
Topic Number 2
Efficiency Complexity -

Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning
(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,
often with the result that the code
becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

Clicker Question 1

between 2 and 1,000,000,000 from scratch
in 0.37 seconds."

Is this a fast solution?

A. no

B. yes

C. it depends

CS 314 Efficiency - Complexity 2

Efficiency

They also analyze them.

How efficient is a program?
How many computations does it take program to
complete?

How much memory does a program use?

How do these change as the amount
of data changes?

What is the difference between the average case
and worst case efficiency if any?

CS 314 Efficiency - Complexity 3

Technique
Semi-formal approach for this class

more formal techniques in theory classes, CS331

How many computations will this program
(method, algorithm) perform to get the answer?

Many simplifications
view algorithms as Java programs

determine by analysis the total number
executable statements (computations) in
program or method as a function of the amount
of data

focus on the dominant term in the function

T(N) = 17N3 + 25N2 + 35N + 251 IS ORDER N3

Counting Statements
int x; // one statement

x = 12; // one statement

int y = z * x + 3 % 5 * x / i; // 1

x++; // one statement

boolean p = x < y && y % 2 == 0 ||
z >= y * x; // 1

int[] data = new int[100]; // 100

data[50] = x * x + y * y; // 1

CS 314 Efficiency - Complexity 5 CS 314 Efficiency - Complexity 6

Clicker 2
What is output by the following code?
int total = 0;
for (int i = 0; i < 13; i++)

for (int j = 0; j < 11; j++)
total += 2;

System.out.println(total);

A. 24
B. 120
C. 143
D. 286
E. 338

Clicker 3
What is output when method sample is called?
// pre: n >= 0, m >= 0
public static void sample(int n, int m) {

int total = 0;
for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)
total += 5;

System.out.println(total);
}

A. 5 D. nm

B. n * m E. (n * m)5

C. n * m * 5
CS 314 Efficiency - Complexity 7 CS 314 Efficiency - Complexity 8

Example

How many statements are executed by
method total as a function of
values.length

Let N = values.length
N is commonly used as a variable that denotes
the amount of data

public int total(int[] values) {
int result = 0;
for (int i = 0; i < values.length; i++)

result += values[i];
return result;

}

CS 314 Efficiency - Complexity 9

Counting Up Statements
int result = 0; 1

int i = 0; 1

i < values.length; N + 1
i++ N

result += values[i]; N

return total; 1

T(N) = 3N + 4

T(N) is the number of executable
statements in method total as function of
values.length

Another Simplification
When determining complexity of an
algorithm we want to simplify things

ignore some details to make comparisons easier

Like assigning your grade for course

the details of your performance in the course

and tests

simply a letter grade, B- or A or D+

So we focus on the dominant term from the
function and ignore the coefficient

CS 314 Efficiency - Complexity 10

Big O
The most common method and notation for
discussing the execution time of algorithms is
Big O, also spoken Order

Big O is a mathematical technique that
allows us to take a function and, typically,
simplify it.

So that when we talk about efficiency in a
simpler "language", a language of functions

Big O is an upper bounds

Hide a lot of unimportant details by assigning
a simple grade (function) to algorithms

CS 314 Efficiency - Complexity 12

Formal Definition of Big O
T(N) is O(F(N)) if there are positive
constants c and N0 such that T(N) < cF(N)
when N > N0

N is the size of the data set the algorithm works on

T(N) is a function that characterizes the actual
running time of the algorithm

F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big functions table)

c and N0 are constants

CS 314 Efficiency - Complexity 13

What it Means
T(N) is the actual growth rate of the
algorithm

can be equated to the number of executable
statements in a program or chunk of code

F(N) is the function that bounds the growth
rate

may be upper or lower bound

T(N) may not necessarily equal F(N)
constants and lesser terms ignored because it is
a bounding function

CS 314 Efficiency - Complexity 14

Showing O(N) is Correct
Recall the formal definition of Big O

T(N) is O(F(N)) if there are positive constants c
and N0 such that T(N) < cF(N) when N > N0

Recall method total, T(N) = 3N + 4
show method total is O(N).

