Topic 26
Dynamic Programming

"Thus, | thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So |
used it as an umbrella for my activities"

- Richard E. Bellman P
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Origins
> A method for solving complex problems by

breaking them into smaller, easier, sub
problems

» Term Dynamic Programming coined by
mathematician Richard Bellman in early
1950s

— employed by Rand Corporation
— Rand had many, large military contracts

— Secretary of Defense, Charles Wilson “against research,
especially mathematical research”

— how could any one oppose "dynamic"?
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Dynamic Programming

> Break big problem up into smaller
problems ...

» Sound familiar?

» Recursion?
N! =1 for N ==
NI=N*(N-1)forN>0
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Fibonacci Numbers
»1,1,2,3,5,8,13,21, 34, 55,89, 114, ...
> F, =1
> F, =1

» Fy=Fno1+ Fyoo

» Recursive Solution?




Failing Spectacularly

Failing Spectacularly

> . . 1th fibonnaci number: 1 - Time: 4.467E-6
Naive recursive method 2th fibonnaci number: 1 - Time: 4.47E-7
// pre: n > 0 3th fibonnaci number: 2 - Time: 4.46E-7
// post: return the nth Fibonacci number 4th fibonnaci number: 3 - Time: 4.46E-7
public int fib(int n) { 5th fibonnaci number: 5 - Time: 4.47E-7
if (n <= 2) 6th fibonnaci number: 8 - Time: 4.47E-7
7th fibonnaci number: 13 - Time: 1.34E-6
return 1; 8th fibonnaci number: 21 - Time: 1.787E-6
else 9th fibonnaci number: 34 - Time: 2.233E-6
return fib(n - 1) + fib (n - 2); 10th fibonnaci number: 55 - Time: 3.573E-6
} 11th fibonnaci number: 89 - Time: 1.2953E-5
12th fibonnaci number: 144 - Time: 8.934E-6
4 CIiCker1 - Order Of thIS method’) 13th f%bonnac% number: 233 - T%me: 2.9033E-5
14th fibonnaci number: 377 - Time: 3.7966E-5
A.O(1) B.O(logN) C.O(N) D.O(N?) E.O(2N) 15th fibonnaci number: 610 - Time: 5.0919E-5
cssia Dynamic Programming 5 16th fibonnaci number: 987 - Time: 7.1464E-5
17th fibonnaci number: 1597 - Time: 1.08984E-4
Failing Spectacularly Clicker 2 - Failing Spectacularly
36th fibonnaci number: 14930352 - Time: 0.045372057
37th fibonnaci number: 24157817 - Time: 0.071195386 ! ' ; ! " A
36th fibonnaci number: 39088169 - Time: 0.116922086 J0th Iibonnacl numper: -238632663 - Time: 3/.21
39th fibonnaci number: 63245986 - Time: 0.186926245 . \
410th fibonnaci number: 102334155 - Time: 0.308602967 » How long to calculate the 70" Fibonacci
41th fibonnaci number: 165580141 - Time: 0.498588795 Number Wlth thlS method’)
42th fibonnaci number: 267914296 - Time: 0.793824734
43th fibonnaci number: 433494437 - Time: 1.323325593 A. 37 seconds
44th fibonnaci number: 701408733 - Time: 2.098209943
ASth fibonnaci number: 1134903170 - Time: 3.392917489 B. 74 seconds
M6th fibonnaci number: 1836311903 - Time: 5.506675921
A7th fibonnaci number: -1323752223 - Time: 8.803592621 C. 740 seconds
48th fibonnaci number: 512559680 - Time: 14.295023778
49th fibonnaci number: -811192543 - Time: 23.030062974 D 14’800 Seconds
50th fibonnaci number: -298632863 - Time: 37.217244704 E None Of these
51th fibonnaci number: -1109825406 - Time: 60.224418869
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Aside - Overflow Aside - BigInteger

> at 47t Fibonacci number overflows int
» Could use Biglnteger class instead

private static final BigInteger one

> Answers correct beyond 46" Fibonacci number
» Even slower, math on Bigintegers,

= new BigInteger("1"); object creation, and garbage collection

private static final BigInteger two 37th fibonnaci number: 24157817 - Time: 2.406739213

