
Topic 26
Dynamic Programming

"Thus, I thought dynamic programming
was a good name. It was something not
even a Congressman could object to. So I
used it as an umbrella for my activities"

- Richard E. Bellman

Origins
A method for solving complex problems by
breaking them into smaller, easier, sub
problems

Term Dynamic Programming coined by
mathematician Richard Bellman in early
1950s

employed by Rand Corporation

Rand had many, large military contracts

Secretary of Defense, Charles Wilson

how could any one oppose "dynamic"?

CS314 Dynamic Programming 2

Dynamic Programming
Break big problem up into smaller
problems ...

Sound familiar?

Recursion?
N! = 1 for N == 0
N! = N * (N - 1)! for N > 0

CS314 Dynamic Programming 3

Fibonacci Numbers

F1 = 1

F2 = 1

FN = FN - 1 + FN - 2

Recursive Solution?

CS314 Dynamic Programming 4

Failing Spectacularly
Naïve recursive method

Clicker 1 - Order of this method?
A. O(1) B. O(log N) C. O(N) D. O(N2) E. O(2N)

CS314 Dynamic Programming 5

// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {

if (n <= 2)
return 1;

else
return fib(n 1) + fib (n 2);

}

Failing Spectacularly

CS314 Dynamic Programming 6

Failing Spectacularly

CS314 Dynamic Programming 7

Clicker 2 - Failing Spectacularly

How long to calculate the 70th Fibonacci
Number with this method?

A. 37 seconds

B. 74 seconds

C. 740 seconds

D. 14,800 seconds

E. None of these

CS314 Dynamic Programming 8

Aside - Overflow
at 47th Fibonacci number overflows int

Could use BigInteger class instead

CS314 Dynamic Programming 9

private static final BigInteger one
= new BigInteger("1");

private static final BigInteger two
= new BigInteger("2");

public static BigInteger fib(BigInteger n) {
if (n.compareTo(two) <= 0)

return one;
else {

BigInteger firstTerm = fib(n.subtract(two));
BigInteger secondTerm = fib(n.subtract(one));
return firstTerm.add(secondTerm);

}
}

Aside - BigInteger
Answers correct beyond 46th Fibonacci number

Even slower, math on BigIntegers,
object creation, and garbage collection

CS314 Dynamic Programming 10

Slow Fibonacci
Why so slow?

Algorithm keeps calculating the same
value over and over

When calculating the 40th Fibonacci
number the algorithm calculates the 4th

Fibonacci number 24,157,817 times!!!

CS314 Dynamic Programming 11

Fast Fibonacci
Instead of starting with the big problem
and working down to the small problems

... start with the small problem and
work up to the big problem

CS314 Dynamic Programming 12

public static BigInteger fastFib(int n) {
BigInteger smallTerm = one;
BigInteger largeTerm = one;
for (int i = 3; i <= n; i++) {

BigInteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
smallTerm = temp;

}
return largeTerm;

}

Fast Fibonacci

CS314 Dynamic Programming 13

Fast Fibonacci

CS314 Dynamic Programming 14

Memoization
Store (cache) results from
computations for later lookup

Memoization of Fibonacci Numbers

CS314 Dynamic Programming 15

public class FibMemo {

private static List<BigInteger> lookupTable;

private static final BigInteger ONE
= new BigInteger("1");

static {
lookupTable = new ArrayList<>();
lookupTable.add(null);
lookupTable.add(ONE);
lookupTable.add(ONE);

}

Fibonacci Memoization
public static BigInteger fib(int n) {

// check lookup table
if (n < lookupTable.size()) {

return lookupTable.get(n);
}

// Calculate nth Fibonacci.
// Don't repeat work. Start with the last known.
BigInteger smallTerm

= lookupTable.get(lookupTable.size() - 2);
BigInteger largeTerm

= lookupTable.get(lookupTable.size() - 1);
for(int i = lookupTable.size(); i <= n; i++) {

BigInteger temp = largeTerm;
largeTerm = largeTerm.add(smallTerm);
lookupTable.add(largeTerm); // memo
smallTerm = temp;

}
return largeTerm;

}

Dynamic Programming
When to use?

When a big problem can be broken up into sub
problems.

Solution to original problem can be
calculated from results of smaller problems.

larger problems depend on previous solutions

Sub problems must have a natural ordering
from smallest to largest (simplest to
hardest)

Multiple techniques within DP
CS314 Dynamic Programming 17

DP Algorithms
Step 1: Define the *meaning* of the subproblems
(in English for sure, Mathematically as well if you
find it helpful).

