
1

Topic 4

Inheritance

"Question: What is the object oriented way of

getting rich?

Answer: Inheritance.“

CS 314 Inheritance 2

Features of OO Programming

Encapsulation

– abstraction, creating new data types

– information hiding

– breaking problem up based on data types

Inheritance

– code reuse

– specialization

– "New code using old code."

Encapsulation
Create a program to allow people to play the

game Monopoly

– Create classes for money, dice, players, the

bank, the board, chance cards, community chest

cards, pieces, etc.

Some classes use other classes. Are clients

– the board consists of spaces

– a player has properties they own

– a piece has a position

Also referred to as composition

CS 314 Inheritance 3

Inheritance
Another kind of relationship exists between

things in the world and data types in programs

There are properties in Monopoly

– a street is a kind of property

– a railroad is a kind of property

– a utility is a kind of property

CS 314 Inheritance 4

Inheritance
In Monopoly there is the concept of a

Property

All properties have some common traits

– they have a name

– they have a position on the board

– they can be owned by players

– they have a purchase price

But some things are different for each of the

three kinds of property

– determine rent when another player lands on the

Property, only Streets can have houses
CS 314 Inheritance 5

What to Do?
If we have a separate class for Street,

Railroad, and Utility there is going to be a lot

of code copied

– hard to maintain

– an anti-pattern

Inheritance is a programming feature to

allow data types to build on pre-existing data

types without repeating code

CS 314 Inheritance 6

Mechanics of Inheritance

CS 314 Inheritance 7

1. extends keyword

2. inheritance of instance methods

3. inheritance of instance variables

4. object initialization and constructors

5. calling a parent constructor with super()

6. overriding methods

7. partial overriding, super.parentMethod()

8. inheritance requirement in Java

9. the Object class

10. inheritance hierarchies

CS 314 Inheritance 8

Inheritance in Java
 Java is designed to encourage object

oriented programming

 all classes, except one, must inherit from
exactly one other class

 The Object class is the cosmic super class

– The Object class does not inherit from any other class

– The Object class has several important methods:
toString, equals, hashCode, clone, getClass

 implications:
– all classes are descendants of Object

– all classes and thus all objects have a toString,
equals, hashCode, clone, and getClass method
• toString, equals, hashCode, clone normally overridden

CS 314 Inheritance 9

Nomenclature of Inheritance
In Java the extends keyword is used in the

class header to specify which preexisting class
a new class is inheriting from
public class Student extends Person

Person is said to be
– the parent class of Student

– the super class of Student

– the base class of Student

– an ancestor of Student

Student is said to be
– a child class of Person

– a sub class of Person

– a derived class of Person

– a descendant of Person

CS 314 Inheritance 10

Clicker 1
What is the primary reason for using

inheritance when programming?

A. To make a program more complicated

B. To copy and paste code between classes

C. To reuse pre-existing code

D. To hide implementation details of a class

E. To ensure pre conditions of methods are met.

11

Clicker 2
What is output when the main method is run?
public class Foo {

public static void main(String[] args) {

Foo f1 = new Foo();

System.out.println(f1.toString());

}

}

A. 0

B. null

C. Unknown until code is actually run.

D. No output due to a syntax error.

E. No output due to a runtime error.

CS 314 Inheritance 12

Overriding methods

any method that is not final may be

overridden by a descendant class

same signature as method in ancestor

may not reduce visibility

may use the original method if simply want to

add more behavior to existing

– super.originalMethod()

CS 314 Inheritance 13

Constructors
Constructors handle initialization of objects

When creating an object with one or more ancestors (every

type except Object) a chain of constructor calls takes place

The reserved word super may be used in a constructor to

call a one of the parent's constructors

– must be first line of constructor

 if no parent constructor is explicitly called the default, 0

parameter constructor of the parent is called

– if no default constructor exists a syntax error results

 If a parent constructor is called another constructor in the

same class may no be called

– no super();this(); allowed. One or the other, not both

– good place for an initialization method

CS 314 Inheritance 14

The Keyword super
super is used to access something (any protected or

public field or method) from the super class that has

been overridden

Rectangle's toString makes use of the toString in

ClosedShape my calling super.toString()

without the super calling toString would result in

infinite recursive calls

Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically this

refers to a valid method, Object's toString

Rectangle partially overrides ClosedShapes toString

Creating a SortedIntList

- A Cautionary Tale

of Inheritance

CS 314 Inheritance 16

A New Class
Assume we want to have a list of ints, but

that the ints must always be maintained in

ascending order

[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min

sortedList.get(list.size() – 1)

returns the max

CS 314 Inheritance 17

Implementing SortedIntList

Do we have to write a whole new class?

Assume we have an IntList class.

