
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

X. Chen, T, Garfinkel, E. Lewis, P. Subrahmanyam,

C. Waldspurger, D. Boneh, J. Dwoskin, D. Ports

Overshadow:
A Virtualization-Based Approach to Retrofitting

Protection in Commodity Operating Systems

(ASPLOS 2008)

Goal: Bypass an Insecure OS

Secure software runs on commodity OS,
thus even a 100% secure application can
be compromised if the OS is compromised

Goal of Overshadow: securely execute
application even if the OS is not trusted

• Guarantee confidentiality and integrity for
application’s data in memory and on disk

• Trust only VMM, not the OS

Backward compatibility!

• No modifications to OS or application binary

slide 3

Virtual Machines

 Hardware-level abstraction

• Virtual hardware: CPU, memory,
chipset, I/O devices, etc.

• Encapsulates all OS and
application state

 Virtualization software

• Extra level of indirection
decouples hardware and OS

• Multiplexes physical hardware
across multiple “guest” VMs

• Strong isolation between VMs

• Manages physical resources,
improves utilization

slide 4

Key Idea: Cloaking

VMM provides multiple views of application’s
memory depending on who is looking

• Application: unencrypted read-write access

• Guest OS: “cloaked” view

– Encrypted and integrity-protected

Application/OS interaction mediated by shim

• Public (unprotected) shim on guest OS

• Private (protected) shim on application

slide 5

Overshadow Architecture

VMM switches between
two views of memory

• App sees normal view

• OS sees encrypted view

Shim manages
application/OS interactions

• Interposes on system calls,
interrupts, faults, signals

• Transparent to application

Two Virtualization Barriers

 Shim

 Cloaked app

 VMM

 Hardware

 Guest OS kernel

Other Apps
Other Apps Other apps

Virtual Machine

slide 6

Memory Mapping: OS and VMM

machine

VMM

slide 7

virtual

“physical”

guest OS

GVPN

(guest virtual

page number)

GPPN

(guest physical

page number)

MPN

(machine

page number)

shadow page tables

Multi-Shadowing

virtual

“physical”

machine1

guest OS

view2

view1

machine2

The view of memory is context-dependent!

slide 8

Basic Cloaking Protocol

At any time, each page is
mapped into only one of
the two shadows

• App (A) sees plaintext
via application shadow

• Kernel (K) sees ciphertext
via system shadow

Protection metadata

• IV – random initialization
vector

• H – secure hash of page
contents

slide 9

OS Accesses a Page

virtual

physical

guest OS

Application’s

view

slide 10

OS’s view

Page is unmapped in current shadow  fault into VMM

VMM encrypts the page, computes integrity hash,

 remaps encrypted page into system shadow

X

encrypted

machine

Application Accesses a Page

virtual

physical

X

guest OS

Application’s

view plaintext

machine

OS’s view

Page is unmapped in current shadow  fault into VMM

VMM verifies the integrity hash, decrypts the page,

 remaps plaintext page into application shadow

slide 11

Cloaking Application Resources

Protect memory-mapped objects

• Stack, heap, mapped files, shared mmaps

Make everything else look like a memory-
mapped object

• For example, emulate file read/write using mmap

OS still manages application resources

• Including demand-paged application memory

• Moves cloaked data without seeing its true contents

• Encryption/decryption typically infrequent

– OS accesses application’s page  encrypt

– Application accesses OS-touched page  decrypt

slide 12

Shim

Challenges

• Securely identify which application is running

• Securely transfer control between OS and application

• Adapt system calls

Solution: shim

• OS-specific user-level program

• Linked into application address space

• Mostly cloaked, plus uncloaked trampolines and buffers

• Communicates with VMM via hypercalls

slide 13

Hypercalls

Used by shims to invoke VMM

Uncloaked shim (untrusted, invoked by OS)

• Can initialize a new cloaked context

– When starting an application

• Can enter and resume existing cloaked execution

– When returning to a running application

Cloaked shim (trusted, invoked by application)

• Can cloak new memory regions (when is this
needed?), unseal cloaked data, create new shadow
contexts, access metadata cache

slide 14

Secure Context Identification

VMM must identify unique application contexts in
order to switch shadow page tables

Cloaked Thread Context (CTC)

• Sensitive data used for OS-application control transfers

– Saved registers, entry points to shim functions, ASID (address
space identifier – used to identify context), a special random
value generated during initialization

• Uncloaked  cloaked (OS  application) transition:
uncloaked shim makes a hypercall, passes ASID and
the pointer to CTC to VMM, VMM verifies expected
ASID and the random value

– What prevents malicious OS from messing with CTC?

slide 15

Handling Faults and Interrupts

1. App is executing

2. Fault traps into VMM

• Saves and scrubs registers

• Sets up trampoline back to
shim so kernel can return

• Transfers control to kernel

3. Kernel executes

• Handles fault as usual

• Returns to shim via trampoline

4. Shim hypercalls into VMM

• Resume cloaked execution

5. VMM returns to app

• Restores registers

• Transfers control to app

slide 16

Handling Systems Calls

Extra transitions

• Superset of fault handling

• Handlers in cloaked shim
interpose on system calls

System call adaptation

• Arguments may be pointers to
cloaked memory

• Marshal and unmarshal
via buffer in uncloaked shim

• More complex: pipes, signals,
fork, file I/O

slide 17

Marshalling

Unmarshalling

Marshalling Syscall Arguments

For some system calls, OS needs to read or
modify arguments in caller’s address space

• Path names, socket structures, etc.

