Topic 26
Dynamic Programming

"Thus, | thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So |
used it as an umbrella for my activities"

- Richard E. Bellman P

|
i
fﬂa Ly
4

PO

Origins
> A method for solving complex problems by

breaking them into smaller, easier, sub
problems

» Term Dynamic Programming coined by
mathematician Richard Bellman in early
1950s

— employed by Rand Corporation
— Rand had many, large military contracts

— Secretary of Defense, Charles Wilson “against research,
especially mathematical research”

— how could any one oppose "dynamic"?

CS314 Dynamic Programming

Dynamic Programming

> Break big problem up into smaller
problems ...

» Sound familiar?

» Recursion?
N! =1 for N ==
NI=N*(N-1)forN>0

CS314 Dynamic Programming

Fibonacci Numbers
»1,1,2,3,5,8,13,21, 34, 55,89, 114, ...
> F, =1
> F, =1

» Fy=Fno1+ Fyoo

» Recursive Solution?

Failing Spectacularly

Failing Spectacularly

> . . 1th fibonnaci number: 1 - Time: 4.467E-6
Naive recursive method 2th fibonnaci number: 1 - Time: 4.47E-7
// pre: n > 0 3th fibonnaci number: 2 - Time: 4.46E-7
// post: return the nth Fibonacci number 4th fibonnaci number: 3 - Time: 4.46E-7
public int fib(int n) { 5th fibonnaci number: 5 - Time: 4.47E-7
if (n <= 2) 6th fibonnaci number: 8 - Time: 4.47E-7
7th fibonnaci number: 13 - Time: 1.34E-6
return 1; 8th fibonnaci number: 21 - Time: 1.787E-6
else 9th fibonnaci number: 34 - Time: 2.233E-6
return fib(n - 1) + fib (n - 2); 10th fibonnaci number: 55 - Time: 3.573E-6
} 11th fibonnaci number: 89 - Time: 1.2953E-5
12th fibonnaci number: 144 - Time: 8.934E-6
4 CIiCker1 - Order Of thIS method’) 13th f%bonnac% number: 233 - T%me: 2.9033E-5
14th fibonnaci number: 377 - Time: 3.7966E-5
A.O(1) B.O(logN) C.O(N) D.O(N?) E.O(2N) 15th fibonnaci number: 610 - Time: 5.0919E-5
cssia Dynamic Programming 5 16th fibonnaci number: 987 - Time: 7.1464E-5
17th fibonnaci number: 1597 - Time: 1.08984E-4
Failing Spectacularly Clicker 2 - Failing Spectacularly
36th fibonnaci number: 14930352 - Time: 0.045372057
37th fibonnaci number: 24157817 - Time: 0.071195386 ! ' ; ! " A
36th fibonnaci number: 39088169 - Time: 0.116922086 J0th Iibonnacl numper: -238632663 - Time: 3/.21
39th fibonnaci number: 63245986 - Time: 0.186926245 . \
410th fibonnaci number: 102334155 - Time: 0.308602967 » How long to calculate the 70" Fibonacci
41th fibonnaci number: 165580141 - Time: 0.498588795 Number Wlth thlS method’)
42th fibonnaci number: 267914296 - Time: 0.793824734
43th fibonnaci number: 433494437 - Time: 1.323325593 A. 37 seconds
44th fibonnaci number: 701408733 - Time: 2.098209943
ASth fibonnaci number: 1134903170 - Time: 3.392917489 B. 74 seconds
M6th fibonnaci number: 1836311903 - Time: 5.506675921
A7th fibonnaci number: -1323752223 - Time: 8.803592621 C. 740 seconds
48th fibonnaci number: 512559680 - Time: 14.295023778
49th fibonnaci number: -811192543 - Time: 23.030062974 D 14’800 Seconds
50th fibonnaci number: -298632863 - Time: 37.217244704 E None Of these
51th fibonnaci number: -1109825406 - Time: 60.224418869

CS314

Dynamic Programming

7

CS314 Dynamic Programming

Aside - Overflow Aside - BigInteger

> at 47t Fibonacci number overflows int
» Could use Biglnteger class instead

private static final BigInteger one

> Answers correct beyond 46" Fibonacci number
» Even slower, math on Bigintegers,

= new BigInteger("1"); object creation, and garbage collection

private static final BigInteger two 37th fibonnaci number: 24157817 - Time: 2.406739213

