Topic 4
Inheritance

"Question: What is the object oriented way of
getting rich?

Answer: Inheritance.”

Features of OO Programming

» Encapsulation
— abstraction, creating new data types
— Information hiding
— breaking problem up based on data types

> Inheritance
— code reuse
— specialization
—"New code using old code."

CS 314 Inheritance

Encapsulation

> Create a program to allow people to play the
game Monopoly

— Create
bank, t
cards,

>» Some C

classes for money, dice, players, the
ne board, chance cards, community chest
nieces, etc.

asses use other classes. Are clients

— the board consists of spaces
— a player has properties they own
— a plece has a position

> Also referred to as composition

CS 314

Inheritance 3

Inheritance

> Another kind of relationship exists between
things in the world and data types in programs

» There are properties in Monopoly
— a street is a kind of property

—a rallroad is a kind of property
— a utility Is a kind of property

_ u i
RENT $20. H = D
With 1 House % 100, =
With 2 Houses a00. B. &. O. RAILROAD WATER WORKS
With 3 Houses 750. = i g
With 4 Houses 025, L § 25 s x“?% SO
— rentis imes amount show
With HOTEL $1100, If2RRsaeowned 50, on dice ¢
Mortgoge Volue §120. [fg #= = ue 100, If both ‘UL
Housas cost $1580, sach If 4 “n . . 200 rent is 10 times amount shown
Hotels, $150, plus 4 houses e on dice,
iFf a pioyer ownr ALL the Lofr of ony
Eofar-@roup, e rant i Boubled on WO $75
Sty W Mortgage Volue 3100,

CS 314 Inheritance 4

Inheritance

> In Monopoly there is the concept of a
Property

> All
—t
—t
—t
—t

properties have some common traits
ney have a name

ney have a position on the board

ney can be owned by players

ney have a purchase price

» But some things are different for each of the
three kinds of property

— determine rent when another player lands on the
Property, only Streets can have houses

CS 314

Inheritance 5

What to Do?

> If we have a separate class for Street,
Railroad, and Utility there Is going to be a lot
of code copied
— hard to maintain
— an anti-pattern

» Inheritance is a programming feature to
allow data types to build on pre-existing data
types without repeating code

CS 314 Inheritance 6

Mechanics of Inheritance

. extends keyword

iInheritance of instance methods

Inheritance of instance variables

. Object initialization and constructors

. calling a parent constructor with super ()

. overriding methods

partial overriding, super.parentMethod ()
iInheritance requirement in Java

. the Object class

10. inheritance hierarchies

© 0 N O~ WNPR

CS 314 Inheritance

Inheritance 1n Java

» Java is designed to encourage object
oriented programming

» all classes, except one, must inherit from
exactly one other class

> The Object class is the cosmic super class
— The Object class does not inherit from any other class
— The Object class has several important methods:
toString, equals, hashCode, clone, getClass
> implications:
— all classes are descendants of Object

— all classes and thus all objects have a toString,
equals, hashCode, clone, and getClass method
toString, equals, hashCode, clone normally overridden

CS 314 Inheritance 8

Nomenclature of Inheritance

> In Java the extends keyword is used in the
class header to specify which preexisting class
a new class is inheriting from
public class Student extends Person

> Person is said to be
— the parent class of Student
— the super class of Student
— the base class of Student
— an ancestor of Student

> Student is said to be
— a child class of Person
— a sub class of Person

— a derived class of Person
— a descendant of Person

CS 314 Inheritance

Clicker 1

What Is the primary reason for using
Inheritance when programming?

To make a program more complicated

To copy and paste code between classes

. To reuse pre-existing code

. To hide implementation details of a class

. To ensure pre conditions of methods are met.

moom >

CS 314 Inheritance 10

Clicker 2

What is output when the main method is run?
public class Foo ({

public static void main(String[] args) {
Foo fl = new Foo();
System.out.println(fl.toString());

}
A. O

B.null

C. Unknown until code is actually run.
D. No output due to a syntax error.

E. No output due to a runtime error. "

Overriding methods

» any method that is not £inal may be
overridden by a descendant class

» same signature as method in ancestor
» may not reduce visibility

» may use the original method if simply want to
add more behavior to existing

— super.originalMethod()

CS 314 Inheritance 12

Constructors

Constructors handle initialization of objects

When creating an object with one or more ancestors (every
type except Object) a chain of constructor calls takes place
The reserved word super may be used in a constructor to
call a one of the parent's constructors

— must be first line of constructor

If no parent constructor is explicitly called the default, O

parameter constructor of the parent is called
— 1f no default constructor exists a syntax error results

If a parent constructor is called another constructor in the
same class may no be called
— no super () ;this () ; allowed. One or the other, not both

— good place for an initialization method

CS 314 Inheritance 13

The Keyword super

> super is used to access something (any protected or
public field or method) from the super class that has
been overridden

> Rectangle's toString makes use of the toStringin
ClosedShape my calling super.toString ()

> without the super calling toString would result in
Infinite recursive calls

> Java does not allow nested supers

super.super.toString ()

results in a syntax error even though technically this
refers to a valid method, Object's toString

> Rectangle partially overrides ClosedShapes toString

CS 314 Inheritance 14

Creating a SortedIntList
- A Cautionary Tale
of Inheritance

A New Class

» Assume we want to have a list of ints, but
that the ints must always be maintained In
ascending order

(-7, 12, 37, 212, 212, 313, 313, 500]
sortedList.get (0) returns the min

sortedList.get (list.s1ize () — 1)
returns the max

CS 314 Inheritance 16

Implementing SortedIntList

» Do we have to write a whole new class?
» Assume we have an IntList class.

