
Topic Number 2

Efficiency – Complexity -

Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning

(see tune) in which incredible amounts of time and

effort go to produce little noticeable improvement,

often with the result that the code

becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

http://catb.org/~esr/jargon/html/T/tune.html

Clicker Question 1
“A program finds all the prime numbers between 2

and 1,000,000,000 from scratch

in 0.37 seconds."

– Is this a fast solution?

A. no B. yes C. it depends

Computer Scientists don’t just write programs.

They also analyze them.

How efficient is a program?

– How many computations does it take program to complete?

– How much memory does a program use?

– How do these change as the amount of data changes?

– What is the difference between the average case and worst

case efficiency if any?

Big Picture
Semi-formal approach for this class

– more formal techniques in theory classes, CS331

How many computations will this program

(method, algorithm) perform to get the answer?

Many simplifications

– view algorithms as Java programs

– determine by analysis the total number

executable statements (computations) in

program or method as a function of the amount

of data

– focus on the dominant term in the function

T(N) = 17N3 + 25N2 + 35N + 251 IS ORDER N3

Big Picture
• Data set varies by problem

• number of uteids, pixels in an image, number of

words in a text, typically use variable N

• could be more that one independent variable

• Lump similar functions into the same group

T(N) = N + 5

T(N) = 5N + 2

T(N) = 10

T(N) = 150

T(N) = 2N2 + 15N + 5

T(N) = 5N2 + 2N + 5

O(1) constant time
O(N) linear time,

runtime roughly

doubles as N

doubles

O(N2) quadratic time, runtime

roughly quadruples as N doubles

Counting Statements
int x; // one statement

x = 12; // one statement

int y = z * x + 3 % 5 * x / i; // 1

x++; // one statement

boolean p = x < y && y % 2 == 0 ||

z >= y * x; // 1

int[] data = new int[100]; // 100

data[50] = x * x + y * y; // 1

CS 314 Efficiency - Complexity 5

CS 314 Efficiency - Complexity 6

Clicker 2
What is output by the following code?
int total = 0;

for (int i = 0; i < 13; i++)

for (int j = 0; j < 11; j++)

total += 2;

System.out.println(total);

A. 24

B. 120

C. 143

D. 286

E. 338

Clicker 3

What is output when method sample is called?

// pre: n >= 0, m >= 0

public static void sample(int n, int m) {

int total = 0;

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

total += 5;

System.out.println(total);

}

A. 5 D. nm

B. n * m E. (n * m)5

C. n * m * 5
CS 314 Efficiency - Complexity 7

CS 314 Efficiency - Complexity 8

Simple Example

How many statements are executed by
method total as a function of

values.length

Let N = values.length

N is commonly used as a variable that denotes

the amount of data

public int total(int[] values) {

int result = 0;

for (int i = 0; i < values.length; i++)

result += values[i];

return result;

}

CS 314 Efficiency - Complexity 9

Counting Up Statements
int result = 0; 1

int i = 0; 1

i < values.length; N + 1

i++ N

result += values[i]; N

return total; 1

T(N) = 3N + 4

T(N) is the number of executable
statements in method total as function of

values.length

Another Simplification
When determining complexity of an

algorithm we want to simplify things

– ignore some details to make comparisons easier

Like assigning your grade for course

– At the end of CS314 your transcript won’t list all

the details of your performance in the course

– it won’t list scores on all assignments, quizzes,

and tests

– simply a letter grade, B- or A or D+

So we focus on the dominant term from the

function and ignore the coefficient
CS 314 Efficiency - Complexity 10

Big O
The most common method and notation for

discussing the execution time of algorithms is

Big O, also spoken Order

Big O is a mathematical technique that

allows us to take a function and, typically,

simplify it.