= new BigInteger ("2"); 38th fibonnacli number: 39088169 - Time: 3.680196724

39th fibonnaci number: 63245986 - Time: 5.941275208

public static BigInteger fib (BigInteger n) { 40th fibonnaci number: 102334155 - Time: 9.63855468
if (n.compareTo(two) <= 0) 41th fibonnaci number: 165580141 - Time: 15.659745756
return one; 42th fibonnaci number: 267914296 - Time: 25.404417949
else { 43th fibonnaci number: 433494437 - Time: 40.867030512

BigInteger firstTerm = fib(n.subtract(two)) ;
BigInteger secondTerm = fib(n.subtract(one)) ;
return firstTerm.add(secondTerm) ;

44th fibonnaci number: 701408733 - Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924

} 46th fibonnaci number: 1836311903 - Time: 178.981819822
} 47th fibonnaci number: 2971215073 - Time: 287.052365324
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Slow Fibonacci Fast Fibonacci

> Instead of starting with the big problem
and working down to the small problems

> ... start with the small problem and
work up to the big problem

> Why so slow?

> Algorithm keeps calculating the same
value over and over

' When CalCUlating the 4Oth FibonaCCi public static BigInteger fastFib(int n) {
number the algorithm calculates the 4" oiginieger smallferm = one;
. ] . iginteger largeTerm = one;
Fibonacci number 24,157,817 times!!! for (inti = 3; i <= n; i++) {

Biginteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm = temp;

}

return largeTerm;
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Fast Fibonacci

1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7

3th fibonnaci number: 2 - Time: 7.146E-6
4th fibonnaci number: 3 - Time: 2.68E-©

5th fibonnaci number: 5 - Time: 2.68E-6

6th fibonnaci number: 8 - Time: 2.679E-6
7th fibonnaci number: 13 - Time: 3.573E-6
8th fibonnaci number: 21 - Time: 4.02E-6
9th fibonnaci number: 34 - Time: 4.466E-06
10th fibonnaci number: 55 - Time: 4.467E-6
11th fibonnaci number: 89 - Time: 4.913FE-6
12th fibonnaci number: 144 - Time: 6.253E-6
13th fibonnaci number: 233 - Time: 6.253E-6
14th fibonnaci number: 377 - Time: 5.806E-6
15th fibonnaci number: 610 — Time: 6.7E-6
16th fibonnaci number: 987 - Time: 7.146E-6
17th fibonnaci number: 1597 - Time: 7.146E-6

Fast Fibonacci

45th fibonnaci number: 1134903170 - Time: 1.7419E-5
46th fibonnaci number: 1836311903 - Time: 1.6972E-5
47th fibonnaci number: 2971215073 - Time: 1.6973E-5
48th fibonnaci number: 4807526976 - Time: 2.3673E-5
49th fibonnaci number: 7778742049 - Time: 1.9653E-5
50th fibonnaci number: 12586269025 - Time: 2.01E-5
51th fibonnaci number: 20365011074 - Time: 1.9207E-5
52th fibonnaci number: 32951280099 - Time: 2.0546E-5
67th fibonnaci number: 44945570212853 - Time: 2.3673E-5
68th fibonnaci number: 72723460248141 - Time: 2.3673E-5
69th fibonnaci number: 117669030460994 - Time: 2.412E-5
70th fibonnaci number: 190392490709135 - Time: 2.4566E-5
71th fibonnaci number: 308061521170129 - Time: 2.4566E-5
72th fibonnaci number: 498454011879264 - Time: 2.5906E-5
73th fibonnaci number: 806515533049393 - Time: 2.5459E-5
74th fibonnaci number: 1304969544928657 - Time: 2.546E-5

200th fibonnaci number: 280571172992510140037611932413038677189525 -

Time: 1.0273E-§

Memoization
» Store (cache) results from
computations for later lookup

» Memoization of Fibonacci Numbers

public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE
= new BigInteger ("1");

static {
lookupTable = new ArrayList<>();
lookupTable.add (null) ;
lookupTable.add (ONE) ;
lookupTable.add (ONE) ;
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Fibonaccli Memoization

public static BigInteger fib(int n) {
// check lookup table
if (n < lookupTable.size()) {
return lookupTable.get (n) ;

}

// Calculate nth Fibonacci.

