

Topic 26

Dynamic Programming

"Thus, I thought **dynamic programming** was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman

Dynamic Programming

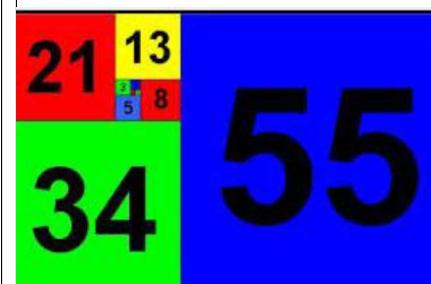
- Break big problem up into smaller problems ...
- Sound familiar?
- Recursion?
 $N! = 1$ for $N == 0$
 $N! = N * (N - 1)!$ for $N > 0$

Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term *Dynamic Programming* coined by mathematician Richard Bellman in early 1950s
 - employed by [Rand Corporation](#)
 - Rand had many, large military contracts
 - Secretary of Defense, [Charles Wilson](#) "against research, especially mathematical research"
 - how could any one oppose "dynamic"?

Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- $F_1 = 1$
- $F_2 = 1$
- $F_N = F_{N-1} + F_{N-2}$
- Recursive Solution?



Failing Spectacularly

- Naïve recursive method

```
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
        return 1;
    else
        return fib(n - 1) + fib (n - 2);
}
```

- Clicker 1 - Order of this method?

A. O(1) B. O(log N) C. O(N) D. O(N²) E. O(2^N)

CS314

Dynamic Programming

5

Failing Spectacularly

```
36th fibonacci number: 14930352 - Time: 0.045372057
37th fibonacci number: 24157817 - Time: 0.071195386
38th fibonacci number: 39088169 - Time: 0.116922086
39th fibonacci number: 63245986 - Time: 0.186926245
40th fibonacci number: 102334155 - Time: 0.308602967
41th fibonacci number: 165580141 - Time: 0.498588795
42th fibonacci number: 267914296 - Time: 0.793824734
43th fibonacci number: 433494437 - Time: 1.323325593
44th fibonacci number: 701408733 - Time: 2.098209943
45th fibonacci number: 1134903170 - Time: 3.392917489
46th fibonacci number: 1836311903 - Time: 5.506675921
47th fibonacci number: -1323752223 - Time: 8.803592621
48th fibonacci number: 512559680 - Time: 14.295023778
49th fibonacci number: -811192543 - Time: 23.030062974
50th fibonacci number: -298632863 - Time: 37.217244704
51th fibonacci number: -1109825406 - Time: 60.224418869
```

CS314

Dynamic Programming

7

Failing Spectacularly

```
1th fibonacci number: 1 - Time: 4.467E-6
2th fibonacci number: 1 - Time: 4.47E-7
3th fibonacci number: 2 - Time: 4.46E-7
4th fibonacci number: 3 - Time: 4.46E-7
5th fibonacci number: 5 - Time: 4.47E-7
6th fibonacci number: 8 - Time: 4.47E-7
7th fibonacci number: 13 - Time: 1.34E-6
8th fibonacci number: 21 - Time: 1.787E-6
9th fibonacci number: 34 - Time: 2.233E-6
10th fibonacci number: 55 - Time: 3.573E-6
11th fibonacci number: 89 - Time: 1.2953E-5
12th fibonacci number: 144 - Time: 8.934E-6
13th fibonacci number: 233 - Time: 2.9033E-5
14th fibonacci number: 377 - Time: 3.7966E-5
15th fibonacci number: 610 - Time: 5.0919E-5
16th fibonacci number: 987 - Time: 7.1464E-5
17th fibonacci number: 1597 - Time: 1.08984E-4
```

Clicker 2 - Failing Spectacularly

50th fibonacci number: -298632863 - Time: 37.217244704

- How long to calculate the 70th Fibonacci Number with this method?

A. 37 seconds
B. 74 seconds
C. 740 seconds
D. 14,800 seconds
E. None of these

CS314

Dynamic Programming

8

Aside - Overflow

- at 47th Fibonacci number overflows int
- Could use BigInteger class instead

```
private static final BigInteger one
    = new BigInteger("1");

private static final BigInteger two
    = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```

CS314

Dynamic Programming

9

Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower, math on BigIntegers, object creation, and garbage collection