= new BigInteger ("2"); 38th fibonnacli number: 39088169 - Time: 3.680196724

39th fibonnaci number: 63245986 - Time: 5.941275208

public static BigInteger fib (BigInteger n) { 40th fibonnaci number: 102334155 - Time: 9.63855468
if (n.compareTo(two) <= 0) 41th fibonnaci number: 165580141 - Time: 15.659745756
return one; 42th fibonnaci number: 267914296 - Time: 25.404417949
else { 43th fibonnaci number: 433494437 - Time: 40.867030512

BigInteger firstTerm = fib(n.subtract(two)) ;
BigInteger secondTerm = fib(n.subtract(one)) ;
return firstTerm.add(secondTerm) ;

44th fibonnaci number: 701408733 - Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924

} 46th fibonnaci number: 1836311903 - Time: 178.981819822
} 47th fibonnaci number: 2971215073 - Time: 287.052365324
CS314 Dynamic Programming 9 CS314 Dynamic Programming 10
Slow Fibonacci Fast Fibonacci

> Instead of starting with the big problem
and working down to the small problems

> ... start with the small problem and
work up to the big problem

> Why so slow?

> Algorithm keeps calculating the same
value over and over

' When CalCUlating the 4Oth FibonaCCi public static BigInteger fastFib(int n) {
number the algorithm calculates the 4" oiginieger smallferm = one;
.] . iginteger largeTerm = one;
Fibonacci number 24,157,817 times!!! for (inti = 3; i <= n; i++) {

Biginteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm = temp;

}

return largeTerm;

CS314 Dynamic Programming 11 CS314 Dynamic Programming 12

Fast Fibonacci

1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7

3th fibonnaci number: 2 - Time: 7.146E-6
4th fibonnaci number: 3 - Time: 2.68E-©

5th fibonnaci number: 5 - Time: 2.68E-6

6th fibonnaci number: 8 - Time: 2.679E-6
7th fibonnaci number: 13 - Time: 3.573E-6
8th fibonnaci number: 21 - Time: 4.02E-6
9th fibonnaci number: 34 - Time: 4.466E-06
10th fibonnaci number: 55 - Time: 4.467E-6
11th fibonnaci number: 89 - Time: 4.913FE-6
12th fibonnaci number: 144 - Time: 6.253E-6
13th fibonnaci number: 233 - Time: 6.253E-6
14th fibonnaci number: 377 - Time: 5.806E-6
15th fibonnaci number: 610 — Time: 6.7E-6
16th fibonnaci number: 987 - Time: 7.146E-6
17th fibonnaci number: 1597 - Time: 7.146E-6

Fast Fibonacci

45th fibonnaci number: 1134903170 - Time: 1.7419E-5
46th fibonnaci number: 1836311903 - Time: 1.6972E-5
47th fibonnaci number: 2971215073 - Time: 1.6973E-5
48th fibonnaci number: 4807526976 - Time: 2.3673E-5
49th fibonnaci number: 7778742049 - Time: 1.9653E-5
50th fibonnaci number: 12586269025 - Time: 2.01E-5
51th fibonnaci number: 20365011074 - Time: 1.9207E-5
52th fibonnaci number: 32951280099 - Time: 2.0546E-5
67th fibonnaci number: 44945570212853 - Time: 2.3673E-5
68th fibonnaci number: 72723460248141 - Time: 2.3673E-5
69th fibonnaci number: 117669030460994 - Time: 2.412E-5
70th fibonnaci number: 190392490709135 - Time: 2.4566E-5
71th fibonnaci number: 308061521170129 - Time: 2.4566E-5
72th fibonnaci number: 498454011879264 - Time: 2.5906E-5
73th fibonnaci number: 806515533049393 - Time: 2.5459E-5
74th fibonnaci number: 1304969544928657 - Time: 2.546E-5

200th fibonnaci number: 280571172992510140037611932413038677189525 -

Time: 1.0273E-§

Memoization
» Store (cache) results from
computations for later lookup

» Memoization of Fibonacci Numbers

public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE
= new BigInteger ("1");

static {
lookupTable = new ArrayList<>();
lookupTable.add (null) ;
lookupTable.add (ONE) ;
lookupTable.add (ONE) ;

Dynamic Programming 15

CS314 }

Fibonaccli Memoization

public static BigInteger fib(int n) {
// check lookup table
if (n < lookupTable.size()) {
return lookupTable.get (n) ;

}

// Calculate nth Fibonacci.