F(N) is N

We need to choose constants c and N0

how about c = 4, N0 = 5 ?

CS 314 Efficiency - Complexity 15

horizontal axis: N, number of elements in data set

vertical axis: time for algorithm to complete. (simplified to
number of executable statements)

T(N), actual function of number of computations.
In this case 3N + 4

F(N), approximate function
of computations. In this case N

No = 5

c * F(N), in this case,
c = 4, c * F(N) = 4N

CS 314 Efficiency - Complexity 16

Typical Big O Functions "Grades"
Function Common Name

N! factorial

2N Exponential

Nd, d > 3 Polynomial

N3 Cubic

N2 Quadratic

N N N Square root N

N log N N log N

N Linear

N Root - n

log N Logarithmic

1 Constant

Running
time grows
'slowly' with
more input.

Running
time grows
'quickly' with
more input.

Clicker 4
Which of the following is true?
Recall T(N)total = 3N + 4

A. Method total is O(N1/2)

B. Method total is O(N)

C. Method total is O(N2)

D. Two of A C are correct

E. All of three of A C are correct

CS 314 Efficiency - Complexity 17

Show 10N2 + 15N is O(N2)

Break into terms.

10N2 < 10N2

15N < 15N2 for N > 1 (Now add)

10N2 + 15N < 10N2 + 15N2 for N > 1

10N2 + 15N < 25N2 for N > 1

c = 25, N0 = 1

Note, the choices for c and N0 are not unique.
CS 314 Efficiency - Complexity 18

CS 314 Efficiency - Complexity 19

Dealing with other methods
What do I do about method calls?

double sum = 0.0;
for (int i = 0; i < n; i++)

sum += Math.sqrt(i);

Long way
go to that method or constructor and
count statements

Short way
substitute the simplified Big O function for
that method.
if Math.sqrt is constant time, O(1), simply count
sum += Math.sqrt(i); as one statement.

CS 314 Efficiency - Complexity 20

Dealing With Other Methods
public int foo(int[] data) {

int total = 0;
for (int i = 0; i < data.length; i++)

total += countDups(data[i], data);
return total;

}
// method countDups is O(N) where N is the
// length of the array it is passed

Clicker 5, What is the Big O of foo?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Independent Loops
// from the Matrix class

public void scale(int factor) {

for (int r = 0; r < numRows(); r++)

for (int c = 0; c < numCols(); c++)

iCells[r][c] *= factor;

}

numRows() returns number of rows in the matrix iCells

numCols() returns number of columns in the matrix iCells

Assume iCells is an N by N square matrix.
Assume numRows and numCols are O(1)

What is the T(N)? Clicker 6, What is the Order?

A. O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Bonus question. What if numRows is O(N)?
CS 314 Efficiency - Complexity 22

Just Count Loops, Right?

// Assume mat is a 2d array of booleans.
// Assume mat is square with N rows,
// and N columns.
public static void count(boolean[][] mat,

int row, int col) {
int numThings = 0;
for (int r = row - 1; r <= row + 1; r++)

for (int c = col - 1; c <= col + 1; c++)
if (mat[r][c])

numThings++;

Clicker 7, What is the order of the method count?
A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

CS 314 Efficiency - Complexity 23

It is Not Just Counting Loops
// "Unroll" the loop of method count:

int numThings = 0;

if (mat[r-1][c-1]) numThings++;

if (mat[r-1][c]) numThings++;

if (mat[r-1][c+1]) numThings++;

if (mat[r][c-1]) numThings++;

if (mat[r][c]) numThings++;

if (mat[r][c+1]) numThings++;

if (mat[r+1][c-1]) numThings++;

if (mat[r+1][c]) numThings++;

if (mat[r+1][c+1]) numThings++;

Just Count Loops, Right?