– So that when we talk about efficiency in a

simpler "language", a language of functions

Big O is an upper bounds

Hide a lot of unimportant details by assigning

a simple grade (function) to algorithms

CS 314 Efficiency - Complexity 12

Formal Definition of Big O
T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)

when N > N0

– N is the size of the data set the algorithm works on

– T(N) is a function that characterizes the actual

running time of the algorithm

– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of

the algorithm. (The typical Big functions table)

– c and N0 are constants

CS 314 Efficiency - Complexity 13

What it Means
T(N) is the actual growth rate of the

algorithm

– can be equated to the number of executable

statements in a program or chunk of code

F(N) is the function that bounds the growth

rate

– may be upper or lower bound

T(N) may not necessarily equal F(N)

– constants and lesser terms ignored because it is

a bounding function

CS 314 Efficiency - Complexity 14

Showing O(N) is Correct
Recall the formal definition of Big O

– T(N) is O(F(N)) if there are positive constants c

and N0 such that T(N) < cF(N) when N > N0

Recall method total, T(N) = 3N + 4

– show method total is O(N).

– F(N) is N

We need to choose constants c and N0

how about c = 4, N0 = 5 ?

CS 314 Efficiency - Complexity 15

horizontal axis: N, number of elements in data set

vertical axis: time for algorithm to complete. (simplified to

number of executable statements)

T(N), actual function of number of computations.

In this case 3N + 4

F(N), approximate function

of computations. In this case N

No = 5

c * F(N), in this case,

c = 4, c * F(N) = 4N

CS 314 Efficiency - Complexity 16

Typical Big O Functions – "Grades"

Function Common Name

N! factorial

2N Exponential

Nd, d > 3 Polynomial

N3 Cubic

N2 Quadratic

N N N Square root N

N log N N log N

N Linear

N Root - n

log N Logarithmic

1 Constant

Running

time grows

'slowly' with

more input.

Running

time grows

'quickly' with

more input.

Clicker 4
Which of the following is true?

Recall T(N)total = 3N + 4

A. Method total is O(N1/2)

B. Method total is O(N)

C. Method total is O(N2)

D. Two of A – C are correct

E. All of three of A – C are correct

CS 314 Efficiency - Complexity 17

Showing Order More Formally …
Show 10N2 + 15N is O(N2)

Break into terms.

10N2 < 10N2

15N < 15N2 for N > 1 (Now add)

10N2 + 15N < 10N2 + 15N2 for N > 1

10N2 + 15N < 25N2 for N > 1

c = 25, N0 = 1

Note, the choices for c and N0 are not unique.

CS 314 Efficiency - Complexity 18

CS 314 Efficiency - Complexity 19

Dealing with other methods
What do I do about method calls?
double sum = 0.0;

for (int i = 0; i < n; i++)

sum += Math.sqrt(i);

Long way

– go to that method or constructor and
count statements

Short way

– substitute the simplified Big O function for
that method.

– if Math.sqrt is constant time, O(1), simply count
sum += Math.sqrt(i); as one statement.

CS 314 Efficiency - Complexity 20

Dealing With Other Methods
public int foo(int[] data) {

int total = 0;

for (int i = 0; i < data.length; i++)

total += countDups(data[i], data);

return total;

}

// method countDups is O(N) where N is the

// length of the array it is passed

Clicker 5, What is the Big O of foo?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Independent Loops
// from the Matrix class

public void scale(int factor) {

for (int r = 0; r < numRows(); r++)

for (int c = 0; c < numCols(); c++)

iCells[r][c] *= factor;

}

numRows() returns number of rows in the matrix iCells

numCols() returns number of columns in the matrix iCells

Assume iCells is an N by N square matrix.

Assume numRows and numCols are O(1)

What is the T(N)? Clicker 6, What is the Order?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Bonus question. What if numRows is O(N)?

CS 314 Efficiency - Complexity 22

Just Count Loops, Right?

// Assume mat is a 2d array of booleans.

// Assume mat is square with N rows,

// and N columns.

public static void count(boolean[][] mat,

int row, int col) {

int numThings = 0;

for (int r = row - 1; r <= row + 1; r++)

for (int c = col - 1; c <= col + 1; c++)

if (mat[r][c])

numThings++;

Clicker 7, What is the order of the method count?