// Don't repeat work. Start with the last known.

BigInteger smallTerm

= lookupTable.get (lookupTable.size() - 2);

BigInteger largeTerm

= lookupTable.get (lookupTable.size() - 1);

for (int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm =

}

largeTerm. add (smallTerm) ;
lookupTable.add(largeTerm); // memo
smallTerm =

temp;

return largeTerm;

Dynamic Programming
> When to use?

> When a big problem can be broken up into sub
problems.

» Solution to original problem can be
calculated from results of smaller problems.

— larger problems depend on previous solutions

» Sub problems must have a natural ordering
from smallest to largest (simplest to
hardest

> Multiple techniques within DP

CS314 Dynamic Programming 17

DP Algorithms

» Step 1: Define the *meaning* of the subproblems
(in English for sure, Mathematically as well if you
find it helpful).

» Step 2: Show where the solution will be found.
» Step 3: Show how to set the first subproblem.

» Step 4: Define the order in which the subproblems
are solved.

> Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)

CS314 Dynamic Programming 18

Dynamic Programming Requires:

> overlapping sub problems:
— problem can be broken down into sub problems
— obvious with Fibonacci
— Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

» optimal substructure:

— the optimal solution for a problem can be
constructed from optimal solutions of its sub
problems

— In Fibonacci just sub problems, no optimality

— min coins opt(36) = 1,, + opt(24) [1, 5, 12]

CS314 Dynamic Programming 19

Dynamic Programing Example

> Another simple example
» Finding the best solution involves finding the
best answer to simpler problems

> Given a set of coins with values (V,, V,, ...
and a target sum S, find the fewest coins
required to equal S

» What is Greedy Algorithm approach?

» Does it always work?

» {1, 5, 12} and target sum =15 (12, 1, 1, 1)
» Could use recursive backtracking ...

CS314 Dynamic Programming 20

Vi)

Minimum Number of Coins

» To find minimum number of coins to sum to
15 with values {1, 5, 12} start with sum 0

— recursive backtracking would likely start with 15

» Let M(S) = minimum number of coins to sum
to S

> At each step look at target sum,
coins available, and previous sums

— pick the smallest option

CS314 Dynamic Programming 21

Minimum Number of Coins
» M(0) = 0 coins
» M(1) = 1 coin (1 coin)
» M(2) = 2 coins (1 coin + M(1))
» M(3) = 3 coins (1 coin + M(2))
» M(4) = 4 coins (1 coin + M(3))
» M(5) = interesting, 2 options available:
1 + others OR single 5
if 1then 1+ M(4) =5, if 5then 1+ M(0) = 1
clearly better to pick the coin worth 5

CS314 Dynamic Programming 22

Minimum Number of Coins

* M(0) =0 > M(11) = 2 (1 coin + M(10))
> M(1) =1 (1 coin) options: 1, 5
» M(2) = 2 (1 coin + M(1)) > M(12) =1 (1 coin + M(0))
> M(3) = 3 (1 coin + M(2)) options: 1, 5, 12.
> M(4) = 4 (1 coin + M(3)) ' gﬂéﬂg})]: f qzcom + M(12))
> M(5) = 1 (1 coin + M(0)) e
> M(6) = 2 (1 coin + M(5)) ' yétt%; ?,(1200"‘ + M(13))
" M(7) =3 (1 coin + M(6)) » M(15) = 3 (1 coin + M(10))
* M(8) =4 (1 coin + M(7)) options: 1, 5, 12
> M(9) =5 (1 coin + M(8))
> M(10) = 2 (1 coin + M(5))

options: 1, 5

CS314 Dynamic Programming 23

KNAPSACK PROBLEM -
RECURSIVE BACKTRACKING
AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 24

Knapsack Problem

> A variation of a bin packing problem

» Similar to fair teams problem from
recursion assignment

» You have a set of items
» Each item has a weight and a value
> You have a knapsack with a weight limit

» Goal: Maximize the value of the items you
put in the knapsack without exceeding the
weight limit

CS314 Dynamic Programming 25

Knapsack Example

4 ltems: Weight | Value of | Value
of Iltem Item per unit
Weight
1 1 6 6.0
2 2 1" 5.5
> : 3 4 1 0.25
V_Ve_lght 4 4 12 3.0
Limit=8 5 6 19 3.167
6 7 12 1.714