```
37th fibonacci number: 24157817 - Time: 2.406739213
38th fibonacci number: 39088169 - Time: 3.680196724
39th fibonacci number: 63245986 - Time: 5.941275208
40th fibonacci number: 102334155 - Time: 9.63855468
41th fibonacci number: 165580141 - Time: 15.659745756
42th fibonacci number: 267914296 - Time: 25.404417949
43th fibonacci number: 433494437 - Time: 40.867030512
44th fibonacci number: 701408733 - Time: 66.391845965
45th fibonacci number: 1134903170 - Time: 106.964369924
46th fibonacci number: 1836311903 - Time: 178.981819822
47th fibonacci number: 2971215073 - Time: 287.052365326
```

CS314

Dynamic Programming

10

Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number 24,157,817 times!!!

CS314

Dynamic Programming

11

Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for (int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;
}
```

CS314

Dynamic Programming

12

Fast Fibonacci

```
1th fibonacci number: 1 - Time: 4.467E-6
2th fibonacci number: 1 - Time: 4.47E-7
3th fibonacci number: 2 - Time: 7.146E-6
4th fibonacci number: 3 - Time: 2.68E-6
5th fibonacci number: 5 - Time: 2.68E-6
6th fibonacci number: 8 - Time: 2.679E-6
7th fibonacci number: 13 - Time: 3.573E-6
8th fibonacci number: 21 - Time: 4.02E-6
9th fibonacci number: 34 - Time: 4.466E-6
10th fibonacci number: 55 - Time: 4.467E-6
11th fibonacci number: 89 - Time: 4.913E-6
12th fibonacci number: 144 - Time: 6.253E-6
13th fibonacci number: 233 - Time: 6.253E-6
14th fibonacci number: 377 - Time: 5.806E-6
15th fibonacci number: 610 - Time: 6.7E-6
16th fibonacci number: 987 - Time: 7.146E-6
17th fibonacci number: 1597 - Time: 7.146E-6
```

Fast Fibonacci

```
45th fibonacci number: 1134903170 - Time: 1.7419E-5
46th fibonacci number: 1836311903 - Time: 1.6972E-5
47th fibonacci number: 2971215073 - Time: 1.6973E-5
48th fibonacci number: 4807526976 - Time: 2.3673E-5
49th fibonacci number: 7778742049 - Time: 1.9653E-5
50th fibonacci number: 12586269025 - Time: 2.01E-5
51th fibonacci number: 20365011074 - Time: 1.9207E-5
52th fibonacci number: 32951280099 - Time: 2.0546E-5
67th fibonacci number: 44945570212853 - Time: 2.3673E-5
68th fibonacci number: 72723460248141 - Time: 2.3673E-5
69th fibonacci number: 117669030460994 - Time: 2.412E-5
70th fibonacci number: 190392490709135 - Time: 2.4566E-5
71th fibonacci number: 308061521170129 - Time: 2.4566E-5
72th fibonacci number: 498454011879264 - Time: 2.5906E-5
73th fibonacci number: 806515533049393 - Time: 2.5459E-5
74th fibonacci number: 1304969544928657 - Time: 2.546E-5
200th fibonacci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-5
```

Memoization

- ▶ Store (cache) results from computations for later lookup
- ▶ Memoization of Fibonacci Numbers

```
public class FibMemo {  
  
    private static List<BigInteger> lookupTable;  
  
    private static final BigInteger ONE  
        = new BigInteger("1");  
  
    static {  
        lookupTable = new ArrayList<>();  
        lookupTable.add(null);  
        lookupTable.add(ONE);  
        lookupTable.add(ONE);  
    }  
}
```

Fibonacci Memoization

```
public static BigInteger fib(int n) {  
    // check lookup table  
    if (n < lookupTable.size()) {  
        return lookupTable.get(n);  
    }  
  
    // Calculate nth Fibonacci.  
    // Don't repeat work. Start with the last known.  
    BigInteger smallTerm  
        = lookupTable.get(lookupTable.size() - 2);  
    BigInteger largeTerm  
        = lookupTable.get(lookupTable.size() - 1);  
    for(int i = lookupTable.size(); i <= n; i++) {  
        BigInteger temp = largeTerm;  
        largeTerm = largeTerm.add(smallTerm);  
        lookupTable.add(largeTerm); // memo  
        smallTerm = temp;  
    }  
    return largeTerm;  
}
```

Dynamic Programming

- When to use?
- When a big problem can be broken up into sub problems.
- **Solution to original problem can be calculated from results of smaller problems.**
 - larger problems depend on previous solutions
- **Sub problems must have a natural ordering from smallest to largest (simplest to hardest)**
- Multiple techniques within DP

CS314

Dynamic Programming

17

DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

CS314

Dynamic Programming

18

Dynamic Programming Requires:

