Topic Number 2
Efficiency — Complexity -
Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise In tuning

(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,

often with the result that the code

becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

http://catb.org/~esr/jargon/html/T/tune.html

Clicker Question 1

> “A program finds all the prime numbers between 2
and 1,000,000,000 from scratch
In 0.37 seconds."

— |s this a fast solution?
A. no B. yes C. it depends

» Computer Scientists don’t just write programs.
They also analyze them.

> How efficient is a program?
— How many computations does it take program to complete?
— How much memory does a program use?
— How do these change as the amount of data changes?

— What is the difference between the average case and worst
case efficiency If any?

Big Picture

» Semi-formal approach for this class
— more formal techniques in theory classes, CS331

» How many computations will this program
(method, algorithm) perform to get the answer?
» Many simplifications
— view algorithms as Java programs

— determine by analysis the total number
executable statements (computations) in
program or method as a function of the amount
of data

— focus on the dominant term In the function
T(N) = 17N° + 25N? + 35N + 251 IS ORDER N3

Big Picture

« Data set varies by problem

* number of uteids, pixels in an image, number of
words In a text, typically use variable N

« could be more that one independent variable

 Lump similar functions into the sa Logp\

T(N) = 150
T(N) =5N + 2
N) =5N? +2N +5

s

O(1) constant time

T(N) =2

O(N) linear time,
= 1Quntime roughly

doubles as N

doubles

O(N2) quadratic time, runtime
roughly quadruples as N doubles

Counting Statements

int x; // one statement

x = 12; // one statement

int y =2z *x+ 3 %5 *x/1i; // 1

x++; // one statement

boolean p = x < y && vy % 2 == ||
z >=vy * x; // 1

int[] data = new int[100]; // 100

data[50] = x * x + v * y; // 1

CS 314 Efficiency - Complexity 5

Clicker 2

» What is output by the following code?
int total = 0;
for (int 1 = 0; 1 < 13; 1++)
for (int 3 = 0; 3 < 11; J++)
total += 2;
System.out.println (total);

A. 24

B. 120
C. 143
D. 286
E. 338

CS 314 Efficiency - Complexity

Clicker 3

> What is output when method sample is called?
// pre: n >= 0, m >= 0
public static void sample(int n, 1nt m)
int total = 0;

for (int i = 0; i < n; 1i++)
for (int § = 0; 7 < m; J++)
total += 5;
System.out.println(total);
}
A. 5 D. nm
B.n*m E. (n*m)°

C.n*m=*5h

CS 314 Efficiency - Complexity

{

Simple Example

public int total(int[] values) {
int result = 0;
for (int i1 = 0; 1 < values.length; i++)

result += values]|[1i];
return result;

J

» How many statements are executed by
method total as a function of

values.length

» Let N = values. length

» N is commonly used as a variable that denotes
the amount of data

CS 314 Efficiency - Complexity 8

Counting Up Statements

int result = 0; 1
int 1 = 0; 1

» i < values.length; N+ 1
» i++ N

» result += values[i]; N

» return total; 1
» T(N) = 3N + 4

» T(N) is the number of executable
statements in method total as function of

values.length
CS 314 Efficiency - Complexity o)

Another Simplification
» When determining complexity of an
algorithm we want to simplify things

— Ignore some detalls to make comparisons easier

» Like assigning your grade for course

— At the end of CS314 your transcript won't list all
the detalls of your performance in the course

— it won't list scores on all assignments, quizzes,
and tests

— simply a letter grade, B- or A or D+

> So we focus on the dominant term from the
function and ignore the coefficient

CS 314 Efficiency - Complexity 10

Big O
» The most common method and notation for
discussing the execution time of algorithms is

Big O, also spoken Order

» Big O is a mathematical technique that
allows us to take a function and, typically,

simplify It.
— So that when we talk about efficiency in a
simpler "language", a language of functions