A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

CS 314 Efficiency - Complexity 23

It is Not Just Counting Loops
// "Unroll" the loop of method count:

int numThings = 0;

if (mat[r-1][c-1]) numThings++;

if (mat[r-1][c]) numThings++;

if (mat[r-1][c+1]) numThings++;

if (mat[r][c-1]) numThings++;

if (mat[r][c]) numThings++;

if (mat[r][c+1]) numThings++;

if (mat[r+1][c-1]) numThings++;

if (mat[r+1][c]) numThings++;

if (mat[r+1][c+1]) numThings++;

Just Count Loops, Right?

Clicker 8, What is the order of method mystery?

A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

private static void mystery(int[] data) {

stopIndex = data.length – 1;

int j = 1;

while (stopIndex > 0) {

if (data[j – 1] > data[j]) {

int t = data[j];

data[j] = data[j – 1];

data[j – 1] = t;

}

if (j == stopIndex) {

stopIndex--;

j = 1;

} else {

j++;

}

} N = data.length

CS 314 Efficiency - Complexity 25

Sidetrack, the logarithm
Thanks to Dr. Math

32 = 9

likewise log3 9 = 2

– "The log to the base 3 of 9 is 2."

The way to think about log is:

– "the log to the base x of y is the number you can
raise x to to get y."

– Say to yourself "The log is the exponent." (and say
it over and over until you believe it.)

– In CS we work with base 2 logs, a lot

 log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

The base of the log is typically not included as we can switch from

one base to another by multiplying by a constant factor.

26

When Do Logarithms Occur
Algorithms tend to have a logarithmic term when

they use a divide and conquer technique

the size of the data set keeps getting divided by 2
public int foo(int n) {

// pre n > 0

int total = 0;

while (n > 0) {

n = n / 2;

total++;

}

return total;

}

Clicker 9, What is the order of the above code?

A. O(1) B. O(logN) C. O(N)

D. O(Nlog N) E. O(N2)

CS 314 Efficiency - Complexity 27

Significant Improvement – Algorithm

with Smaller Big O function

Problem: Given an array of ints replace any

element equal to 0 with the maximum

positive value to the right of that element. (if

no positive value to the right, leave

unchanged.)

Given:
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]

Replace Zeros – Typical Solution
public void replace0s(int[] data){

for(int i = 0; i < data.length; i++){

if (data[i] == 0) {

int max = 0;

for(int j = i+1; j<data.length; j++)

max = Math.max(max, data[j]);

data[i] = max;

}

}

}

Assume all values are zeros. (worst case)

Example of a dependent loops.
Clicker 10 - Number of times j < data.length evaluated?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

CS 314 Efficiency - Complexity 29

Replace Zeros – Alternate Solution
public void replace0s(int[] data){

int max =

Math.max(0, data[data.length – 1]);

int start = data.length – 2;

for (int i = start; i >= 0; i--) {

if (data[i] == 0)

data[i] = max;

else

max = Math.max(max, data[i]);

}

}

Clicker 11 - Big O of this approach?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Clicker 12
Is O(N) really that much faster than O(N2)?

A. never

B. always

C. typically

Depends on the actual functions and the

value of N.

1000N + 250 compared to N2 + 10

When do we use mechanized computation?

N = 100,000

100,000,250 < 10,000,000,010 (108 < 1010)
30

CS 314 Efficiency - Complexity 31

A VERY Useful Proportion
Since F(N) is characterizes the running time

of an algorithm the following proportion

should hold true:

F(N0) / F(N1) ~= time0 / time1

An algorithm that is O(N2) takes 3 seconds

to run given 10,000 pieces of data.

– How long do you expect it to take when there are

30,000 pieces of data?

– common mistake

– logarithms?

CS 314 Efficiency - Complexity 32

Why Use Big O?
As we build data structures Big O is the tool we will

use to decide under what conditions one data
structure is better than another

Think about performance when there is a lot of
data.
– "It worked so well with small data sets..."

– Joel Spolsky, Schlemiel the painter's Algorithm

Lots of trade offs
– some data structures good for certain types of problems,

bad for other types

– often able to trade SPACE for TIME.