- overlapping sub problems:
 - problem can be broken down into sub problems
 - obvious with Fibonacci
 - $\text{Fib}(N) = \text{Fib}(N - 2) + \text{Fib}(N - 1)$ for $N \geq 3$
- optimal substructure:
 - the optimal solution for a problem can be constructed from optimal solutions of its sub problems
 - In Fibonacci just sub problems, no optimality
 - $\text{min coins opt}(36) = \text{opt}(12) + \text{opt}(24)$ [1, 5, 12]

CS314

Dynamic Programming

19

Dynamic Programming Example

- Another simple example
- Finding the best solution involves finding the best answer to simpler problems
- Given a set of coins with values (V_1, V_2, \dots, V_N) and a target sum S , find the fewest coins required to equal S
- What is Greedy Algorithm approach?
- Does it always work?
- {1, 5, 12} and target sum = 15 (12, 1, 1, 1)
- Could use recursive backtracking ...

CS314

Dynamic Programming

20

Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values {1, 5, 12} start with sum 0
 - recursive backtracking would likely start with 15
- Let $M(S)$ = minimum number of coins to sum to S
- At each step look at target sum, coins available, and previous sums
 - pick the smallest option

CS314

Dynamic Programming

21

Minimum Number of Coins

- $M(0) = 0$ coins
- $M(1) = 1$ coin (1 coin)
- $M(2) = 2$ coins (1 coin + $M(1)$)
- $M(3) = 3$ coins (1 coin + $M(2)$)
- $M(4) = 4$ coins (1 coin + $M(3)$)
- $M(5) =$ interesting, 2 options available:
 - 1 + others OR single 5

if 1 then $1 + M(4) = 5$, if 5 then $1 + M(0) = 1$
clearly better to pick the coin worth 5

CS314

Dynamic Programming

22

Minimum Number of Coins

- $M(0) = 0$
- $M(1) = 1$ (1 coin)
- $M(2) = 2$ (1 coin + $M(1)$)
- $M(3) = 3$ (1 coin + $M(2)$)
- $M(4) = 4$ (1 coin + $M(3)$)
- $M(5) = 1$ (1 coin + $M(0)$)
- $M(6) = 2$ (1 coin + $M(5)$)
- $M(7) = 3$ (1 coin + $M(6)$)
- $M(8) = 4$ (1 coin + $M(7)$)
- $M(9) = 5$ (1 coin + $M(8)$)
- $M(10) = 2$ (1 coin + $M(5)$)
 - options: 1, 5
- $M(11) = 2$ (1 coin + $M(10)$)
 - options: 1, 5
- $M(12) = 1$ (1 coin + $M(0)$)
 - options: 1, 5, 12
- $M(13) = 2$ (1 coin + $M(12)$)
 - options: 1, 12
- $M(14) = 3$ (1 coin + $M(13)$)
 - options: 1, 12
- $M(15) = 3$ (1 coin + $M(10)$)
 - options: 1, 5, 12

CS314

Dynamic Programming

23

KNAPSACK PROBLEM - RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING

CS314

Dynamic Programming

24

Knapsack Problem

- A variation of a *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the value of the items you put in the knapsack without exceeding the weight limit

CS314

Dynamic Programming

25

Knapsack - Recursive Backtracking

```
private static int knapsack(ArrayList<Item> items,
    int current, int capacity) {

    int result = 0;
    if (current < items.size()) {
        // don't use item
        int withoutItem
            = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if (currentItem.weight <= capacity) {
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1,
                capacity - currentItem.weight);
        }
        result = Math.max(withoutItem, withItem);
    }
    return result;
}
```

Knapsack Example

- Items:

Item Number	Weight of Item	Value of Item	Value per unit Weight
1	1	6	6.0
2	2	11	5.5
3	4	1	0.25
4	4	12	3.0
5	6	19	3.167
6	7	12	1.714

- Weight Limit = 8
- A greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- Total value = $6 + 11 + 12 = 29$
- **Clicker 3** - Is this optimal? A. No B. Yes

Knapsack - Dynamic Programming

- Recursive backtracking starts with max capacity and makes choice for items: choices are:
 - take the item if it fits
 - don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- ... AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

CS314

Dynamic Programming

28

Knapsack - Optimal Function

- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- 2 options:
 - OptimalSolution does not select i^{th} item
 - select best solution for items 1 to $i - 1$ with weight limit of w
 - OptimalSolution selects i^{th} item
 - New weight limit = $w - \text{weight of } i^{\text{th}} \text{ item}$
 - select best solution for items 1 to $i - 1$ with new weight limit

