
slide 1

Don Porter

CS 380S

TOCTTOU Attacks

Some slides courtesy Vitaly Shmatikov and Emmett Witchel

2

Definitions
TOCTTOU – Time of Check To Time of Use
Check – Establish some precondition
(invariant), e.g., access permission
Use – Operate on the object assuming that the
invariant is still valid

Essentially a race condition
Most famously in the file system, but can occur
in any concurrent system

slide 3

UNIX File System Security

Access control: user should only be able to access
a file if he has the permission to do so
But what if user is running as setuid-root?
• E.g., a printing program is usually setuid-root in order

to access the printer device
– Runs “as if” the user had root privileges

• But a root user can access any file!
• How does the printing program know that the user has

the right to read (and print) any given file?

UNIX has a special access() system call

4

TOCTTOU Example – setuid
Victim checks file, if its good, opens it
Attacker changes interpretation of file name
Victim reads secret file

if(access(“foo”)) {

fd = open(“foo”);
read(fd,…);
…

}

Victim Attacker

symlink(“secret”, “foo”);

time

slide 5

access()/open() Exploit

Goal: trick setuid-root program into opening a normally
inaccessible file
Create a symbolic link to a harmless user file
• access() will say that file is Ok to read

After access(), but before open() switch symbolic link to
point to /etc/shadow
• /etc/shadow is a root-readable password file

Attack program must run concurrently with the victim and
switch the link at exactly the right time
• Interrupt victim between access() and open()
• How easy is this in practice?

slide 6

Broken passwd

Password update program on HP/UX and SunOS
(circa 1996)
When invoked with password file as argument…
1. Open password file and read the entry for the

invoking user
2. Create and open temporary file called ptmp in the

same directory as password file
3. Open password file again, update contents and copy

into ptmp
4. Close both password file and ptmp, rename ptmp to

be the password file

[Bishop]

slide 7

TOCTTOU Attack on passwd

Create our own subdirectory FakePwd and fake password file pwdfile
with blank root password; create symbolic link lnk->FakePwd; run
passwd on lnk/pwdfile

1. Open password file and read the entry for the invoking user
Change lnk->RealPwd to point to real password directory

2. Create and open temporary file called ptmp in the same directory as
password file
ptmp is created in RealPwd
Change lnk->FakePwd to point to fake password directory

3. Open password file again, update contents and copy into ptmp
contents read from FakePwd/pwdfile and copied to RealPwd/ptmp
Change lnk->RealPwd to point to real password directory

4. Close both password file and ptmp, rename ptmp to password file
Now RealPwd/pwdfile contains blank root password. Success!

slide 8

Directory Removal Exploit

Recursive removal of a directory tree (GNU file utilities)
Original tree is /tmp/dir1/dir2/dir3
chdir(“/tmp/dir1”)
chdir(“dir2”)
chdir(“dir3”)
unlink(“*”)
chdir(“..”)
rmdir(“dir3”)
unlink(“*”)
chdir(“..”)
rmdir(“dir2”)
unlink(“*”)
rmdir(“/tmp/dir1”)

Suppose attacker executes
“mv /tmp/dir1/dir2/dir3 /tmp”

right here

This call will delete the
entire root directory!

Fix: verify that inode
of the directory did not
change before and
after chdir()

slide 9

Temporary File Exploit

// Check if file already exists
if (stat(fn,&sb)==0) {

fd = open(fn, O_CREAT | O_RDWR, 0);
if (fd<0) {

err(1, fn);
}

}

Suppose attacker creates a
symbolic link with the same name
as *fn pointing to an existing file

This will overwrite the file to
which attacker’s link points

slide 10

Evading System Call Interposition

TOCTTOU and race conditions can be used to
evade system call interposition by sharing state
Example: when two Linux threads share file
system information, they share their root
directories and current working directory
• Thread A’s current working directory is /tmp
• Thread A calls open(“shadow”); B calls chdir(“/etc”)

– Both look harmless; system monitor permits both calls

• open(“shadow”) executes with /etc as working directory
– A’s call now opens “/etc/shadow” – oops!

Similar attacks on shared file descriptors, etc.

