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Diffie-Hellman Key Establishment 

Alice and Bob never met and share no secrets 

Public information: p and g, where p is a large 
prime number, g is a generator of Z*p 

• Z*p={1, 2 … p-1}; aZ*p i  such that a=gi mod p 

 

Alice Bob 

Pick secret, random X Pick secret, random Y 

 

gy mod p 

gx mod p 

Compute k=(gy)x=gxy mod p 
 

Compute k=(gx)y=gxy mod p 
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Why Is Diffie-Hellman Secure? 

Discrete Logarithm (DL) problem:  
   given gx mod p, it’s hard to extract x 

• There is no known efficient algorithm for doing this 

• This is not enough for Diffie-Hellman to be secure! 

Computational Diffie-Hellman (CDH) problem: 
   given gx and gy, it’s hard to compute gxy mod p 

• … unless you know x or y, in which case it’s easy 

Decisional Diffie-Hellman (DDH) problem:  

   given gx and gy, it’s hard to tell the difference 
between gxy mod p and gr mod p where r is random 
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Security of Diffie-Hellman Protocol 

Assuming the DDH problem is hard, Diffie-Hellman 
protocol is a secure key establishment protocol 
against passive attackers 

• Eavesdropper can’t tell the difference between the 
established key and a random value 

• Can use the established key for symmetric cryptography 

– Approx. 1000 times faster than modular exponentiation 

Basic Diffie-Hellman protocol is not secure against 
an active, man-in-the-middle attacker 
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Public-Key Encryption 

Key generation: computationally easy to generate 
a pair (public key PK, private key SK) 

• Computationally infeasible to determine private key SK 
given only public key PK 

Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M) 

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M 

• Infeasible to compute M from C without SK 

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M 



 

ElGamal Encryption 

Key generation 

• Pick a large prime p, generator g of Z*p 

• Private key: random x such that 1 ≤ x ≤ p-2 

• Public key: (p, g, y = gx mod p) 

Encryption 

• Pick random k, 1 ≤ k ≤ p-2 

• E(m) = (gk mod p, myk mod p) = (, )  

Decryption 

• Given ciphertext (,), compute -x mod p 

• Recover m = (-x) mod p 
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When Is Encryption “Secure”? 

Hard to recover the key? 

• What if attacker can learn plaintext without 
learning the key? 

Hard to recover plaintext from ciphertext? 

• What if attacker learns some bits or some 
property of the plaintext? 

(Informal) goal: ciphertext should hide all 
“useful” information about the plaintext 

• … except its length 
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Attack Models 

Assume that the attacker knows the encryption  
algorithm and wants to decrypt some ciphertext 

Ciphertext-only attack 

Known-plaintext attack (stronger) 

• Knows some plaintext-ciphertext pairs 

Chosen-plaintext attack (even stronger) 

• Can obtain ciphertext for any plaintext of his choice 

Chosen-ciphertext attack (very strong) 

• Can decrypt any ciphertext except the target 



 

slide 10 

The Chosen-Plaintext (CPA) Game  

Idea: attacker should not be able to learn 
         any property of the encrypted plaintext 

Attacker chooses as many plaintexts as he wants 
and learns the corresponding ciphertexts 

When ready, he picks two plaintexts M0 and M1 

• He is even allowed to pick plaintexts for which he 
previously learned ciphertexts! 

