibonnaci number: 39088169 - Time: 3.680196724
39th fibonnacli number: 63245986 - Time: 5.941275208
40th fibonnaci number: 102334155 Time: 9.63855468
41th fibonnaci number: 165580141 Time: 15.659745756
42th fibonnaci number: 267914296 Time: 25.404417949
43th fibonnacli number: 433494437 Time: 40.867030512
44th fibonnaci number: 701408733 Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924
46th fibonnaci number: 1836311903 - Time: 178.981819822
47th fibonnacli number: 2971215073 - Time: 287.052365326
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Slow Fibonacci

> Why so slow?

> Algorithm keeps calculating the same
value over and over

» When calculating the 40" Fibonacci
number the algorithm calculates the 4t
Fibonacci number 24,157,817 times!!!
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Fast Fibonaccl
> Instead of starting with the big problem

and working down to the small problems

> ... start with the small problem and
work up to the big problem

public static Biginteger fastFib(int n) {
Biginteger smallTerm = one;
Biginteger largeTerm = one;
for (inti =3;1<=n;i++){
Biginteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm =temp;

}

return largeTerm;
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- Time: 4.467E-6

- Time: 4.47E-7

- Time: 7.146E-6

- Time: 2.68E-6

- Time: 2.68E-6

- Time: 2.679E-6

3 — Time: 3.573E-6

1 - Time: 4.02E-0

4 - Time: 4.4660E-6
55 - Time: 4.467E-6
89 - Time: 4.913E-6
144 - Time: 6.253E-6
233 - Time: 6.253E-6
377 = Time: 5.806E-6
610 - Time: 6.7E-6
987 - Time: 7.146E-6
1597 - Time: 7.146E-6



Fast FlbonaCC|

45th fibonnaci number: 1134903170 Time: 1.7419E-5
4oth fibonnaci number: 1836311903 - Time: 1.6972E-5
47th fibonnaci number: 2971215073 - Time: 1.6973E-5
48th fibonnacli number: 4807526976 - Time: 2.3673E-5
49th fibonnaci number: 7778742049 - Time: 1.9653E-5
50th fibonnaci number: 12586269025 - Time: 2.01E-5
51th fibonnaci number: 20365011074 - Time: 1.9207E-5
52th fibonnacli number: 32951280099 - Time: 2.0546E-5
o7th fibonnaci number: 44945570212853 - Time: 2.3673E-5
08th fibonnaci number: 72723460248141 - Time: 2.3673E-5
09th fibonnaci number: 117669030460994 - Time: 2.412E-5
70th fibonnaci number: 190392490709135 - Time: 2.4566E-5
71th fibonnaci number: 308061521170129 - Time: 2.4566E-5
72th fibonnaci number: 498454011879264 - Time: 2.5906E-5
73th fibonnaci number: 806515533049393 - Time: 2.5459E-5
74th fibonnaci number: 1304969544928657 - Time: 2.546E-5
200th fibonnacl number: 280571172992510140037611932413038677189525 - Time: 1.0273E-:



Memoization

» Store (cache) results from
computations for later lookup

» Memoization of Fibonacci Numbers

public class FibMemo ({
private static List<BigInteger> lookupTable;

private static final BigInteger ONE
= new BigInteger ("1");

static {
lookupTable = new ArrayList<>();
lookupTable.add (null) ;
lookupTable.add (ONE) ;
lookupTable.add (ONE) ;
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Fibonaccl Memoization

public static BigInteger fib(int n) {
// check lookup table
if (n < lookupTable.size()) {
return lookupTable.get(n);

// Calculate nth Fibonacci.
// Don't repeat work. Start with the last known.
BigInteger smallTerm
= lookupTable.get (lookupTable.size() - 2);
BigInteger largeTerm
= lookupTable.get (lookupTable.size() - 1);
for (int i = lookupTable.size(); i <= n; i++) {
BigInteger temp = largeTerm;
largeTerm = largeTerm.add (smallTerm) ;
lookupTable.add(largeTerm); // memo
smallTerm = temp;

}

return largeTerm;




Dynamic Programming

» When to use?