» Big O is an upper bounds

» Hide a lot of unimportant details by assigning
a simple grade (function) to algorithms

Formal Definition of Big O

» T(N) is O(F(N)) if there are positive
constants ¢ and N, such that T(N) < cF(N)
when N > N,

— N is the size of the data set the algorithm works on

— T(N) Is a function that characterizes the actual
running time of the algorithm

— F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big functions table)

— ¢ and N, are constants

CS 314 Efficiency - Complexity 12

What it Means

» T(N) is the actual growth rate of the
algorithm

— can be equated to the number of executable
statements in a program or chunk of code

*» F(N) is the function that bounds the growth
rate

— may be upper or lower bound
» T(N) may not necessarily equal F(N)

— constants and lesser terms ignored because it Is
a bounding function

CS 314 Efficiency - Complexity 13

Showing O(N) is Correct

» Recall the formal definition of Big O

— T(N) i1s O(F(N)) if there are positive constants c
and N, such that T(N) < cF(N) when N > N,

» Recall method total, T(N)=3N + 4
— show method total is O(N).

— F(N) is N
» We need to choose constants ¢ and N,
» how aboutc=4,N,=57?

CS 314 Efficiency - Complexity 14

vertical axis: time for algorithm to complete. (simplified to
number of executable statements)

c * F(N), in this case,
c=4,c*F(N)=4N

T(N), actual function of number of computations.
In this case 3N + 4

F(N), approximate function
of computations. In this case N

horizontal axis: N, number of elements in data set

CS 314 Efficiency - Complexity 15

Typical Big O Functions — "Grades"

Function Common Name
N! factorial
2N Exponential
Nd, d >3 Polynomial
N3 Cubic
N2 Quadratic
N/ N N Square root N
N log N N log N
N Linear
J N Root - n
log N Logarithmic
1 Constant
CS 314 Efficiency - Complexity

Running
time grows
‘quickly’ with
more input.

Running

time grows
'slowly’ with
more input.

16

Clicker 4

» Which of the following is true?
Recall T(N),yio = 3N + 4

A. Met
B. Met
C. Met

N0C
N0C

N0C

total is O(N?)
total IS O(N)
total is O(N?)

D. Two of A — C are correct
E. All of three of A — C are correct

CS 314

Efficiency - Complexity

17

Showing Order More Formally ...

» Show 10N2 + 15N is O(N?)
» Break into terms.

» 10N? < 10N?

» 15N < 15N?for N > 1 (Now add)

» 10N? + 15N < 10N2+ 15N? for N > 1
» 10N? + 156N < 25N2forN > 1
»c=25,Ny=1

* Note, the choices for ¢ and N, are not unique.

CS 314 Efficiency - Complexity 18

Dealing with other methods
» What do | do about method calls?

double sum = 0.0;
for (int i = 0; 1 < n; 1i++)
sum += Math.sqgrt (i) ;
> Long way
— go to that method or constructor and
count statements

» Short way

— substitute the simplified Big O function for
that method.

— If Math.sqrt is constant time, O(1), simply count
sum += Math.sqgrt (i) ; as one statement.

CS 314 Efficiency - Complexity 19

Dealing With Other Methods

public int foo(int[] data) {

int total = 0O;
for (int 1 = 0; 1 < data.length; 1++)

total += countDups (datali], data);
return total;

}
// method countDups is O(N) where N is the

// length of the array it is passed

Clicker 5, What is the Big O of foo?
A. O(1) B. O(N) C. O(NlogN)
D. O(N?) E. O(ND)

CS 314 Efficiency - Complexity 20

Independent Loops

// from the Matrix class
public void scale(int factor) {
for (int r = 0; r < numRows(); r++)
for (int ¢ = 0; ¢ < numCols(); c++)
1Cells[r] [c] *= factor;
}
numRows () returns number of rows in the matrix iCells
numCols () returns number of columns in the matrix iCells

Assume iCells is an N by N square matrix.
Assume numRows and numCaols are O(1)

What is the T(N)? Clicker 6, What is the Order?