Clicker 3 - Which of the following methods

have to be changed?

A. add(int value)

B. int get(int location)

C. String toString()

D. int remove(int location)

E. More than one of A – D.

CS 314 Inheritance 18

Overriding the add Method

First attempt

Problem?

solving with insert method

– double edged sort

solving with protected

– What protected really means

Clicker 4
public class IntList {

private int size

private int[] con

}

public class SortedIntList extends IntList {

public SortedIntList() {

System.out.println(size); // Output?

}

}

A. 0

B. null

C. unknown until code is run

D. no output due to a compile error

E. no output due to a runtime error 19

CS 314 Inheritance 20

Problems
What about this method?

void insert(int location, int val)

What about this method?

void insertAll(int location,

IntList otherList)

SortedIntList is not a good application

of inheritance given all the behaviors
IntList provides.

More Example Code

ClosedShape and Rectangle classes

CS 314 Inheritance 21

Simple Code Example
Create a class named Shape

– what class does Shape inherit from

– what methods can we call on Shape objects?

– add instance variables for a position

– override the toString method

Create a Circle class that extends Shape

– add instance variable for radius

– debug and look at contents

– try to access instance var from Shape

– constructor calls

– use of key word super

CS 314 Inheritance 22

CS 314 Inheritance 23

Shape Classes
Declare a class called ClosedShape

– assume all shapes have x and y coordinates

– override Object's version of toString

Possible sub classes of ClosedShape

– Rectangle

– Circle

– Ellipse

– Square

Possible hierarchy

ClosedShape <- Rectangle <- Square

CS 314 Inheritance 24

A ClosedShape class
public class ClosedShape {

private double myX;

private double myY;

public ClosedShape() {

this(0,0);

}

public ClosedShape (double x, double y) {

myX = x;

myY = y;

}

public String toString() {

return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }

public double getY(){ return myY; }

}

// Other methods not shown

CS 314 Inheritance 25

A Rectangle Constructor
public class Rectangle extends ClosedShape {

private double myWidth;

private double myHeight;

public Rectangle(double x, double y,

double width, double height) {

super(x,y);

// calls the 2 double constructor in

// ClosedShape

myWidth = width;

myHeight = height;

}

// other methods not shown

}

CS 314 Inheritance 26

A Rectangle Class
public class Rectangle extends ClosedShape {

private double myWidth;

private double myHeight;

public Rectangle() {

this(0, 0);

}

public Rectangle(double width, double height) {

myWidth = width;

myHeight = height;

}

public Rectangle(double x, double y,

double width, double height) {

super(x, y);

myWidth = width;

myHeight = height;

}

public String toString() {

return super.toString() + " width " + myWidth

+ " height " + myHeight;

}

}

CS 314 Inheritance 27

Initialization method
public class Rectangle extends ClosedShape {

private double myWidth;

private double myHeight;

public Rectangle() {

init(0, 0);

}

public Rectangle(double width, double height) {

init(width, height);

}

public Rectangle(double x, double y,

double width, double height) {

super(x, y);

init(width, height);

}

private void init(double width, double height) {

myWidth = width;

myHeight = height;

}

CS 314 Inheritance 28

Result of Inheritance
Do any of these cause a syntax error?

What is the output?
Rectangle r = new Rectangle(1, 2, 3, 4);
ClosedShape s = new CloseShape(2, 3);
System.out.println(s.getX());
System.out.println(s.getY());

System.out.println(s.toString());

System.out.println(r.getX());

System.out.println(r.getY());

System.out.println(r.toString());
System.out.println(r.getWidth());

CS 314 Inheritance 29

The Real Picture

Fields from ClosedShape class

Instance Variables declared in

ClosedShape

Fields from Object class

Instance variables

declared in Object

A

Rectangle

object

Available

methods

are all methods

from Object,

ClosedShape,

and Rectangle

Fields from Rectangle class

Instance Variables declared in

Rectangle

CS 314 Inheritance 30

Access Modifiers and

Inheritance
public

– accessible to all classes

private
– accessible only within that class. Hidden from all sub

classes.

protected
– accessible by classes within the same package and all

descendant classes

Instance variables are typically private

protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

CS 314 Inheritance 31

Why private Vars and not protected?

In general it is good practice to make

instance variables private

– hide them from your descendants

– if you think descendants will need to access

them or modify them provide protected methods

to do this

Why?

Consider the following example

CS 314 Inheritance 32

Required update
public class GamePiece {

private Board myBoard;

private Position myPos;

// whenever my position changes I must

// update the board so it knows about the change

protected void alterPos(Position newPos) {

Position oldPos = myPos;

myPos = newPos;

myBoard.update(oldPos, myPos);

}