// Don't repeat work. Start with the last known.

BigInteger smallTerm

= lookupTable.get (lookupTable.size() - 2);

BigInteger largeTerm

= lookupTable.get (lookupTable.size() - 1);

for (int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;

largeTerm =

}

largeTerm. add (smallTerm) ;
lookupTable.add(largeTerm); // memo
smallTerm =

temp;

return largeTerm;




Dynamic Programming
> When to use?

> When a big problem can be broken up into sub
problems.

» Solution to original problem can be
calculated from results of smaller problems.

— larger problems depend on previous solutions

» Sub problems must have a natural ordering
from smallest to largest (simplest to
hardest

> Multiple techniques within DP
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DP Algorithms

» Step 1: Define the *meaning* of the subproblems
(in English for sure, Mathematically as well if you
find it helpful).

» Step 2: Show where the solution will be found.
» Step 3: Show how to set the first subproblem.

» Step 4: Define the order in which the subproblems
are solved.

> Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)
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Dynamic Programming Requires:

> overlapping sub problems:
— problem can be broken down into sub problems
— obvious with Fibonacci
— Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

» optimal substructure:

— the optimal solution for a problem can be
constructed from optimal solutions of its sub
problems

— In Fibonacci just sub problems, no optimality

— min coins opt(36) = 1,, + opt(24) [1, 5, 12]
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Dynamic Programing Example

> Another simple example
» Finding the best solution involves finding the
best answer to simpler problems

> Given a set of coins with values (V,, V,, ...
and a target sum S, find the fewest coins
required to equal S

» What is Greedy Algorithm approach?

» Does it always work?

» {1, 5, 12} and target sum =15 (12, 1, 1, 1)
» Could use recursive backtracking ...

CS314 Dynamic Programming 20
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Minimum Number of Coins

» To find minimum number of coins to sum to
15 with values {1, 5, 12} start with sum 0

— recursive backtracking would likely start with 15

» Let M(S) = minimum number of coins to sum
to S

> At each step look at target sum,
coins available, and previous sums

— pick the smallest option
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Minimum Number of Coins
» M(0) = 0 coins
» M(1) = 1 coin (1 coin)
» M(2) = 2 coins (1 coin + M(1))
» M(3) = 3 coins (1 coin + M(2))
» M(4) = 4 coins (1 coin + M(3))
» M(5) = interesting, 2 options available:
1 + others OR single 5
if 1then 1+ M(4) =5, if 5then 1+ M(0) = 1
clearly better to pick the coin worth 5
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Minimum Number of Coins

* M(0) =0 > M(11) = 2 (1 coin + M(10))
> M(1) =1 (1 coin) options: 1, 5
» M(2) = 2 (1 coin + M(1)) > M(12) =1 (1 coin + M(0))
> M(3) = 3 (1 coin + M(2)) options: 1, 5, 12.
> M(4) = 4 (1 coin + M(3)) ' gﬂéﬂg})]: f qzcom + M(12))
> M(5) = 1 (1 coin + M(0)) e
> M(6) = 2 (1 coin + M(5)) ' yétt%; ?,(1200"‘ + M(13))
" M(7) =3 (1 coin + M(6)) » M(15) = 3 (1 coin + M(10))
* M(8) =4 (1 coin + M(7)) options: 1, 5, 12
> M(9) =5 (1 coin + M(8))
> M(10) = 2 (1 coin + M(5))

options: 1, 5
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KNAPSACK PROBLEM -
RECURSIVE BACKTRACKING
AND DYNAMIC PROGRAMMING
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Knapsack Problem

> A variation of a bin packing problem

» Similar to fair teams problem from
recursion assignment

» You have a set of items
» Each item has a weight and a value
> You have a knapsack with a weight limit

» Goal: Maximize the value of the items you
put in the knapsack without exceeding the
weight limit
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Knapsack Example

4 ltems: Weight | Value of | Value
of Iltem Item per unit
Weight
1 1 6 6.0
2 2 1" 5.5
> : 3 4 1 0.25
V_Ve_lght 4 4 12 3.0
Limit=8 5 6 19 3.167
6 7 12 1.714