A. O(1) B. O(N) C. O(NlogN)
D. O(N?) E. O(N!)

Bonus question. What if numRows is O(N)?

Just Count Loops, Right?

// Assume mat is a 2d array of booleans.
// Assume mat is square with N rows,

// and N columns.
public static void count (boolean[] [] mat,
int row, int col) {

int numThings = 0;
for (int r = row - 1; r <= row + 1; r++)
for (int ¢ = col - 1; ¢ <= col + 1; c++)
if (mat[r]lc])
numThings++;

Clicker 7, What is the order of the method count?
A. O(1) B. O(N°5) C.O(N) D.O(N?) E.O(N?3)

CS 314 Efficiency - Complexity 22

It Is Not Just Counting Loops

// "Unroll" the loop of method count:

int numThings = 0O;

1f (mat[r-1][c-1]) numThings++;
1f (mat[r-1][c]) numThings++;
1f (mat[r-1][ctl]) numThings++;
1f (mat[r][c-1]) numThings++;
1f (mat[r][c]) numThings++;

1f (mat[r][ctl]) numThings++;
1f (mat[r+l] [c-1]) numThings++;
1f (mat[r+l] [c]) numThings++;
1f (mat[r+l] [ctl]) numThings++;

CS 314 Efficiency - Complexity

Just Count Loops, Right?

private static void mystery(int[] data) ({

stopIndex = data.length - 1;

int j = 1;

while (stopIndex > 0) ({

if (data[j - 1] > data[j]) {

int t = data[j]:
data[j] = data[]j - 1];
data[j - 1] = t;

}

if (j == stopIndex) ({
stopIndex--;
J=1;

} else {
Jj++;

}
} ‘N = data.length

Clicker 8, What is the order of method mystery?
A. O(1) B. O(N°5) C.O(N) D.O(N?) E.O(N?3)

Sidetrack, the logarithm

» Thanks to Dr. Math
» 32 =g
» likewise log; 9 = 2
—"The log to the base 3 0of 9is 2."

» The way to think about log is:

—"the log to the base x of y is the number you can
raise x toto get y."

— Say to yourself "The log is the exponent." (and say
It over and over until you believe it.)

—In CS we work with base 2 logs, a lot
» log,32=? log,8="? log,1024=? log,, 1000 =7

CS 314 Efficiency - Complexity 25

When Do Logarithms Occur

> Algorithms tend to have a logarithmic term when
they use a divide and conguer technique

> the size of the data set keeps getting divided by 2

public 1nt foo(int n) { My CLENT COOLON'T HWE

KILLED ANYONE. WITH THIS
// pte 1 > 0 ARROW, AND T CAN PROVE IT!

int total = 0; T'D UKE TO EXAMINE
while (n > 0) |)wmﬁ“mﬁ:
n =n/ 2; '

_ 0\
total++; BUT NEVER REACHLIT

J

o
return total; _
) %ﬁ%\

> Clicker 9, What is the order of the above code?

A. O(1) B. O(logN) C. O(N)
D. O(Nlog N) E. O(N?)
The base of the log is typically not included as we can switch from 26

one base to another by multiplying by a constant factor.

Significant Improvement — Algorithm
with Smaller Big O function

» Problem: Given an array of ints replace any
element equal to 0 with the maximum
positive value to the right of that element. (if
no positive value to the right, leave
unchanged.)

Given:
[OI 9/ OI 13/ Or Or 7/ 1/ _11 O/ 1/ O]

Becomes:
[EI 9/ E/ 13/ Z/ Z/ 7/ 1/ _1/ l/ 1/ O]

CS 314 Efficiency - Complexity 27

Replace Zeros — Typical Solution

public voild replaceOs (1int[]
07

for(int 1
1f (datali]
1int max
for(int
max
data[1l]

}

}

T

J

data) {
1 < data.length;

== 0) |

07

1++) {

= 1+1; j<data.length; j++)
Math.max (max, datalj]);

max,

Assume all values are zeros. (worst case)
Example of a dependent loops.