He receives either a ciphertext of M0, or a 
ciphertext of M1 

He wins if he guesses correctly which one it is 
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CPA Game: Formalization 

Define Enc(M0, M1, b) to be a function that 
returns encrypted Mb 

• Think of Enc as a magic box that computes ciphertexts 
on attacker’s demand… he can obtain a ciphertext of 
any plaintext M by submitting M0=M1=M, or he can 
submit M0≠M1 

Attacker’s goal is to learn just one bit b 

0 or 1 
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Chosen-Plaintext Security 

Consider two experiments (A is the attacker) 
 Experiment 0    Experiment 1 

       A interacts with Enc(-,-,0)     A interacts with Enc(-,-,1) 

       and outputs bit d      and outputs bit d 

• Identical except for the value of the secret bit 

• d is attacker’s guess of the secret bit 

Attacker’s advantage is defined as 

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) | 

Encryption scheme is chosen-plaintext secure if 
this advantage is negligible for any efficient A 

If A “knows” secret bit, he 
should be able to make his 

output depend on it 
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Simple Example 

Any deterministic, stateless encryption scheme is 
insecure against chosen-plaintext attack 

• Attacker can easily distinguish encryptions of different 
plaintexts from encryptions of identical plaintexts 

 Attacker A interacts with Enc(-,-,b) 

    Let X,Y be any two different plaintexts 

       C1  Enc(X,Y,b);    

       C2  Enc(Y,Y,b); 

       If C1=C2 then output 1 else output 0 

The advantage of this attacker A is 1 

Prob(A outputs 1 if b=0)=0    Prob(A outputs 1 if b=1)=1 
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Semantic Security 

Ciphertext hides even partial 
   information about the plaintext 

• No matter what prior knowledge attacker has about the 
plaintext, it does not increase after observing ciphertext 

Equivalent to ciphertext indistinguishability under 
the chosen-plaintext attack 

• It is infeasible to find two messages whose encryptions 
can be distinguished 

[Goldwasser and Micali  1982] 

 



 

Semantic security of ElGamal encryption is 
equivalent to DDH 

Given an oracle for breaking DDH, show that 
we can find two messages whose ElGamal 
ciphertexts can be distinguished 

Given an oracle for distinguishing ElGamal 
ciphertexts, show that we can break DDH 

• Break DDH = given a triplet <ga, gb, Z>, we can 
decide whether Z=gab mod p  or  Z is random 

Semantic Security of ElGamal 
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DDH  ElGamal 

Pick any two messages m0, m1 

Receive E(m) = gk, myk  

• y = gx is the ElGamal public key 

• To break ElGamal, must determine if m=m0 or m=m1  

Run the DDH oracle on this triplet: 

   <gk,ygv,(myk)gkv/m0> = <gk,gx+v,mg(x+v)k/m0> 

• v is random 

If this is a DH triplet, then m=m0, else m=m1 

This breaks semantic security of ElGamal (why?) 
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Suppose some algorithm A breaks ElGamal 

• Given any public key, A produces plaintexts m0 and m1 
whose encryptions it can distinguish with advantage Adv 

   We will use A to break DDH 

• Decide, given (ga, gb, Z), whether Z=gab mod p or not 

Give y=ga mod p to A as the public key  

A produces m0 and m1 

Toss a coin for bit x and give A the ciphertext  
    (gb, mxZ)  mod p 

• This is a valid ElGamal encryption of mx iff Z=gab mod p 

(1) ElGamal  DDH 
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A receives (gb, mxZ)  mod p 

• This is a valid ElGamal encryption of mx iff Z=gab mod p 

A outputs his guess of bit x (why?) 

If A guessed x correctly, we say that Z=gab mod p, 
otherwise we say that Z is random 

What is our advantage in breaking DDH? 

• If Z=gab mod p, we are correct with probability Adv(A)   

• If Z is random, we are correct with probability ½ 

• Our advantage in breaking DDH is Adv(A)/2 

(2) ElGamal  DDH 
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Beyond Semantic Security 

Chosen-ciphertext security 

• “Lunch-time” attack   [Naor and Yung  1990] 

• Adaptive chosen-ciphertext security   [Rackoff and Simon  1991] 

Non-malleability    [Dolev, Dwork, Naor  1991] 

• Infeasible to create a “related” ciphertext 

• Implies that an encrypted message cannot be modified 
without decrypting it 

• Equivalent to adaptive chosen-ciphertext security 
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