» A greedy solution: Take the highest ratio
item that will fit: (1, 6), (2, 11), and (4, 12)

» Total value=6+ 11+ 12 =29

» Clicker 3 - Is this optimal? A.No B. Yes

Knapsack - Recursive Backtracking

private static int knapsack (ArrayList<Item> items,
int current, int capacity) {

int result = 0;
if (current < items.size()) {
// don't use item
int withoutItem
= knapsack(items, current + 1, capacity):;
int withItem = 0;
// if current item will fit, try it
Item currentItem = items.get(current);
if (currentItem.weight <= capacity) {
withItem += currentItem.value;
withItem += knapsack(items, current + 1,
capacity - currentItem.weight) ;
}
result = Math.max (withoutItem, withItem) ;
}

return result;

Knapsack - Dynamic Programming

» Recursive backtracking starts with max
capacity and makes choice for items:
choices are:

— take the item if it fits
— don't take the item

» Dynamic Programming, start with
simpler problems

» Reduce number of items available
> ... AND Reduce weight limit on knapsack
» Creates a 2d array of possibilities
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Knapsack - Optimal Function

> OptimalSolution(items, weight) is best
solution given a subset of items and a weight
limit

> 2 options:

» OptimalSolution does not select ith item

— select best solution for items 1 to i - 1with weight
limit of w

> OptimalSolution selects it" item
— New weight limit = w - weight of it item

— select best solution for items 1 to i - 1with new
weight limit 29

Knapsack Optimal Function
» OptimalSolution(items, weight limit) =

0 if O items

OptimalSolution(items - 1, weight) if weight of
ith item is greater than allowed weight
w, > w (In others it" item doesn't fit)

max of (OptimalSolution(items - 1, w),
value of ith item +
OptimalSolution(items - 1, w - w,)
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Knapsack - Algorithm

> Create a 2d array to store m
of Item Item
1 6
11

value of best option given

subset of items and

possible weights 1
12

19

12

D OB~ WON =
N o M BN

» In our example 0 to 6
items and weight limits of of 0 to 8

> Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Knapsack Algorithm

Given N items and WeightLimit
Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
M[O,w] =0

Foritem=1to N
for weight = 1 to WeightLimit

if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]

else
M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]




Knapsack - Table ~ EEIEEET

1 1

2 2 11
3 4 1
4 4 12
5 6 19
6 7 12

O O A I A O
O 0 0 O O o0 O

II
L

E

{1.2}

1,2,3}
1,2,3,4}
{1,2,3,4,5)
{1,2,3,4,5, 6}

~~

Knapsack - Completed Table

i O O G S N
0O 0 00O O 0 O
6 6 6 6 6 6 6 6
6 11 17 17 17 17 17 17

%jf} 6 11 17 17 17 17 18 18

6 11 17 17 18 23 29 29
6 11 17 17 18 23 29 30
6 11 17 17 18 23 29 30

{1, 2,3,4)
[4,12]

{1, 2, 3, 4, 5}
[6, 19]

{1, 2,3, 4,5, 6}
[7,12]

© O O O O o o

Knapsack - Iltems to Take
i O G S
0 000 0 O0O0 D0 O
6 6 6 6 6 6 6 6
17 17 17 17 17
6 (11) 17 17 17 17 17 17
18 23 29 29

{1}

{1, 2,3, 4}
{1.2,3.4,5}
[6,19]
{1,2,3,4,5, 6}

© O O O O

6 11 17 17

18 23 29 30

Dynamic Knapsack

// dynamic programming approach
public static int knapsack (ArrayList<Item> items, int maxCapacity) {
final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS] [COLS];
// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {
for (int capacity = 1; capacity <= maxCapacity; capacity++) {
Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1] [capacity];
if( currentItem.weight <= capacity) {
int withItem = currentItem.value;
int capLeft = capacity - currentlItem.weight;
withItem += partialSolutions[item - 1] [capLeft];
if (withItem > bestSoFar) {
bestSoFar = withItem;

-

}
partialSolutions[item] [capacity] = bestSoFar;
}
}
return partialSolutions[ROWS - 1] [COLS - 1];




Dynamic vs. Recursive
Backtracking Timing Data

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4
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Clicker 4

> Which approach to the knapsack problem
uses more memory?

A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory
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