
Topic 27
Functional Programming

Functional Programming with Java 8

“It's a long-standing principle of programming style that
the functional elements of a program should not be too
large. If some component of a program grows beyond the stage
where it's readily comprehensible, it becomes a mass of
complexity which conceals errors as easily as a big city conceals
fugitives. Such software will be hard to read, hard to test,
and hard to debug.” – Paul Graham

Copyright (c) Pearson 2016.
All rights reserved.

2

What is FP?

• functional programming: A style of programming that
emphasizes the use of functions (methods) to decompose a
complex task into subtasks.

– Examples of functional languages:
LISP, Scheme, ML, Haskell, Erlang, F#, Clojure, ...

• Java is considered an object-oriented language, not a functional
language.

• But Java 8 added several language features to facilitate a partial
functional programming style.

– Popular contemporary languages tend to be
Multi Paradigm Languages

3

Java 8 FP features

• 1. Effect-free programming

• 2. First-class functions

• 3. Processing structured data via functions

• 4. Function closures

• 5. Higher-order operations on collections

4

Effect-free code (19.1)

• side effect: A change to the state of an object or program
variable produced by a call on a function (i.e., a method).

– example: modifying the value of a variable

– example: printing output to System.out

– example: reading/writing data to a file, collection, or network

int result = f(x) + f(x);

int result = 2 * f(x);

• Are the two above statements equivalent?

– Yes, if the function f() has no side effects.

– One goal of functional programming is to minimize side effects.

5

Code w/ side effects

public class SideEffect {

public static int x;

public static int f(int n) {

x = x * 2;

return x + n;

}

// what if it were 2 * f(x)?

public static void main(String[] args) {

x = 5;

int result = f(x) + f(x);

System.out.println(result);

}

}

6

First-class functions (19.2)

• first-class citizen: An element of a programming language
that is tightly integrated with the language and supports the
full range of operations generally available to other entities in
the language.

• In functional programming, functions (methods) are treated as
first-class citizens of the languages.

– can store a function in a variable

– can pass a function as a parameter to another function

– can return a function as a value from another function

– can create a collection of functions

– ...

7

Lambda expressions

• lambda expression ("lambda"): Expression that describes a
function by specifying its parameters and return value.

– Java 8 adds support for lambda expressions.

– Essentially an anonymous function (aka method)

• Syntax:

(parameters) -> expression

• Example:

(x) -> x * x // squares a number

– The above is roughly equivalent to:

public static int squared(int x) {

return x * x;

}

8

MathMatrix add / subtract

• Recall the MathMatrix class:
public MathMatrix add(MathMatrix rhs) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < res.length; r++)

for (int c = 0; c < res[0].length; c++)

res[r][c] = cells[r][c] + rhs.cells[r][c];

return new MathMatrix(res);

}

public MathMatrix subtract(MathMatrix rhs) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < res.length; r++)

for (int c = 0; c < res[0].length; c++)

res[r][c] = cells[r][c] - rhs.cells[r][c];

return new MathMatrix(res);

}

9

MathMatrix add / subtract

•GACK!!!

•How do we generalize the idea of "add or
subtract"?

–How much work would it be to add
other operators?

–Can functional programming help remove the
repetitive code?

10

Code w/ lambdas

• We can represent the math operation as a lambda:

public MathMatrix add(MathMatrix rhs) {

return getMat(rhs, (x, y) -> x + y);

}

public MathMatrix subtract(MathMatrix rhs) {

return getMat(rhs, (x, y) -> x - y);

}

11

getMat method

private MathMatrix getMat(MathMatrix rhs,

IntBinaryOperator operator) {

int[][] res = new int[cells.length][cells[0].length];

for (int r = 0; r < cells.length; r++) {

for (int c = 0; c < cells[0].length; c++) {

int temp1 = cells[r][c];

int temp2 = rhs.cells[r][c];

res[r][c] = operator.applyAsInt(temp1, temp2);

}

}

return new MathMatrix(res);

}

// IntBinaryOperator Documentation

https://docs.oracle.com/javase/8/docs/api/java/util/function/IntBinaryOperator.html

12

Clicker 1

•Which of the following is a lambda
that checks if x divides evenly into y?