29

Knapsack Optimal Function

- OptimalSolution(items, weight limit) =
0 if 0 items
- OptimalSolution(items - 1, weight) if weight of i^{th} item is greater than allowed weight $w_i > w$ (In others i^{th} item doesn't fit)
- max of (OptimalSolution(items - 1, w),
value of i^{th} item +
OptimalSolution(items - 1, $w - w_i$)

CS314

Dynamic Programming

30

Knapsack - Algorithm

- Create a 2d array to store value of best option given subset of items and possible weights
- In our example 0 to 6 items and weight limits of 0 to 8
- Fill in table using OptimalSolution Function

Item Number	Weight of Item	Value of Item
1	1	6
2	2	11
3	4	1
4	4	12
5	6	19
6	7	12

31

Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
 $M[0, w] = 0$

For item = 1 to N
for weight = 1 to WeightLimit
if(weight of i^{th} item > weight)
 $M[item, weight] = M[item - 1, weight]$
else
 $M[item, weight] = \max \{ M[item - 1, weight], M[item - 1, weight - weight of item] + \text{value of item} \}$

Knapsack - Table

Item	Weight	Value
1	1	6
2	2	11
3	4	1
4	4	12
5	6	19
6	7	12

items / capacity	0	1	2	3	4	5	6	7	8
{}	0	0	0	0	0	0	0	0	0
{1}									
{1, 2}									
{1, 2, 3}									
{1, 2, 3, 4}									
{1, 2, 3, 4, 5}									
{1, 2, 3, 4, 5, 6}									

Knapsack - Completed Table

items / weight	0	1	2	3	4	5	6	7	8
{}	0	0	0	0	0	0	0	0	0
{1}	0	6	6	6	6	6	6	6	6
{1, 2}	0	6	11	17	17	17	17	17	17
{2, 11}	0	6	11	17	17	17	17	17	17
{1, 2, 3}	0	6	11	17	17	17	17	17	17
{4, 1}	0	6	11	17	17	17	17	17	17
{1, 2, 3, 4}	0	6	11	17	17	18	23	29	29
{4, 12}	0	6	11	17	17	18	23	29	29
{1, 2, 3, 4, 5}	0	6	11	17	17	18	23	29	30
{6, 19}	0	6	11	17	17	18	23	29	30
{1, 2, 3, 4, 5, 6}	0	6	11	17	17	18	23	29	30
{7, 12}	0	6	11	17	17	18	23	29	30

Knapsack - Items to Take

items / weight	0	1	2	3	4	5	6	7	8
{}	0	0	0	0	0	0	0	0	0
{1}	0	6	6	6	6	6	6	6	6
[1, 6]	0	6	6	6	6	6	6	6	6
{1, 2}	0	6	11	17	17	17	17	17	17
[2, 11]	0	6	11	17	17	17	17	17	17
{1, 2, 3}	0	6	11	17	17	17	17	17	17
[4, 1]	0	6	11	17	17	17	17	17	17
{1, 2, 3, 4}	0	6	11	17	17	18	23	29	29
[4, 12]	0	6	11	17	17	18	23	29	29
{1, 2, 3, 4, 5}	0	6	11	17	17	18	23	29	30
[6, 19]	0	6	11	17	17	18	23	29	30
{1, 2, 3, 4, 5, 6}	0	6	11	17	17	18	23	29	30
[7, 12]	0	6	11	17	17	18	23	29	30

Dynamic Knapsack

```
// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];
    // first row and first column all zeros

    for(int item = 1; item <= items.size(); item++) {
        for(int capacity = 1; capacity <= maxCapacity; capacity++) {
            Item currentItem = items.get(item - 1);
            int bestSoFar = partialSolutions[item - 1][capacity];
            if( currentItem.weight <= capacity) {
                int withItem = currentItem.value;
                int capLeft = capacity - currentItem.weight;
                withItem += partialSolutions[item - 1][capLeft];
                if (withItem > bestSoFar) {
                    bestSoFar = withItem;
                }
            }
            partialSolutions[item][capacity] = bestSoFar;
        }
    }
    return partialSolutions[ROWS - 1][COLS - 1];
}
```

Dynamic vs. Recursive Backtracking Timing Data

Number of items: 32. Capacity: 123

Recursive knapsack. Answer: 740, time: 10.0268025

Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210

Recursive knapsack. Answer: 893, time: 23.0677814

Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173

Recursive knapsack. Answer: 941, time: 89.8400178

Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219

Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4

- ▶ Which approach to the knapsack problem uses more memory?
 - the recursive backtracking approach
 - the dynamic programming approach
 - they use about the same amount of memory