Clicker 8, What is the order of method mystery?
A. O(1) B. O(N0.5) C. O(N) D. O(N2) E. O(N3)

private static void mystery(int[] data) {
stopIndex = data.length 1;
int j = 1;
while (stopIndex > 0) {

if (data[j 1] > data[j]) {
int t = data[j];
data[j] = data[j 1];
data[j 1] = t;

}
if (j == stopIndex) {

stopIndex--;
j = 1;

} else {
j++;

}
} N = data.length

CS 314 Efficiency - Complexity 25

Sidetrack, the logarithm
Thanks to Dr. Math
32 = 9
likewise log3 9 = 2

"The log to the base 3 of 9 is 2."

The way to think about log is:
"the log to the base x of y is the number you can
raise x to to get y."
Say to yourself "The log is the exponent." (and say
it over and over until you believe it.)
In CS we work with base 2 logs, a lot

log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

The base of the log is typically not included as we can switch from
one base to another by multiplying by a constant factor.

26

When Do Logarithms Occur
Algorithms tend to have a logarithmic term when
they use a divide and conquer technique

the size of the data set keeps getting divided by 2
public int foo(int n) {

// pre n > 0
int total = 0;
while (n > 0) {

n = n / 2;
total++;

}
return total;

}

Clicker 9, What is the order of the above code?

A. O(1) B. O(logN) C. O(N)

D. O(Nlog N) E. O(N2)

CS 314 Efficiency - Complexity 27

Significant Improvement Algorithm
with Smaller Big O function

Problem: Given an array of ints replace any
element equal to 0 with the maximum
positive value to the right of that element. (if
no positive value to the right, leave
unchanged.)

Given:
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]

Replace Zeros Typical Solution
public void replace0s(int[] data){

for(int i = 0; i < data.length; i++){
if (data[i] == 0) {
int max = 0;
for(int j = i+1; j<data.length; j++)

max = Math.max(max, data[j]);
data[i] = max;

}
}

}
Assume all values are zeros. (worst case)
Example of a dependent loops.
Clicker 10 - Number of times j < data.length evaluated?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

CS 314 Efficiency - Complexity 29

Replace Zeros Alternate Solution
public void replace0s(int[] data){

int max =
Math.max(0, data[data.length 1]);

int start = data.length 2;
for (int i = start; i >= 0; i--) {

if (data[i] == 0)
data[i] = max;

else
max = Math.max(max, data[i]);

}
}
Clicker 11 - Big O of this approach?

A.O(1) B. O(N) C. O(NlogN)

D. O(N2) E. O(N!)

Clicker 12
Is O(N) really that much faster than O(N2)?

A. never

B. always

C. typically

Depends on the actual functions and the
value of N.

1000N + 250 compared to N2 + 10

When do we use mechanized computation?

N = 100,000

100,000,250 < 10,000,000,010 (108 < 1010)
30

CS 314 Efficiency - Complexity 31

A VERY Useful Proportion
Since F(N) is characterizes the running time
of an algorithm the following proportion
should hold true:

F(N0) / F(N1) ~= time0 / time1

An algorithm that is O(N2) takes 3 seconds
to run given 10,000 pieces of data.

How long do you expect it to take when there are
30,000 pieces of data?

common mistake

logarithms?

CS 314 Efficiency - Complexity 32

Why Use Big O?
As we build data structures Big O is the tool we will
use to decide under what conditions one data
structure is better than another
Think about performance when there is a lot of
data.

"It worked so well with small data sets..."
Joel Spolsky, Schlemiel the painter's Algorithm

Lots of trade offs
some data structures good for certain types of problems,
bad for other types
often able to trade SPACE for TIME.
Faster solution that uses more space
Slower solution that uses less space

CS 314 Efficiency - Complexity 33

Big O Space
Big O could be used to specify how much
space is needed for a particular algorithm

in other words how many variables are needed

Often there is a time space tradeoff
can often take less time if willing to use more
memory

can often use less memory if willing to take
longer

truly beautiful solutions take less time and space

The biggest difference between time and space is
that you can't reuse time. - Merrick Furst

CS 314 Efficiency - Complexity 34

Quantifiers on Big O
It is often useful to discuss different cases for
an algorithm

Best Case: what is the best we can hope for?
least interesting, but a good exercise

Don't assume no data. Amount of date is still
variable, possibly quite large

Average Case (a.k.a. expected running time):
what usually happens with the algorithm?