» When a big problem can be broken up into sub

problems.

» Solution to original problem can be

calculated from results of smaller
— larger problems depend on previous so

oroblems.
utions

» Sub problems must have a natural ordering
from smallest to largest (simplest to

hardest)
» Multiple techniques within DP

CS314 Dynamic Programming
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DP Algorithms

» Step 1: Define the *meaning* of the subproblems
(in English for sure, Mathematically as well if you
find it helpful).

» Step 2: Show where the solution will be found.
» Step 3: Show how to set the first subproblem.

» Step 4: Define the order in which the subproblems
are solved.

» Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)
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Dynamic Programming Requires:

> overlapping sub problems:
— problem can be broken down into sub problems
— obvious with Fibonacci
— Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

> optimal substructure:

— the optimal solution for a problem can be
constructed from optimal solutions of its sub
problems

— In Fibonacci just sub problems, no optimality
— min coins opt(36) = 1,, + opt(24) [1, 5, 12]
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Dynamic Programing Example

> Another simple example

» Finding the best solution involves finding the
best answer to simpler problems

» Given a set of coins with values (V{, V,, ... V)
and a target sum S, find the fewest coins
required to equal S

» What is Greedy Algorithm approach?

» Does it always work?

» {1, 5, 12} and target sum =15 (12, 1, 1, 1)
» Could use recursive backtracking ...

CS314 Dynamic Programming 20



Minimum Number of Coins

» To find minimum number of coins to sum to
15 with values {1, 5, 12} start with sum O

— recursive backtracking would likely start with 15

> Let M(S) = minimum number of coins to sum
to S

> At each step look at target sum,
coins available, and previous sums

— pick the smallest option
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Minimum Number of Coins
» M(0) = 0 coins
» M(1) = 1 coin (1 coin)
» M(2) = 2 coins (1 coin + M(1))
» M(3) = 3 coins (1 coin + M(2))
» M(4) = 4 coins (1 coin + M(3))

» M(5) = interesting, 2 options available:
1 + others OR single 5
If 1then1l+ M(4)=5,if 5then1l + M(0) =
clearly better to pick the coin worth 5

CS314 Dynamic Programming
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v VvV VvV VvV VvV VvV VvV VvV V9V V9V VY

Minimum Number of Coins

M(0) =0 > M(11) = 2 (1 coin + M(10))
M(1) =1 (1 coin) options: 1, 5

M(2) = 2 (1 coin + M(1)) " M(12) =1 (1 coin + M(0))
M(3) = 3 (1 coin + M(2)) options: 4, 5, 12

M(4) = 4 (1 coin + M(3)) I(\)/gtllgzlsz i (izcom +M(12))
M(5) =1 (1 coin + M(0)) » M(14) = 3 (1 coin + M(13))
M(6) =2 (1 coin + M(5)) options: 1, 12

M(7) =3 (1 coin + M(6)) » M(15) = 3 (1 coin + M(10))
M(8) =4 (1 coin + M(7)) options: 1, 5, 12

M(9) =5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))
options: 1, 5
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KNAPSACK PROBLEM -
RECURSIVE BACKTRACKING
AND DYNAMIC PROGRAMMING
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Knapsack Problem

> A variation of a bin packing problem

» Similar to fair teams problem from
recursion assignment

> You have a set of items
» Each item has a weight and a value
» You have a knapsack with a weight limit

> Goal: Maximize the value of the items you
put In the knapsack without exceeding the
weight limit
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Knapsack Example

> Items: ltem Weight | Value of | Value
Number | of Item ltem per unit
Welght

1 1
2 2
) : 3 4 1 0.25
V_Ve_lght 4 4 12 3.0
Limit =8 5 6 19 3.167
6 7 12 1.714

» A greedy solution: Take the highest ratio
item that will fit: (1, 6), (2, 11), and (4, 12)