Clicker 10 - Number of times | < data.length evaluated?

A.O(1)
D. O(N?)

B. O(N)
E. O(N!)

C. O(NlogN)

Replace Zeros — Alternate Solution

public void replaceOs (int[] data) {
int max =
Math.max (0, datal[data.length — 1]);
int start = data.length - 2;

for (int 1 = start; 1 >= 0; 1i--) {
1f (datal[i] == 0)
datal[l] = max;
else
max = Math.max (max, datal[il]);

J
J

Clicker 11 - Big O of this approach?
A.0O(1) B. O(N) C. O(NlogN)
D. O(N?) E. O(N!)

CS 314 Efficiency - Complexity 29

Clicker 12
> Is O(N) really that much faster than O(N?2)?

A. never
B. always

C. typically

» Depends on the actual functions and the
value of N.

» 1000N + 250 compared to N2 + 10

» When do we use mechanized computation?
» N = 100,000

» 100,000,250 < 10,000,000,010 (108 < 1010)30

A VERY Useful Proportion

» Since F(N) is characterizes the running time
of an algorithm the following proportion
should hold true:

F(Ny) / F(N,) ~=time, / time,
> An algorithm that is O(N?) takes 3 seconds

to run given 10,000 pieces of data.

— How long do you expect it to take when there are
30,000 pieces of data?

— common mistake
— logarithms?

CS 314 Efficiency - Complexity 31

Why Use Big O?

> As we build data structures Big O is the tool we will
use to decide under what conditions one data
structure Is better than another

» Think about performance when there is a lot of
data.
— "It worked so well with small data sets..."
— Joel Spolsky, Schlemiel the painter's Algorithm

> Lots of trade offs

— some data structures good for certain types of problems,
bad for other types

— often able to trade SPACE for TIME.
— Faster solution that uses more space
— Slower solution that uses less space

CS 314 Efficiency - Complexity 32

http://en.wikipedia.org/wiki/Schlemiel_the_painter's_Algorithm

Big O Space
» Big O could be used to specify how much
space Is needed for a particular algorithm
— In other words how many variables are needed

» Often there is a time — space tradeoff

— can often take less time if willing to use more
memory

— can often use less memory if willing to take
longer

— truly beautiful solutions take less time and space

The biggest difference between time and space is
that you can't reuse time. - Merrick Furst

CS 314 Efficiency - Complexity 33

Quantifiers on Big O

» It is often useful to discuss different cases for
an algorithm

» Best Case: what is the best we can hope for?
— least interesting, but a good exercise
— Don't assume no data. Amount of date is still
variable, possibly quite large
» Average Case (a.k.a. expected running time):
what usually happens with the algorithm?

» Worst Case: what is the worst we can expect
of the algorithm?

— very interesting to compare this to the average case
CS 314 Efficiency - Complexity 34

Best, Average, Worst Case

» To Determine the best, average, and worst
case Big O we must make assumptions
about the data set

> Best case -> what are the properties of the data set
that will lead to the fewest number of executable
statements (steps in the algorithm)

> Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements

> Average case -> Usually this means assuming the

data is randomly distributed

— or if | ran the algorithm a large number of times with different sets of
data what would the average amount of work be for those runs?

CS 314 Efficiency - Complexity 35

Another Example

public double minimum (double[] wvalues) {
int n = values.length;
double minValue = wvalues[0];
for (int 1 = 1; 1 < n; 1++)
1f (values[1] < minValue)
minValue = values|[1];
return minValue;

J

» T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

> If no other information, assume asking average case

CS 314 Efficiency - Complexity 306

Example of Dominance

» Look at an extreme example. Assume the
actual number as a function of the amount of
data Is:

N</10000 + 2Nlog,, N+ 100000

» |s it plausible to say the N2 term dominates
even though it is divided by 10000 and that
the algorithm is O(N?)?