Worst Case: what is the worst we can expect
of the algorithm?

very interesting to compare this to the average case

CS 314 Efficiency - Complexity 35

Best, Average, Worst Case
To Determine the best, average, and worst
case Big O we must make assumptions
about the data set
Best case -> what are the properties of the data set
that will lead to the fewest number of executable
statements (steps in the algorithm)
Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements
Average case -> Usually this means assuming the
data is randomly distributed

or if I ran the algorithm a large number of times with different sets of
data what would the average amount of work be for those runs?

CS 314 Efficiency - Complexity 36

public double minimum(double[] values) {
int n = values.length;
double minValue = values[0];
for (int i = 1; i < n; i++)

if (values[i] < minValue)
minValue = values[i];

return minValue;
}

Another Example

T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

If no other information, assume asking average case

CS 314 Efficiency - Complexity 37

Example of Dominance
Look at an extreme example. Assume the
actual number as a function of the amount of
data is:

N2/10000 + 2Nlog10 N+ 100000

Is it plausible to say the N2 term dominates
even though it is divided by 10000 and that
the algorithm is O(N2)?

What if we separate the equation into
(N2/10000) and (2N log10 N + 100000) and
graph the results.

CS 314 Efficiency - Complexity 38

Summing Execution Times

For large values of N the N2 term dominates so the
algorithm is O(N2)
When does it make sense to use a computer?

red line is
2Nlog10 N + 100000

blue line is
N2/10000

CS 314 Efficiency - Complexity 39

Comparing Grades
Assume we have a problem

Algorithm A solves the problem correctly and
is O(N2)

Algorithm B solves the same problem
correctly and is O(N log2N)

Which algorithm is faster?

One of the assumptions of Big O is that the
data set is large.

The "grades" should be accurate tools if this
holds true.

CS 314 Efficiency - Complexity 40

Running Times
Assume N = 100,000 and processor speed
is 1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030,086 years

N4 3171 years

N3 11.6 days

N2 10 seconds

N N 0.032 seconds

N log N 0.0017 seconds

N 0.0001 seconds

N 3.2 x 10-7 seconds

log N 1.2 x 10-8 seconds

CS 314 Efficiency - Complexity 41

Theory to Practice OR
Dykstra says: "Pictures are for the Weak."

1000 2000 4000 8000 16000 32000 64000 128K

O(N) 2.2x10-5 2.7x10-5 5.4x10-5 4.2x10-5 6.8x10-5 1.2x10-4 2.3x10-4 5.1x10-4

O(NlogN) 8.5x10-5 1.9x10-4 3.7x10-4 4.7x10-4 1.0x10-3 2.1x10-3 4.6x10-3 1.2x10-2

O(N3/2) 3.5x10-5 6.9x10-4 1.7x10-3 5.0x10-3 1.4x10-2 3.8x10-2 0.11 0.30

O(N2) ind. 3.4x10-3 1.4x10-3 4.4x10-3 0.22 0.86 3.45 13.79 (55)

O(N2)
dep.