• This does not work with cloaked applications (why?)

Instead, arguments are marshalled into a buffer
in the uncloaked shim and registers are modified
so that the call uses this buffer as the new source
or destination

Results are copied back into the cloaked
application’s memory

slide 18

Resuming Cloaked Execution

OS can ask to resume cloaked execution from a
“wrong” point, but integrity checking will fail
unless the CTC is mapped in the proper location

• What’s the “right” point to resume execution?

VMM will always enter cloaked execution with
proper saved registers, including the IP, and all
application pages unaltered (why?)

Thus, OS can only cause a cloaked execution to
be resumed at the proper point in the proper
application code

slide 19

Signal Handling

Parts of the shim cannot be preempted

Application registers a signal handler  the shim
emulates the OS and records it in a table

Signal is received  shim passes to VMM the
signal, parameters, context in which it occurred

• If during a cloaked execution, VMM passes control to a
proper signal entry point in the shim

• If during a shim execution, VMM either rolls back the
execution to the last application system call entry, or
defers signal delivery until shim returns to application

slide 20

Cloaked File I/O

Interpose on I/O system calls

• Read, write, lseek, fstat, etc.

Uncloaked files use simple marshalling

Cloaked files emulated using memory

• Emulate read and write using mmap

– Copy data to/from memory-mapped buffers

• Decrypted automatically when read by application,
encrypted automatically when flushed to disk by OS

• Shim caches mapped file regions (1MB chunks)

• Prepend file header containing size, offset, etc.

slide 21

Protection Metadata

VMM enforces integrity, ordering, freshness for
application’s memory pages

Metadata for each memory page tracks what’s
supposed to be in it

• IV – random initialization vector

• H – secure integrity hash of page content

• VMM keeps the mapping (ASID, GVPN)  (IV, H)

– ASID = “application” (address space) identifier

– GVPN = guest virtual page number

slide 22

Managing Protection Metadata

slide 23

Details of Metadata Protection

Protected resources: files and memory regions

• (RID, RPN) – unique resource id, app page number

Metadata lookup in VMM:

 (ASID, VPN)  (RID, RPN)  (IV, H)

• Shim tracks mappings (start, end)  (RID, RPN)

– VMM caches these mappings in “metadata lookaside buffer”
(MLB), upcalls into shim on MLB miss

• Indirection needed to support sharing and persistence

– Two processes of the same app may access same resource

– Application may want to keep a resource between executions

– Persistent metadata is stored securely in the guest filesystem

slide 24

Cloning a Cloaked Process

Allocate local storage for new thread

Copy parent’s CTC and fix pointers to the new
thread’s local storage

Change instruction pointer and stack pointer in
the child’s CTC

Set up the uncloaked stack so that the child starts
execution in a special child_start function
within the child’s shim, it finishes initialization

slide 25

Cloning Metadata

Problem: copy-on-write private memory regions
shared between a process and its clone

If parent encrypts shared memory after the fork,
how does the child find metadata for decrypting?

Solution: data structure with metadata
information, mirroring the process trees

• Whenever a page is encrypted, new metadata (random
IV, hash) is propagated to all children with pages
whose contents existed prior to the fork

slide 26

Security Guarantees (1)

OS cannot modify or inject application code

• Application code resides in cloaked memory, where it
is encrypted and integrity-protected

• Any modifications detected because page contents
won’t match the hash in VMM’s metadata cache

OS cannot modify application’s instruction pointer

• All application registers are saved in the cloaked thread
context (CTC) after all faults/interrupts/syscalls and
restored when cloaked execution resumes

• CTC resides in cloaked memory and is encrypted and
integrity-protected, so the OS can’t read or modify it

slide 27

Security Guarantees (2)

OS cannot tamper with the loader

• Before entering cloaked execution, VMM verifies that
the shim was loaded properly by comparing hashes of
the appropriate memory pages with expected values

– If check fails, the application can access resources only in
encrypted form

OS can execute an arbitrary program instead, but
it cannot access any protected data

slide 28

Overshadow: Key Ideas

VM-based protection of application data – even
if the OS is compromised!

No modifications to OS or applications

• Shim extends the “reach” of VMM

Multi-shadowing and cloaking

• Use the shim and faults into VMM to switch between
encrypted and unencrypted views on all transitions
between the application and the OS

slide 29