» Total value =6 + 11 + 12 = 29
> Clicker 3 - Is this optimal? A.No B. Yes



Knapsack - Recursive Backtracking

private static int knapsack (ArrayList<Item> items,
int current, int capacity) {

int result = 0;
if (current < items.size()) {
// don't use item
int withoutItem
= knapsack(items, current + 1, capacity);
int withItem = O0;
// if current item will fit, try it
Item currentItem = items.get (current);
if (currentItem.weight <= capacity) {
withItem += currentlItem.value;
withItem += knapsack(items, current + 1,
capacity - currentItem.weight);

}
result = Math.max (withoutItem, withItem) ;

}

return result;




Knapsack - Dynamic Programming

» Recursive backtracking starts with max
capacity and makes choice for items:
choices are:

— take the item If 1t fits
— don't take the item

» Dynamic Programming, start with
simpler problems

» Reduce number of items available
> ... AND Reduce weight limit on knapsack
» Creates a 2d array of possibilities
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Knapsack - Optimal Function

» OptimalSolution(items, weight) is best
solution given a subset of items and a weight
limit

» 2 options:

> OptimalSolution does not select it" item
— select best solution for items 1 to | - 1with weight

Imit of w

» OptimalSolution selects it" item
— New weight limit = w - weight of it" item

— select best solution for items 1 to 1 - 1with new
weight limit ’9




Knapsack Optimal Function
» OptimalSolution(items, weight limit) =

O iIf O items

OptimalSolution(items - 1, weight) if weight of
ith item Is greater than allowed weight
w; > w (In others it item doesn't fit)

max of (OptimalSolution(items - 1, w),
value of ith item +
OptimalSolution(items - 1, w - w))
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Knapsack - Algorithm

> Create a 2d array to store

value of best option given ”mber f K em
subset of items and 1
possible weights

1

12
19
12

O O B~ W DN
~N oo A~ BN

> In our example 0 to 6
items and weight limits of of O to 8

> Fill in table using OptimalSolution Function
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Knapsack Algorithm

Given N items and WeightLimit
Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
M[O,w] =0

Foritem=1to N
for weight = 1 to WeightLimit
If(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]
else

M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]



Knapsack - Table

2 2 11
3 4 1

4 4 12
S 6 19
6 7 12

1,2}

1,2, 3

1,2, 3,4}
{1, 2,3, 4,5
{1,2,3,4,5, 6}




Knapsack - Completed Table

O 0 0 0 0 O O O
6 6 6 6 6 6 6 6
6 11 17 17 17 17 17 17
6 11 17 17 17 17 18 18
6 11 17 17 18 23 29 29
6 11 17 17 18 23 29 30
6 11 17 17 18 23 29 30

11}

[1, 6]
11,2}
[2, 11]

{1, 2, 3}

[4, 1]

{1, 2, 3, 4}

{1, 2, 3, 4, 5}
[6, 19]

{1, 2,3, 4,5, 6}

[7,12]

© O O O O O O




Knapsack - Iltems to Take

ooooooooo
66666666

11,2}

6 (11) 17

{1, 2, 3, 4}
[4, 12]

17
17
17

17
17
18

17
17
23

17 17
17 17
29 29

{1, 2, 3,4,5}
[6, 19]

{1, 2, 3,4,5, 6}
[7,12]

o O O O O
»
\l

17
17

18
18

23
23

29 (30)

29 30



Dynamic Knapsack

// dynamic programming approach
public static int knapsack (ArrayList<Item> items, int maxCapacity) ({
final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS] [COLS] ;
// first row and first column all zeros

for (int item = 1; item <= items.size(); item++) {
for (int capacity = 1; capacity <= maxCapacity; capacity++) ({
Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1] [capacity];
if( currentItem.weight <= capacity) {
int withItem = currentItem.value;
int caplLeft = capacity - currentlItem.weight;
withItem += partialSolutions[item - 1] [capLeft];
if (withItem > bestSoFar) {
bestSoFar = withItem;

}

partialSolutions|[item] [capacity] = bestSoFar;

}
return partialSolutions[ROWS - 1] [COLS - 1];



Dynamic vs. Recursive
Backtracking Timing Data

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4
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Clicker 4

» Which approach to the knapsack problem
uses more memory?

A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory
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