1.8x10-3 7.1x10-3 2.7x10-2 0.11 0.43 1.73 6.90 (27.6)

O(N3) 3.40 27.26 (218)
(1745)

29 min.
(13,957)
233 min

(112k)
31 hrs

(896k)
10 days

(7.2m)

80 days

Times in Seconds. Red indicates predicated value.
CS 314 Efficiency - Complexity 42

Change between Data Points

1000 2000 4000 8000 16000 32000 64000 128K 256k 512k

O(N) - 1.21 2.02 0.78 1.62 1.76 1.89 2.24 2.11 1.62

O(NlogN) - 2.18 1.99 1.27 2.13 2.15 2.15 2.71 1.64 2.40

O(N3/2) - 1.98 2.48 2.87 2.79 2.76 2.85 2.79 2.82 2.81

O(N2) ind - 4.06 3.98 3.94 3.99 4.00 3.99 - - -

O(N2)
dep

- 4.00 3.82 3.97 4.00 4.01 3.98 - - -

O(N3) - 8.03 - - - - - - - -

Value obtained by Timex / Timex-1

CS 314 Efficiency - Complexity 43

Okay, Pictures
Results on a 2GhZ laptop

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5000 10000 15000 20000 25000 30000 35000

Value of N

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 44

Put a Cap on Time
Results on a 2GhZ laptop

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5000 10000 15000 20000 25000 30000 35000

Value of N

N

NlogN

NsqrtN

N^2

N^2

CS 314 Efficiency - Complexity 45

No O(N^2) Data

Results on a 2GhZ laptop

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 100000 200000 300000 400000 500000 600000

Value of N

N

NlogN
NsqrtN

CS 314 Efficiency - Complexity 46

Just O(N) and O(NlogN)

Results on a 2GhZ laptop

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 100000 200000 300000 400000 500000 600000

Value of N

N

NlogN

CS 314 Efficiency - Complexity 47

Just O(N)

N

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0 100000 200000 300000 400000 500000 600000

N

CS 314 Efficiency - Complexity 48

109 instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N2)

10 0.000000003 0.00000001 0.000000033 0.0000001

100 0.000000007 0.00000010 0.000000664 0.0001000

1,000 0.000000010 0.00000100 0.000010000 0.001

10,000 0.000000013 0.00001000 0.000132900 0.1 min

100,000 0.000000017 0.00010000 0.001661000 10 seconds

1,000,000 0.000000020 0.001 0.0199 16.7 minutes

1,000,000,000 0.000000030 1.0 second 30 seconds 31.7 years

CS 314 Efficiency - Complexity 49

Formal Definition of Big O (repeated)

T(N) is O(F(N)) if there are positive
constants c and N0 such that T(N) < cF(N)
when N > N0

N is the size of the data set the algorithm works on

T(N) is a function that characterizes the actual
running time of the algorithm

F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm

c and N0 are constants

CS 314 Efficiency - Complexity 50

More on the Formal Definition

There is a point N0 such that for all values of N that
are past this point, T(N) is bounded by some
multiple of F(N)

Thus if T(N) of the algorithm is O(N^2) then,
ignoring constants, at some point we can bound the
running time by a quadratic function.

given a linear algorithm it is technically correct to
say the running time is O(N ^ 2). O(N) is a more
precise answer as to the Big O of the linear
algorithm

O type questions.

CS 314 Efficiency - Complexity 51

What it All Means
T(N) is the actual growth rate of the
algorithm

can be equated to the number of executable
statements in a program or chunk of code

F(N) is the function that bounds the growth
rate

may be upper or lower bound

T(N) may not necessarily equal F(N)
constants and lesser terms ignored because it is
a bounding function

CS 314 Efficiency - Complexity 52

Other Algorithmic Analysis Tools
Big Omega T(N) is (F(N)) if there are
positive constants c and N0 such that
T(N) > cF(N)) when N > N0

Big O is similar to less than or equal, an upper
bounds

Big Omega is similar to greater than or equal, a
lower bound

Big Theta T(N) is (F(N)) if and only if T(N)
is O(F(N))and T(N) is (F(N)).

Big Theta is similar to equals

CS 314 Efficiency - Complexity 53

Relative Rates of Growth
Analysis

Type
Mathematical
Expression

Relative
Rates of
Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big T(N) = (F(N)) T(N) > F(N)

Big T(N) = (F(N)) T(N) = F(N)

"In spite of the additional precision offered by Big Theta,
Big O is more commonly used, except by researchers
in the algorithms analysis field" - Mark Weiss

