Topic 9

Abstract Classes

“| prefer Agassiz in the
abstract, rather than In
the concrete.”

- Statue of Biologist
Louis Agassiz that fell from
a ledge on the Stanford
Quad during the 1906
San Francisco earthquake.

Back to the Monopoly Property Example

» There are properties on a
monopoly board

» Railroads, Utilities, and Streets are
Kinds of properties

Property

— |

Street Railroad | @ Utility

WWWWWWWWWW

A getRent Behavior

> One behavior we want in Property
Is the getRent method

» problem: How do | get the rent of
something that is “just a Property”™?

CS314 Abstract Classes 3

The Property class

public class Property {

private 1nt cost;
private String name;

public int getRent () {

}

Doesn’t seem like we have enough information to
get the rent if all we know is it Is a Property.

CS314 Abstract Classes

Potential Solutions

1. Just leave it for the sub classes.
» Have each sub class define getRent()

2. Define getRent() in Property and simply
return -1.

» Sub classes override the method with more
meaningful behavior.

CS314 Abstract Classes

Leave It to the Sub - Classes

// no getRent () in Property
// Railroad and Utility DO have getRent () methods

public void printRents (Property[] props) {
for (Property p : props)
System.out.println(p.getRent())

}

Property[] props = new Propertyl[2];

props[0] = new Railroad("NP", 200, 1);

props[l] = new Utility("Electric", 150, false);
printRents (props) ;

Clicker 1 - What is result of above code?

A. 200150 B. different every time
C. Syntax error D. Class Cast Exception
E. Null Pointer Exception

CS314 Abstract Classes

"Fix" by Casting

// no getRent () in Property
public void printRents (Property[] props) {

for (Property p : props) {
1f (p instanceof Railroad)
System.out.println(((Railroad) p) .getRent());

else 1f (p instanceof Utility)
System.out.println (((Ut1lity) p) .getRent())

else 1f (p instanceof Street)
System.out.println (((Street)

} // GACK!!!!

P) .getRent ())

}
Property[] props= new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[l] = new Utility("Electric", 150, false);

printRents (props):;

What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?

CS314 Abstract Classes

Fix with Placeholder Return

// getRent () in Property returns -1

public void printRents (Property[] props) {
for (Property p : props)
System.out.println(p.getRent());

}

Property[] props= new Property([2];

props|[0] = new Railroad("NP", 200, 1);

props|[l] = new Utility("Electric", 150, false);
printRents (props) ;

What happens if sub classes don’t override
getRent()?

Is that a good answer?

CS314 Abstract Classes

A Better Fix

» We know we want to be able to get the rent
of objects that are instances of Property

» The problem is we don’t know how to do that
If all we know Is It a Property

» Make getRent an abstract method
» Java keyword

CS314 Abstract Classes o)

Making getRent Abstract

public class Property {

private i1nt cost;
private String name;

publicint getRent () ;
// T k W

Nnow ant 1t.
// Just don’t know how, vet..

}
Methods that are declared abstract have no body

an undefined behavior.

All non-default methods in a Java interface are
abstract.

CS314 Abstract Classes 10

Problems with Abstract Methods

Given getRent () IS how an abstract method
what is wrong with the following code?

Property p = new Property();
System.out.println(p.getRent()):;

If things can go wrong with a tool, provide
safeguards to prevent that from happening.

Undefined Behavior = Bad

» Not good to have undefined behaviors

» If a class has 1 or more abstract methods,
the class must also be declared abstract.
—version of Property shown would cause a

compile error

» Even if a class has zero abstract methods a
programmer can still choose to make it
abstract

— If It models some abstract thing
— is there anything that is just a "Mammal™?

CS314 Abstract Classes 12

Abstract Classes Safety

1. A class with one or more abstract methods must be
declared abstract.
- Syntax error if not done.
- Can still decide to make class abstract even if no
abstract methods.

2. Objects of an abstract type cannot be instantiated.
- Just like interfaces

- Can still declare variables of this type

3. A subclass must implement all inherited abstract
methods or be abstract itself.

CS314 Abstract Classes 13

Abstract Classes

publilass Property

private int cost;
private String name;

public abstract double getRent();
// I know I want it.
// Just don’t know how, yet..

}
// Other methods not shown

If a class Is abstract the compiler will not allow
constructors of that class to be called

Property s ﬁiiéiigggperty(l, 2);

//syntax error
CS314 Abstract Classes 14

Abstract Classes

» In other words you can’t create instances of
objects where the lowest or most specific
class type Is an abstract class

» Prevents having an object with an undefined
behavior

» Why would you still want to have
constructors In an abstract class?

» Object variables of classes that are abstract
types may still be declared
Property p; //okay

CS314 Abstract Classes 15

Sub Classes of Abstract Classes

> Classes that extend an abstract class must
provided a working version of any and all
abstract methods from the parent class
— or they must be declared to be abstract as well

— could still decide to keep a class abstract
regardless of status of abstract methods

CS314 Abstract Classes 16

Implementing getRent()

public class Raililroad extends Property {

private static 1nt[] rents
= {25, 50, 100, 200};

private 1nt numOtherRailroadsOwned;

public double getRent () {
return rents[numOtherRailroadsOwned]; }

// other methods not shown

CS314 Abstract Classes

17

A Utllity Class

public class Utility extends Property {

private static final int ONE UTILITY RENT = 4;
private static final int TWO UTILITY RENT = 10;

private boolean ownOtherUtility;

public Utility(String n, int c, boolean other) {
super (n, c);

}

public String toString() {
return "Utility. own other utility? " + ownOtherUtility;

}

public int getRent (int roll) {
return ownOtherUtility ? roll * TWO UTILITY RENT
roll * TWO UTILITY RENT;

CS314 Abstract Classes 18

Polymorphism in Action
// getRent () in Property is abstract

public void printRents (Property[] props) {
for (Property p : props)
System.out.println(p.getRent ());

* Add the Street class. What needs to change in
printRents method?

* Inheritance is can be described as new code using
old code.

« Koan of Polymorphism: Polymorphism can be
described as old code reusing new code.

CS314 Abstract Classes 19

Comparable in Property

public abstract class Property
implements Comparable<Property> {
private 1nt cost;
private String name;

public abstract int getRent();
public int compareTo (Property other) {

return this.getRent ()
— otherProperty.getRent () ;

CS314 Abstract Classes 20

Back to Lists

> We suggested having a list interface
public i1nterface IList<E> extends Iterable<E> {
public void add(E wvalue);
public 1nt size();
public E get(int location);
public E remove (int location);
public boolean contains (E value);
public void addAll (IList<E> other);
public boolean containsAll (IList<E> other);

CS314 Abstract Classes 21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal
Implementation interface

- Create classes that extend the skeletal
Interface
public boolean contains(E val) {
for (E e : this)
If val.equals(e)
return true;
return false

CS314 Abstract Classes

22