A. (x, y) -> y / x == 0

B. (x, y) -> x / y == 0

C. (x, y) -> y % x == 0

D. (x, y) -> x % y == 0

E. (x, y) -> y * x == 0

13

Streams (19.3)

• stream: A sequence of elements from a data source that
supports aggregate operations.

• Streams operate on a data source and modify it:

– example: print each element of a collection

– example: sum each integer in a file

– example: concatenate strings together into one large string

– example: find the largest value in a collection

– ...

14

Code w/o streams

• Non-functional programming sum code:

// compute the sum of the squares of integers 1-5

int sum = 0;

for (int i = 1; i <= 5; i++) {

sum += i * i;

}

15

The map modifier

• The map modifier applies a lambda to each stream element:

– higher-order function: Takes a function as an argument.

• Abstracting away loops (and data structures)

// compute the sum of the squares of integers 1-5

int sum = IntStream.range(1, 6)

.map(n -> n * n)

.sum();

// the stream operations are as follows:

IntStream.range(1, 6) -> [1, 2, 3, 4, 5]

-> map -> [1, 4, 9, 16, 25]

-> sum -> 55

https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html

16

The filter modifier

• The filter stream modifier removes/keeps elements of the

stream using a boolean lambda:

// compute the sum of squares of odd integers

int sum =

IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)

.filter(n -> n % 2 != 0)

.map(n -> n * n)

.sum();

// the stream operations are as follows:

IntStream.of -> [3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

-> filter -> [3, 1, 1, 5, 9, 5, 3]

-> map -> [9, 1, 1, 25, 81, 25, 9]

-> sum -> 151

17

Streams and methods

• using streams as part of a regular method:

// Returns true if the given integer is prime.

// Assumes n >= 2.

public static boolean isPrime(int n) {

return IntStream.range(1, n + 1)

.filter(x -> n % x == 0)

.count() == 2;

}

• How to make this method faster?

18

The reduce modifier

• The reduce modifier (method) combines elements of a stream

using a lambda combination function.

– Accepts two parameters: an initial value and a lambda to combine
that initial value with each subsequent value in the stream.

// Returns n!, or 1 * 2 * 3 * ... * (n-1) * n.

// Assumes n is non-negative.

public static int factorial(int n) {

return IntStream.range(2, n + 1)

.reduce(1, (a, b) -> a * b);

}

19

Stream operators
Method name Description

anyMatch(f) returns true if any elements of stream match given predicate

allMatch(f) returns true if all elements of stream match given predicate

average() returns arithmetic mean of numbers in stream

collect(f) convert stream into a collection and return it

count() returns number of elements in stream

distinct() returns unique elements from stream

filter(f) returns the elements that match the given predicate

forEach(f) performs an action on each element of stream

limit(size) returns only the next size elements of stream

map(f) applies the given function to every element of stream

noneMatch(f) returns true if zero elements of stream match given predicate

20

Stream operators
Method name Description

parallel() returns a multithreaded version of this stream

peek(f) examines the first element of stream only

reduce(f) applies the given binary reduction function to stream elements

sequential() single-threaded, opposite of parallel()

skip(n) omits the next n elements from the stream

sorted() returns stream's elements in sorted order

sum() returns sum of elements in stream

toArray() converts stream into array

Static method Description

concat(s1, s2) glues two streams together

empty() returns a zero-element stream

iterate(seed, f) returns an infinite stream with given start element

of(values) converts the given values into a stream

range(start, end) returns a range of integer values as a stream

21

Clicker 2

• What is output by the following code?