» What if we separate the equation into
(N4/10000) and (2N log,, N + 100000) and
graph the results.

CS 314 Efficiency - Complexity 37

Summing Execution Times

1+1.500.000

T1.200.000

red line 1s
2Nlog10 N + 100000

T1.100.000
T1.000.000
+a00.000
DDDDDDDDD

DDDDDDDDD

blue line is
N2/10000

TEQO.000
TE00.000
T400.000
+200.000

DDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDD

» For large values of N the N2 term dominates so the
algorithm is O(N?)
» When does it make sense to use a computer?

CS 314 Efficiency - Complexity 38

Comparing Grades

» Assume we have a problem

» Algorithm A solves the problem correctly and
IS O(N?)

> Algorithm B solves the same problem
correctly and is O(N log,N)

» Which algorithm is faster?

» One of the assumptions of Big O is that the
data set Is large.

» The "grades" should be accurate tools if this
holds true.

CS 314 Efficiency - Complexity 39

Running Times

» Assume N = 100,000 and processor speed
IS 1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030086 years
N4 3171 years

N3 11.6 days

N2 10 seconds

N/ N 0.032 seconds

N log N 0.0017 seconds

N 0.0001 seconds
VN 3.2 x 107 seconds
log N 1.2 x 108 seconds

CS 314 Efficiency - Complexity 40

Dykstra says: "Pictures are for the Weak.

Theory to Practice OR

1000 2000 | 4000 8000 16000 | 32000 | 64000 | 128K
O(N) 2.2x10°(2.7x10° |5.4x10°|4.2x10> [6.8x10° |1.2x10* |2.3x10* |5.1x10*
O(NlogN) |8.5x10°(1.9x10* [3.7x10#|4.7x10* |1.0x10° |2.1x10° |4.6x103 |1.2x107
O(N32) |3.5x10|6.9x10% [1.7x103|5.0x103 [1.4x102 |3.8x102 |0.11 0.30
O(N2) ind. |3.4x103|1.4x103 |4.4x103|0.22 |0.86 |3.45 [13.79 |©)
2
doe(gl) 1.8x10-3|7.1x10% |2.7x102|0.11 0.43 173 |e90 |(276)
(218) (1745) [(13,957) [(112k) [(896k) [(7.2m)
O(N3) 3.40 |27.26 29 min. |233min |31 hrs |10days |80 days
Times In Seconds. red indicates predicated value.
CS 314 Efficiency - Complexity 41

Change between Data Points

1000| 2000 | 4000 | 8000 | 16000 |32000 64000 | 128K | 256k | 512k
O(N) _ 1.21 | 202 | 0.78 | 1.62 | 1.76 | 1.89 | 2.24 | 2.11 | 1.62
O(NlogN) | 218 | 199 | 127 | 213 | 215 | 2.15 | 271 | 1.64 | 2.40
O(N32) | 198 | 248 | 287 | 279 | 276 | 285 | 2.79 | 2.82 | 281
O(N2) ind |~ 4.06 | 398 | 3.94 | 3.99 | 4.00 | 3.99 - - -
O(N?) - 400 [3.82| 3.97 | 400 | 4.01 | 3.98 - - -
dep
O(N3) - 8.03 - - - . ; _))
Value obtained by Time, / Time,_,
CS 314 Efficiency - Complexity 42

Okay, Pictures

Time

0 5000 10000

Results on a 2GhZ laptop

15000 20000 25000 30000 35000
Value of N
CS 314 Efficiency - Complexity 43

Put a Cap on Time

Results on a 2GhZ laptop

0.20
0.18
0.16
0.14
0.12 —N
o —=— NlogN
_E 0.10 NsgrtN
0.08 N2
' == N2
0.06
0.04
0.02
0.00 +*
0 5000 10000 15000 20000 25000 30000 35000
Value of N
CS 314 Efficiency - Complexity 44

No O(N”2) Data

Results on a 2GhZ laptop

3.00

2.50

2.00
o —— N
_E 1.50 —#- NlogN

NsqrtN

1.00

0.50

0.00 r.