» A greedy solution: Take the highest ratio
item that will fit: (1, 6), (2, 11), and (4, 12)

» Total value=6+ 11+ 12 =29

» Clicker 3 - Is this optimal? A.No B. Yes

Knapsack - Recursive Backtracking

private static int knapsack (ArrayList<Item> items,
int current, int capacity) {

int result = 0;
if (current < items.size()) {
// don't use item
int withoutItem
= knapsack(items, current + 1, capacity):;
int withItem = 0;
// if current item will fit, try it
Item currentItem = items.get(current);
if (currentItem.weight <= capacity) {
withItem += currentItem.value;
withItem += knapsack(items, current + 1,
capacity - currentItem.weight) ;
}
result = Math.max (withoutItem, withItem) ;
}

return result;

Knapsack - Dynamic Programming

» Recursive backtracking starts with max
capacity and makes choice for items:
choices are:

— take the item if it fits
— don't take the item

» Dynamic Programming, start with
simpler problems

» Reduce number of items available
> ... AND Reduce weight limit on knapsack
» Creates a 2d array of possibilities

CS314 Dynamic Programming 28

Knapsack - Optimal Function

> OptimalSolution(items, weight) is best
solution given a subset of items and a weight
limit

> 2 options:

» OptimalSolution does not select ith item

— select best solution for items 1 to i - 1with weight
limit of w

> OptimalSolution selects it" item
— New weight limit = w - weight of it item

— select best solution for items 1 to i - 1with new
weight limit 29

Knapsack Optimal Function
» OptimalSolution(items, weight limit) =

0 if O items

OptimalSolution(items - 1, weight) if weight of
ith item is greater than allowed weight
w, > w (In others it" item doesn't fit)

max of (OptimalSolution(items - 1, w),
value of ith item +
OptimalSolution(items - 1, w - w,)

CS314 Dynamic Programming 30

Knapsack - Algorithm

> Create a 2d array to store m
of Item Item
1 6
11

value of best option given

subset of items and

possible weights 1
12

19

12

D OB~ WON =
N o M BN

» In our example 0 to 6
items and weight limits of of 0 to 8

> Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Knapsack Algorithm

Given N items and WeightLimit
Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
M[O,w] =0

Foritem=1to N
for weight = 1 to WeightLimit

if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]

else
M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]

Knapsack - Table ~ EEIEEET

1 1

2 2 11
3 4 1
4 4 12
5 6 19
6 7 12

O O A I A O
O 0 0 O O o0 O

II
L

E

{1.2}

1,2,3}
1,2,3,4}
{1,2,3,4,5)
{1,2,3,4,5, 6}

~~

Knapsack - Completed Table

i O O G S N
0O 0 00O O 0 O
6 6 6 6 6 6 6 6
6 11 17 17 17 17 17 17

%jf} 6 11 17 17 17 17 18 18

6 11 17 17 18 23 29 29
6 11 17 17 18 23 29 30
6 11 17 17 18 23 29 30

{1, 2,3,4)
[4,12]

{1, 2, 3, 4, 5}
[6, 19]

{1, 2,3, 4,5, 6}
[7,12]

© O O O O o o

Knapsack - Iltems to Take
i O G S
0 000 0 O0O0 D0 O
6 6 6 6 6 6 6 6
17 17 17 17 17
6 (11) 17 17 17 17 17 17
18 23 29 29

{1}

{1, 2,3, 4}
{1.2,3.4,5}
[6,19]
{1,2,3,4,5, 6}

© O O O O

6 11 17 17

18 23 29 30

Dynamic Knapsack

// dynamic programming approach
public static int knapsack (ArrayList<Item> items, int maxCapacity) {
final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS] [COLS];
// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {
for (int capacity = 1; capacity <= maxCapacity; capacity++) {
Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1] [capacity];
if(currentItem.weight <= capacity) {
int withItem = currentItem.value;
int capLeft = capacity - currentlItem.weight;
withItem += partialSolutions[item - 1] [capLeft];
if (withItem > bestSoFar) {
bestSoFar = withItem;

-

}
partialSolutions[item] [capacity] = bestSoFar;
}
}
return partialSolutions[ROWS - 1] [COLS - 1];

Dynamic vs. Recursive
Backtracking Timing Data

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4

CS314 Dynamic Programming

37

Clicker 4

> Which approach to the knapsack problem
uses more memory?

A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory

CS314 Dynamic Programming 38