– Faster solution that uses more space

– Slower solution that uses less space

http://en.wikipedia.org/wiki/Schlemiel_the_painter's_Algorithm

CS 314 Efficiency - Complexity 33

Big O Space
Big O could be used to specify how much

space is needed for a particular algorithm

– in other words how many variables are needed

Often there is a time – space tradeoff

– can often take less time if willing to use more

memory

– can often use less memory if willing to take

longer

– truly beautiful solutions take less time and space

The biggest difference between time and space is

that you can't reuse time. - Merrick Furst

CS 314 Efficiency - Complexity 34

Quantifiers on Big O
It is often useful to discuss different cases for

an algorithm

Best Case: what is the best we can hope for?

– least interesting, but a good exercise

– Don't assume no data. Amount of date is still

variable, possibly quite large

Average Case (a.k.a. expected running time):

what usually happens with the algorithm?

Worst Case: what is the worst we can expect

of the algorithm?

– very interesting to compare this to the average case

CS 314 Efficiency - Complexity 35

Best, Average, Worst Case
To Determine the best, average, and worst

case Big O we must make assumptions
about the data set

Best case -> what are the properties of the data set
that will lead to the fewest number of executable
statements (steps in the algorithm)

Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements

Average case -> Usually this means assuming the
data is randomly distributed
– or if I ran the algorithm a large number of times with different sets of

data what would the average amount of work be for those runs?

CS 314 Efficiency - Complexity 36

public double minimum(double[] values) {

int n = values.length;

double minValue = values[0];

for (int i = 1; i < n; i++)

if (values[i] < minValue)

minValue = values[i];

return minValue;

}

Another Example

T(N)? F(N)? Big O? Best case? Worst Case?

Average Case?

If no other information, assume asking average case

CS 314 Efficiency - Complexity 37

Example of Dominance
Look at an extreme example. Assume the

actual number as a function of the amount of

data is:

N2/10000 + 2Nlog10 N+ 100000

Is it plausible to say the N2 term dominates

even though it is divided by 10000 and that

the algorithm is O(N2)?

What if we separate the equation into

(N2/10000) and (2N log10 N + 100000) and

graph the results.

CS 314 Efficiency - Complexity 38

Summing Execution Times

For large values of N the N2 term dominates so the
algorithm is O(N2)

When does it make sense to use a computer?

red line is
2Nlog10 N + 100000

blue line is
N2/10000

CS 314 Efficiency - Complexity 39

Comparing Grades
Assume we have a problem

Algorithm A solves the problem correctly and

is O(N2)

Algorithm B solves the same problem

correctly and is O(N log2N)

Which algorithm is faster?

One of the assumptions of Big O is that the

data set is large.

The "grades" should be accurate tools if this

holds true.

CS 314 Efficiency - Complexity 40

Running Times
Assume N = 100,000 and processor speed

is 1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030,086 years

N4 3171 years

N3 11.6 days

N2 10 seconds

N N 0.032 seconds

N log N 0.0017 seconds

N 0.0001 seconds

N 3.2 x 10-7 seconds

log N 1.2 x 10-8 seconds

CS 314 Efficiency - Complexity 41

Theory to Practice OR

Dykstra says: "Pictures are for the Weak."

1000 2000 4000 8000 16000 32000 64000 128K

O(N) 2.2x10-5 2.7x10-5 5.4x10-5 4.2x10-5 6.8x10-5 1.2x10-4 2.3x10-4 5.1x10-4

O(NlogN) 8.5x10-5 1.9x10-4 3.7x10-4 4.7x10-4 1.0x10-3 2.1x10-3 4.6x10-3 1.2x10-2

O(N3/2) 3.5x10-5 6.9x10-4 1.7x10-3 5.0x10-3 1.4x10-2 3.8x10-2 0.11 0.30

O(N2) ind. 3.4x10-3 1.4x10-3 4.4x10-3 0.22 0.86 3.45 13.79 (55)

O(N2)

dep.
1.8x10-3 7.1x10-3 2.7x10-2 0.11 0.43 1.73 6.90 (27.6)

O(N3) 3.40 27.26 (218)
(1745)

29 min.

(13,957)

233 min

(112k)

31 hrs

(896k)

10 days

(7.2m)

80 days

Times in Seconds. Red indicates predicated value.