0 100000 200000 300000 400000 500000 600000
Value of N
CS 314 Efficiency - Complexity 45

Just O(N) and O(NlogN)

Time

Results on a 2GhZ laptop

0.06
0.05
0.04
0.03
0.02
0.01

0.00
0 100000 200000 300000 400000

Value of N

500000

600000

- N
== NlogN

CS 314 Efficiency - Complexity

46

J

ust O(N)

0.0020

0.0018

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

100000

200000

300000 400000

500000

600000

CS 314

Efficiency - Complexity

47

10° instructions/sec, runtimes

N O(log N) O(N) O(N log N) O(N?)
101 0.000000003 .00000001 [0.000000033 |0.0000001
100 | 0.000000007 .00000010 [0.000000664 |0.0001000
1,000 | 0.000000010 .00000100 [0.000010000 |0.001

10,000 | 0.000000013 .00001000 [0.000132900 |0.1 min

100,000 | 0.000000017 .00010000 [0.001661000 |10 seconds
1,000,000 | 0.000000020 .001 0.0199 16.7 minutes

1,000,000,000 | 0.000000030 .0 second | 30 seconds 31.7 years

CS 314

Efficiency - Complexity

48

Formal Definition of Big O (repeated)

» T(N) is O(F(N)) if there are positive
constants ¢ and N, such that T(N) < cF(N)
when N > N,

— N is the size of the data set the algorithm works on

— T(N) Is a function that characterizes the actual
running time of the algorithm

— F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm

— ¢ and N, are constants

CS 314 Efficiency - Complexity 49

More on the Formal Definition

» There is a point N, such that for all values of N that
are past this point, T(N) is bounded by some
multiple of F(N)

» Thus if T(N) of the algorithm is O(N*2) then,
Ignoring constants, at some point we can bound the
running time by a quadratic function.

> given a linear algorithm it is technically correct to
say the running time is O(N * 2). O(N) Iis a more
precise answer as to the Big O of the linear
algorithm

— thus the caveat “pick the most restrictive function” in Big
O type questions.

CS 314 Efficiency - Complexity 50

What it All Means

» T(N) is the actual growth rate of the
algorithm

— can be equated to the number of executable
statements in a program or chunk of code

*» F(N) is the function that bounds the growth
rate

— may be upper or lower bound
» T(N) may not necessarily equal F(N)

— constants and lesser terms ignored because it Is
a bounding function

CS 314 Efficiency - Complexity 51

Other Algorithmic Analysis Tools

» Big Omega T(N) is Q(F(N)) if there are
positive constants ¢ and N, such that
T(N) >cF(N))when N > N,
— Big O is similar to less than or equal, an upper
bounds

— Big Omega is similar to greater than or equal, a
lower bound

» Big Theta T(N) is 6(F(N)) if and only if T(N)
is O(F(N))and T(N) is Q(F(N)).
— Big Theta is similar to equals

CS 314 Efficiency - Complexity 52

Relative Rates of Growth

Analysis | Mathematical Relative
Type Expression Rates of
Growth

BigO | T(N) =0O(F(N)) | T(N)<F(N)

BigQ | T(N)=Q(F(N))| T(N)=>F(N)

Bigo | T(N)=06(F(N)) | T(N)=F(N)

"In spite of the additional precision offered by Big Theta,
Big O is more commonly used, except by researchers

In the algorithms analysis field" - Mark Weiss
CS 314 Efficiency - Complexity