Step 2: Show where the solution will be found.

Step 3: Show how to set the first subproblem.

Step 4: Define the order in which the subproblems
are solved.

Step 5: Show how to compute the answer to each
subproblem using the previously computed
subproblems. (This step is typically polynomial,
once the other subproblems are solved.)

CS314 Dynamic Programming 18

Dynamic Programming Requires:

overlapping sub problems:
problem can be broken down into sub problems

obvious with Fibonacci

Fib(N) = Fib(N - 2) + Fib(N - 1) for N >= 3

optimal substructure:
the optimal solution for a problem can be
constructed from optimal solutions of its sub
problems

In Fibonacci just sub problems, no optimality

min coins opt(36) = 112 + opt(24) [1, 5, 12]
CS314 Dynamic Programming 19

Dynamic Programing Example
Another simple example

Finding the best solution involves finding the
best answer to simpler problems

Given a set of coins with values (V1, V2 N)
and a target sum S, find the fewest coins
required to equal S
What is Greedy Algorithm approach?

Does it always work?

{1, 5, 12} and target sum = 15 (12, 1, 1, 1)

CS314 Dynamic Programming 20

Minimum Number of Coins
To find minimum number of coins to sum to
15 with values {1, 5, 12} start with sum 0

recursive backtracking would likely start with 15

Let M(S) = minimum number of coins to sum
to S

At each step look at target sum,
coins available, and previous sums

pick the smallest option

CS314 Dynamic Programming 21

Minimum Number of Coins
M(0) = 0 coins

M(1) = 1 coin (1 coin)

M(2) = 2 coins (1 coin + M(1))

M(3) = 3 coins (1 coin + M(2))

M(4) = 4 coins (1 coin + M(3))

M(5) = interesting, 2 options available:
1 + others OR single 5

if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1
clearly better to pick the coin worth 5

CS314 Dynamic Programming 22

Minimum Number of Coins
M(0) = 0

M(1) = 1 (1 coin)

M(2) = 2 (1 coin + M(1))

M(3) = 3 (1 coin + M(2))

M(4) = 4 (1 coin + M(3))

M(5) = 1 (1 coin + M(0))

M(6) = 2 (1 coin + M(5))

M(7) = 3 (1 coin + M(6))

M(8) = 4 (1 coin + M(7))

M(9) = 5 (1 coin + M(8))

M(10) = 2 (1 coin + M(5))
options: 1, 5

M(11) = 2 (1 coin + M(10))
options: 1, 5

M(12) = 1 (1 coin + M(0))
options: 1, 5, 12

M(13) = 2 (1 coin + M(12))
options: 1, 12

M(14) = 3 (1 coin + M(13))
options: 1, 12

M(15) = 3 (1 coin + M(10))
options: 1, 5, 12

CS314 Dynamic Programming 23

KNAPSACK PROBLEM -
RECURSIVE BACKTRACKING
AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 24

Knapsack Problem
A variation of a bin packing problem

Similar to fair teams problem from
recursion assignment

You have a set of items

Each item has a weight and a value

You have a knapsack with a weight limit

Goal: Maximize the value of the items you
put in the knapsack without exceeding the
weight limit

CS314 Dynamic Programming 25

Knapsack Example
Items:

Weight
Limit = 8

A greedy solution: Take the highest ratio
item that will fit: (1, 6), (2, 11), and (4, 12)

Total value = 6 + 11 + 12 = 29

Clicker 3 - Is this optimal? A. No B. Yes

Item
Number

Weight
of Item

Value of
Item

Value
per unit
Weight

1 1 6 6.0

2 2 11 5.5

3 4 1 0.25

4 4 12 3.0

5 6 19 3.167

6 7 12 1.714

Knapsack - Recursive Backtracking
private static int knapsack(ArrayList<Item> items,

int current, int capacity) {

int result = 0;
if (current < items.size()) {

// don't use item
int withoutItem

= knapsack(items, current + 1, capacity);
int withItem = 0;
// if current item will fit, try it
Item currentItem = items.get(current);
if (currentItem.weight <= capacity) {

withItem += currentItem.value;
withItem += knapsack(items, current + 1,

capacity - currentItem.weight);
}
result = Math.max(withoutItem, withItem);

}
return result;