> Clicker 3 - Which of the following methods
have to be changed?
add(int wvalue)

int get(int location)

A

B

C. String toString()

D. int remove (int location)
E

More than one of A - D.

CS 314 Inheritance 17

Overriding the add Method

> First attempt
> Problem?

» solving with insert method
— double edged sort
» solving with protected
— What protected really means

CS 314 Inheritance

Clicker 4

public class IntList {
private 1nt size
private 1nt[] con

J

public class SortedIntlList extends IntList {
public SortedIntList () {
System.out.println(size); // Output?

}
}

A. 0O

B. null

C. unknown until code is run

D. no output due to a compile error
E. no output due to a runtime error

19

Problems

» What about this met
vold 1nsert(int

» What about this met

nod?

location,

nod?

int val)

vold 1insertAll (int location,
IntlList otherList)

» SortedIntList is not a good application
of inheritance given all the behaviors

IntList provides.

CS 314 Inheritance

20

More Example Code

ClosedShape and Rectangle classes

CS 314 Inheritance

21

Simple Code Example

> Create a class named Shape
— what class does Shape inherit from
— what methods can we call on Shape objects?
— add instance variables for a position
— override the toString method

> Create a Circle class that extends Shape
— add instance variable for radius
— debug and look at contents
— try to access instance var from Shape
— constructor calls
— use of key word super

CS 314 Inheritance

22

Shape Classes

» Declare a class called ClosedShape

— assume all shapes have x and y coordinates
—override Object's version of toString

» Possible sub classes of ClosedShape
— Rectangle
—Circle
—Ellipse

— Square

» Possible hierarchy
ClosedShape <- Rectangle <- Square

CS 314 Inheritance

23

A ClosedShape class

public class ClosedShape {

private double myX;
private double myY;

public ClosedShape () {
this (0,0);
}

public ClosedShape (double x, double y) {
myxX = X;
myy = y;

}

public String toString () {
return "x: " + getX() + " y: " + getY¥Y (),

public double getX(){ return myX; }
public double getY () { return myY; }

}
// Other methods not shown

CS 314 Inheritance

A Rectangle Constructor

public class Rectangle extends ClosedShape {

private double myWidth;
private double myHeight;

public Rectangle(double x, double v,
double width, double height) {

Super(x,y);
// calls the 2 double constructor in

// ClosedShape
myWidth = width;
myHelght = height;

// other methods not shown

CS 314 Inheritance 25

A Rectangle Class

public class Rectangle extends ClosedShape {
private double myWidth;
private double myHeight;

public Rectangle () {
this (0, 0);
}

public Rectangle (double width, double height) {
myWidth = width;
myHeight = height;

}

public Rectangle (double x, double v,
double width, double height) {
super (x, Y);
myWidth = width;
myHeight = height;
}

public String toString() {
return super.toString() + " width " + myWidth
+ " height " + myHeight;

CS 314 Inheritance 26

CS 314

Initialization method

public class Rectangle extends ClosedShape {
private double myWidth;
private double myHeight;

public Rectangle() {
init (0, 0);
}

public Rectangle (double width, double height)
init(width, height);
}

public Rectangle (double x, double vy,
double width, double height) {
super (x, V)
init (width, height);
}

private void init (double width, double height)
myWidth = width;
myHeight = height;

Inheritance

{

{

27

Result of Inheritance

Do any of these cause a syntax error?

What Is the output?

Rectangle r = new Rectangle(l, 2, 3,
ClosedShape s = new CloseShape (2, 3);

System.out

System.out
System.out

System.out.

System.out

CS 314

.println
System.out.

.println (s
System.out.

(s
.println (
.println (
(
(
(

println

S
r
println (r
r
r

println

s.getX());
s.get¥Y());
.toString());
.getX());
.getY ());
.toString()) ;
.getWidth ()) ;

Inheritance

A
Rectangle <
object

Available
methods

are all methods
from Object,
ClosedShape,
and Rectangle

CS 314

The Real Picture

Fields from Object class

Instance variables
declared in Object

Fields from ClosedShape class

Instance Variables declared In
ClosedShape

Fields from Rectangle class

Instance Variables declared In
Rectangle

Inheritance

29

Access Modifiers and

Inheritance
> public
— accessible to all classes
> private

— accessible only within that class. Hidden from all sub
classes.

> protected

— accessible by classes within the same package and all
descendant classes

> Instance variables are typically private

» protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

CS 314 Inheritance 30

Why private Vars and not protected?

» In general it is good practice to make
Instance variables private

— hide them from your descendants

— If you think descendants will need to access
them or modify them provide protected methods
to do this

> Why?
» Consider the following example

CS 314 Inheritance 31

Required update

public class GamePiece {
private Board myBoard,;

private Position myPos;

// whenever my position changes | must
// update the board so it knows about the change

protected void alterPos(Position newPos) {

Position oldPos = myPos;
myPos = newPos;
myBoard.update(oldPos, myPos);

CS 314 Inheritance 32