A.(-2, 5, 5, 10, -6)

B.6

C.(-1, 2.5, 2.5, 5, -3)

D.9

E.20

int x1 = IntStream.of(-2, 5, 5, 10, -6)

.map(x -> x / 2)

.filter(y -> y > 0)

.sum();

System.out.print(x1);

22

Optional results

• Some stream terminators like max return an "optional" result
because the stream might be empty or not contain the result:

// print largest multiple of 10 in list

// (does not compile!)

int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)

.filter(n -> n % 10 == 0)

.max();

System.out.println(largest);

23

Optional results fix

• To extract the optional result, use a "get as" terminator.

– Converts type OptionalInt to Integer

// print largest multiple of 10 in list

// (this version compiles and works.)

int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)

.filter(n -> n % 10 == 0)

.max()

.getAsInt();

System.out.println(largest);

24

Method references

ClassName::methodName

• A method reference lets you pass a method where a lambda
would otherwise be expected:

// compute sum of absolute values of even ints

int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};

int sum = Arrays.stream(numbers)

.map(Math::abs)

.filter(n -> n % 2 == 0)

.distinct()

.sum();

25

Ramya, Spring 2018

•“Okay, but why?”

•Programming with Streams is an
alternative to writing out the
loops ourselves

•Streams “abstract away” the loop
structures we have spent so much
time writing

•Why didn’t we just start with these?

26

Stream exercises

• Write a method sumAbsVals that uses stream operations to

compute the sum of the absolute values of an array of
integers. For example, the sum of {-1, 2, -4, 6, -9} is
22.

• Write a method largestEven that uses stream operations to

find and return the largest even number from an array of
integers. For example, if the array is {5, -1, 12, 10, 2,
8}, your method should return 12. You may assume that the

array contains at least one even integer.

27

Closures (19.4)

• bound/free variable: In a lambda expression, parameters
are bound variables while variables in the outer containing
scope are free variables.

• function closure: A block of code defining a function along
with the definitions of any free variables that are defined in the
containing scope.

// free variables: min, max, multiplier

// bound variables: x, y

int min = 10;

int max = 50;

int multiplier = 3;

compute((x, y) -> Math.max(x, min) *

Math.max(y, max) * multiplier);

28

• An array can be converted into a stream with Arrays.stream:

// compute sum of absolute values of even ints

int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};

int sum = Arrays.stream(numbers)

.map(n -> Math.abs(n))

.filter(n -> n % 2 == 0)

.distinct()

.sum();

(19.4) Higher Order
Operations on Collections

(Streams and Arrays)

29

Method references

ClassName::methodName

• A method reference lets you pass a method where a lambda
would otherwise be expected:

// compute sum of absolute values of even ints

int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};

int sum = Arrays.stream(numbers)

.map(Math::abs)

.filter(n -> n % 2 == 0)

.distinct()

.sum();

30

Streams and lists

• A collection can be converted into a stream by calling its
stream method:

// compute sum of absolute values of even ints

ArrayList<Integer> list =

new ArrayList<Integer>();

list.add(-42);

list.add(-17);

list.add(68);

list.stream()

.map(Math::abs)

.forEach(System.out::println);

31

Streams and strings

// convert into set of lowercase words

List<String> words = Arrays.asList(

"To", "be", "or", "Not", "to", "be");

Set<String> words2 = words.stream()

.map(String::toLowerCase)

.collect(Collectors.toSet());

System.out.println("word set = " + words2);

output:

word set = [not, be, or, to]

32

Streams and files

// find longest line in the file

int longest = Files.lines(Paths.get("haiku.txt"))

.mapToInt(String::length)

.max()

.getAsInt();

stream operations:

Files.lines -> ["haiku are funny",

"but sometimes they don't make sense",

"refrigerator"]

-> mapToInt -> [15, 35, 12]

-> max -> 35

33

Stream exercises

• Write a method fiveLetterWords that accepts a file name as
a parameter and returns a count of the number of unique lines
in the file that are exactly five letters long. Assume that each
line in the file contains at least one word.

• Write a method using streams that finds and prints the first 5
perfect numbers. (Recall a perfect number is equal to the sum
of its unique integer divisors, excluding itself.)