CS 314 Efficiency - Complexity 42

Change between Data Points

1000 2000 4000 8000 16000 32000 64000 128K 256k 512k

O(N) - 1.21 2.02 0.78 1.62 1.76 1.89 2.24 2.11 1.62

O(NlogN) - 2.18 1.99 1.27 2.13 2.15 2.15 2.71 1.64 2.40

O(N3/2) - 1.98 2.48 2.87 2.79 2.76 2.85 2.79 2.82 2.81

O(N2) ind - 4.06 3.98 3.94 3.99 4.00 3.99 - - -

O(N2)

dep
- 4.00 3.82 3.97 4.00 4.01 3.98 - - -

O(N3) - 8.03 - - - - - - - -

Value obtained by Timex / Timex-1

CS 314 Efficiency - Complexity 43

Okay, Pictures

Results on a 2GhZ laptop

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5000 10000 15000 20000 25000 30000 35000

Value of N

T
im

e

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 44

Put a Cap on Time

Results on a 2GhZ laptop

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5000 10000 15000 20000 25000 30000 35000

Value of N

T
im

e

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 45

No O(N^2) Data

Results on a 2GhZ laptop

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 100000 200000 300000 400000 500000 600000

Value of N

T
im

e N

NlogN

NsqrtN

CS 314 Efficiency - Complexity 46

Just O(N) and O(NlogN)

Results on a 2GhZ laptop

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 100000 200000 300000 400000 500000 600000

Value of N

T
im

e N

NlogN

CS 314 Efficiency - Complexity 47

Just O(N)

N

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0 100000 200000 300000 400000 500000 600000

N

CS 314 Efficiency - Complexity 48

109 instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N2)

10 0.000000003 0.00000001 0.000000033 0.0000001

100 0.000000007 0.00000010 0.000000664 0.0001000

1,000 0.000000010 0.00000100 0.000010000 0.001

10,000 0.000000013 0.00001000 0.000132900 0.1 min

100,000 0.000000017 0.00010000 0.001661000 10 seconds

1,000,000 0.000000020 0.001 0.0199 16.7 minutes

1,000,000,000 0.000000030 1.0 second 30 seconds 31.7 years

CS 314 Efficiency - Complexity 49

Formal Definition of Big O (repeated)

T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)

when N > N0

– N is the size of the data set the algorithm works on

– T(N) is a function that characterizes the actual

running time of the algorithm

– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of

the algorithm

– c and N0 are constants

CS 314 Efficiency - Complexity 50

More on the Formal Definition

There is a point N0 such that for all values of N that

are past this point, T(N) is bounded by some

multiple of F(N)

Thus if T(N) of the algorithm is O(N^2) then,

ignoring constants, at some point we can bound the

running time by a quadratic function.

given a linear algorithm it is technically correct to

say the running time is O(N ^ 2). O(N) is a more

precise answer as to the Big O of the linear

algorithm

– thus the caveat “pick the most restrictive function” in Big

O type questions.

CS 314 Efficiency - Complexity 51

What it All Means
T(N) is the actual growth rate of the

algorithm

– can be equated to the number of executable

statements in a program or chunk of code

F(N) is the function that bounds the growth

rate

– may be upper or lower bound

T(N) may not necessarily equal F(N)

– constants and lesser terms ignored because it is

a bounding function

CS 314 Efficiency - Complexity 52

Other Algorithmic Analysis Tools
Big Omega T(N) is (F(N)) if there are

positive constants c and N0 such that

T(N) > cF(N)) when N > N0

– Big O is similar to less than or equal, an upper

bounds

– Big Omega is similar to greater than or equal, a

lower bound

Big Theta T(N) is (F(N)) if and only if T(N)

is O(F(N))and T(N) is (F(N)).

– Big Theta is similar to equals

CS 314 Efficiency - Complexity 53

Relative Rates of Growth
Analysis

Type

Mathematical

Expression

Relative

Rates of

Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big  T(N) = (F(N)) T(N) > F(N)

Big  T(N) = (F(N)) T(N) = F(N)

"In spite of the additional precision offered by Big Theta,

Big O is more commonly used, except by researchers

in the algorithms analysis field" - Mark Weiss