}

Knapsack - Dynamic Programming
Recursive backtracking starts with max
capacity and makes choice for items:
choices are:

take the item if it fits

don't take the item

Dynamic Programming, start with
simpler problems

Reduce number of items available

Creates a 2d array of possibilities
CS314 Dynamic Programming 28

Knapsack - Optimal Function
OptimalSolution(items, weight) is best
solution given a subset of items and a weight
limit

2 options:

OptimalSolution does not select ith item
select best solution for items 1 to i - 1with weight
limit of w

OptimalSolution selects ith item
New weight limit = w - weight of ith item

select best solution for items 1 to i - 1with new
weight limit 29

Knapsack Optimal Function
OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of
ith item is greater than allowed weight
wi > w (In others ith item doesn't fit)

max of (OptimalSolution(items - 1, w),
value of ith item +
OptimalSolution(items - 1, w - wi)

CS314 Dynamic Programming 30

Knapsack - Algorithm
Create a 2d array to store
value of best option given
subset of items and

possible weights

In our example 0 to 6
items and weight limits of of 0 to 8

Fill in table using OptimalSolution Function

CS314 Dynamic Programming 31

Item
Number

Weight
of Item

Value of
Item

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

Knapsack Algorithm
Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
M[0, w] = 0

For item = 1 to N
for weight = 1 to WeightLimit

if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]

else
M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]

Knapsack - Table

CS314 Dynamic Programming 33

Item Weight Value

1 1 6

2 2 11

3 4 1

4 4 12

5 6 19

6 7 12

items / capacity 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0
{1}

{1,2}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6}

Knapsack - Completed Table

CS314 Dynamic Programming 34

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}
[1, 6]

0 6 6 6 6 6 6 6 6
{1,2}
[2, 11]

0 6 11 17 17 17 17 17 17
{1, 2, 3}
[4, 1]

0 6 11 17 17 17 17 18 18

{1, 2, 3, 4}
[4, 12]

0 6 11 17 17 18 23 29 29
{1, 2, 3, 4, 5}
[6, 19]

0 6 11 17 17 18 23 29 30
{1, 2, 3, 4, 5, 6}
[7, 12]

0 6 11 17 17 18 23 29 30

Knapsack - Items to Take

CS314 Dynamic Programming 35

items / weight 0 1 2 3 4 5 6 7 8

{} 0 0 0 0 0 0 0 0 0

{1}
[1, 6]

0 6 6 6 6 6 6 6 6
{1,2}
[2, 11]

0 6 11 17 17 17 17 17 17
{1, 2, 3}
[4, 1]

0 6 11 17 17 17 17 17 17

{1, 2, 3, 4}
[4, 12]

0 6 11 17 17 18 23 29 29
{1, 2, 3, 4, 5}
[6, 19]

0 6 11 17 17 18 23 29 30
{1, 2, 3, 4, 5, 6}
[7, 12]

0 6 11 17 17 18 23 29 30

Dynamic Knapsack
// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {

final int ROWS = items.size() + 1;
final int COLS = maxCapacity + 1;
int[][] partialSolutions = new int[ROWS][COLS];
// first row and first column all zeros

for(int item = 1; item <= items.size(); item++) {
for(int capacity = 1; capacity <= maxCapacity; capacity++) {

Item currentItem = items.get(item - 1);
int bestSoFar = partialSolutions[item - 1][capacity];
if(currentItem.weight <= capacity) {

int withItem = currentItem.value;
int capLeft = capacity - currentItem.weight;
withItem += partialSolutions[item - 1][capLeft];
if (withItem > bestSoFar) {

bestSoFar = withItem;
}

}
partialSolutions[item][capacity] = bestSoFar;

}
}
return partialSolutions[ROWS - 1][COLS - 1];

}

Dynamic vs. Recursive
Backtracking Timing Data

CS314 Dynamic Programming 37

Number of items: 32. Capacity: 123
Recursive knapsack. Answer: 740, time: 10.0268025
Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210
Recursive knapsack. Answer: 893, time: 23.0677814
Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173
Recursive knapsack. Answer: 941, time: 89.8400178
Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93
Recursive knapsack. Answer: 638, time: 81.0132219
Dynamic knapsack. Answer: 638, time: 2.95601E-4

Clicker 4
Which approach to the knapsack problem
uses more memory?

A. the recursive backtracking approach

B. the dynamic programming approach

C. they use about the same amount of memory

CS314 Dynamic Programming 38

