Topic 9

Abstract Classes

‘| prefer Agassiz in the
abstract, rather than in
the concrete.”

- Statue of Biologist

Louis Agassiz that fell from
a ledge on the Stanford
Quad during the 1906

San Francisco earthquake.

Back to the Monopoly Property Example

> There are properties on a

monopoly board

» Railroads, Utilities, and Streets are
kinds of properties

Property
/' ’ \

Railroad| | Utility

A getRent Behavior

> One behavior we want in Property
is the getRent method

> problem: How do | get the rent of
something that is “just a Property”?

CS314 Abstract Classes 3

The Property class
public class Property {

private int cost;
private String name;

public 1nt getRent () {

}

Doesn’t seem like we have enough information to
get the rent if all we know is it is a Property.

CS314 Abstract Classes 4

Potential Solutions

1. Just leave it for the sub classes.
» Have each sub class define getRent()

2. Define getRent() in Property and simply

return -1.
» Sub classes override the method with more
meaningful behavior.

CS314 Abstract Classes 5

Leave it to the Sub - Classes

// no getRent () in Property
// Railroad and Utility DO have getRent () methods

public void printRents (Property[] props) {
for (Property p : props)
System.out.println (p.getRent ());

}

Property[] props = new Propertyl[2];

props[0] = new Railroad("NP", 200, 1);

props[l] = new Utility("Electric", 150, false);
printRents (props) ;

Clicker 1 - What is result of above code?
A. 200150 B. different every time
C. Syntax error D. Class Cast Exception

E. Null Pointer Exception

CS314 Abstract Classes

"Fix" by Casting
// no getRent () in Property
public void printRents (Property[] props) {
for (Property p : props) {
if (p instanceof Railroad)

System.out.println(((Railroad) p).getRent());

else if (p instanceof Utility)
System.out.println (((Utility) p).getRent());
else 1if (p instanceof Street)
System.out.println(((Street) p).getRent())

} // GACK!!!!
}
Property[] props= new Propertyl[2];
props[0] = new Railroad("NP", 200, 1);
props[l] = new Utility("Electric", 150, false);

printRents (props);
What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?
CS314 Abstract Classes

Fix with Placeholder Return

// getRent () in Property returns -1

public void printRents (Property[] props) {
for (Property p : props)
System.out.println(p.getRent ());

}

Property[] props= new Propertyl[2];
props[0] = new Railroad("NP", 200, 1);
props([l] = new Utility("Electric", 150, false);

printRents (props) ;

What happens if sub classes don’t override
getRent()?

Is that a good answer?

CS314 Abstract Classes

A Better Fix

> We know we want to be able to get the rent
of objects that are instances of Property

» The problem is we don’t know how to do that
if all we know is it a Property

» Make getRent an abstract method
» Java keyword

CS314 Abstract Classes 9

Making getRent Abstract

public class Property {

private int cost;
private String name;

publicint getRent () ;
// I know want it.

// Just don’t know how, vyet..

}
Methods that are declared abstract have no body

an undefined behavior.

All non-default methods in a Java interface are
abstract.

CS314 Abstract Classes 10

Problems with Abstract Methods

Given getRent () is how an abstract method
what is wrong with the following code?

Property p = new Property();
System.out.println (p.getRent())

If things can go wrong with a tool, provide
safeguards to prevent that from happening.

Undefined Behavior = Bad

> Not good to have undefined behaviors

> If a class has 1 or more abstract methods,
the class must also be declared abstract.
— version of Property shown would cause a
compile error
» Even if a class has zero abstract methods a
programmer can still choose to make it
abstract
— if it models some abstract thing
— is there anything that is just a “Mammal”?

CS314 Abstract Classes 12

3.

Abstract Classes Safety

. A class with one or more abstract methods must be

declared abstract.

- Syntax error if not done.

- Can still decide to make class abstract even if no
abstract methods.

Objects of an abstract type cannot be instantiated.
- Just like interfaces
- Can still declare variables of this type

A subclass must implement all inherited abstract
methods or be abstract itself.

CS314 Abstract Classes 13

Abstract Classes

publi lass Property {

private int cost;
private String name;

public abstract double getRent();
// I know I want it.

// Just don’t know how, vyet..

}
// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be called
Property s = new Property(l, 2);

//syntax error

CS314 Abstract Classes 14

Abstract Classes

» In other words you can’t create instances of
objects where the lowest or most specific
class type is an abstract class

> Prevents having an object with an undefined
behavior

» Why would you still want to have
constructors in an abstract class?

» Object variables of classes that are abstract
types may still be declared
//okay

Abstract Classes 15

Property p;

CS314

Sub Classes of Abstract Classes

» Classes that extend an abstract class must
provided a working version of any and all
abstract methods from the parent class
— or they must be declared to be abstract as well

— could still decide to keep a class abstract
regardless of status of abstract methods

CS314 Abstract Classes 16

Implementing getRent()

public class Railroad extends Property {

private static int[] rents
= {25, 50, 100, 200};

private int numOtherRailroadsOwned;

public double getRent () {
return rents|[numOtherRailroadsOwned]; }

// other methods not shown

CS314 Abstract Classes 17

A Utility Class

public class Utility extends Property {

private static final int ONE UTILITY RENT
private static final int TWO UTILITY RENT

o
.
~

107
private boolean ownOtherUtility;

publiec Utility(String n, int ¢, boolean other) {
super (n, c);

}

publiec String toString() {
return "Utility. own other utility? " + ownOtherUtility;
}

public int getRent (int roll) {

return ownOtherUtility ? roll * TWO UTILITY RENT
roll * TWO UTILITY RENT;

CS314 Abstract Classes 18

Polymorphism in Action
// getRent () in Property is abstract

public void printRents (Property[] props) {
for (Property p props)
System.out.println(p.getRent ())

+ Add the Street class. What needs to change in
printRents method?

* Inheritance is can be described as new code using
old code.

* Koan of Polymorphism: Polymorphism can be
described as old code reusing new code.

CS314 Abstract Classes 19

Comparable in Property

public abstract class Property

implements Comparable<Property> ({
private int cost;
private String name;

public abstract int getRent () ;
public int compareTo (Property other) {

return this.getRent ()
— otherProperty.getRent () ;

CS314 Abstract Classes 20

Back to Lists

> We suggested having a list interface

public interface IList<E> extends Iterable<E> {

public
public
public
public
public
public
public

CS314

void add(E value);

int size();

E get (int location);

E remove (int location);

boolean contains (E value);

void addAll (IList<E> other);
boolean containsAll (IList<E> other);

Abstract Classes

21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal
implementation interface

- Create classes that extend the skeletal
interface
public boolean contains(E val) {
for (E e : this)
if val.equals(e)
return true;
Cgsc?“turn false

Abstract Classes

22