Non-Filesystem Race Conditions

Sockets: create/connect races for local daemons
• OpenSSH < 1.2.17

Symbolic links for Unix sockets
• Plash

Signal handlers
• See Zalewski – “Sending signals for Fun and Profit”

slide 11

12

TOCTTOU Vulnerabilities in Red Hat 9

Application TOCTTOU
errors

Possible exploit

vi <open, chown> Changing the owner
of /etc/passwd to an
ordinary user

gedit <rename,
chown>

Changing the owner
of /etc/passwd to an
ordinary user

rpm <open, open> Running arbitrary
command

emacs <open,chmod> Making /etc/shadow
readable by an
ordinary user

• Jinpeng Wei, Calton Pu. FAST’05

National
Vulnerability
Database
currently has
600 entries for
symlink attack

slide 13

How Hard Is It to Win a Race?

Idea: force victim program to perform an
expensive I/O operation
• While waiting for I/O to complete, victim will yield CPU

to the concurrent attack program, giving it window of
opportunity to switch the symlink, working dir, etc.

How? Make sure that the file being accessed is not
in the file system cache
• Force victim to traverse very deep directory structures

(see Borisov et al. paper for details)

Maze Attack

Replace /tmp/foo -> bar with:

slide 14

/tmp/foo
-> 1/a/b/c/d/e/...
-> 2/a/b/c/d/e/...
...
-> k/a/b/c/d/e/...
-> bar

Maze Attack, cont.

1) Pollute OS cache with unrelated garbage
2) Pick an arbitrary file in maze, poll atime
3) On update, replace maze

slide 15

1a/a/b/c/d/e/...
->2a/a/b/c/d/e/...
...
->ka/a/b/c/d/e/...
-> secret

/tmp/foo
-> 1/a/b/c/d/e/...
-> 2/a/b/c/d/e/...
...
-> k/a/b/c/d/e/...
-> bar

slide 16

Maze Recap

Attacker must track victim’s progress
• When to insert symlink?

After access started:
• Monitor access time on a single directory entry

Before open:
• Force disk reads during access

[Borisov et al.]

How hard to prevent TOCTTOU?

No portable, deterministic solution with current
POSIX filesystem API – Dean and Hu 2004
Tactics:
1. Static checks for dangerous pairs (compile time)
2. Hacks to setuid programs (least privilege)
3. Kernel detection and compensation (RaceGuard)
4. User-mode dynamic detection
5. Change the interface

slide 17

Hardness Amplification (Dean)

If probability of attacker winning race is p<1,

Essentially, do the access() n times and make
sure they agree before doing the open()
But what about mazes?
• p == 1

slide 18

Take 2 – (Tsafrir ‘08)

Idea: Column-oriented traversal in userspace
/a/b/c/...

slide 19

a

a

a

...

b

b

b

c

c

c ...

...

...

n

k Insight: hard to force
scheduling in same
directory
Notes:

User space
Probabilistic

Cai et al. ‘09

Idea: Algorithmic complexity attack on
filesystem namespace
Forced victim to be descheduled at end of each
syscall without mazes
• Even in same directory

Paper also includes interesting scheduler priority
manipulation

slide 20

Linux dcache

“foo” hashes to 3
Pollute bucket 3 with
garbage
Victim burns timeslice
traversing very long
hash chain
OS schedules
attacker at end of
syscall

slide 21

...

Cai recap

Disproved intuition about column traversal
Generalization: probabilistic countermeasures
unlikely to every work
• Attackers likely to figure out how to single step victim

Deterministic solutions are the only solutions

slide 22

Tsafrir made Deterministic

Insight 2: Hardness amplification not necessary
Userspace traversal sufficient with *at() calls:
fd1 = open(“/”);
fstatat(fd1, &statbuf);
// do some checks
fd2 = openat(fd1, “a”);
fstatat(fd2, &statbuf);
// more checks
fd3 = openat(fd2, “b”);
...

slide 23

Caveats

Slower (many more syscalls)
Incompatible with exec, O_CREAT
• Re-opens door to temp file attacks

Still requires API changes
• openat(), fstatat(), etc.

slide 24

How hard to prevent TOCTTOU?

Tactics:
1. Static checks for dangerous pairs (compile time)

- Difficult in practice

2. Hacks to setuid programs (least privilege)
- Most common fix for single app

3. Kernel detection and compensation (RaceGuard)
4. User-mode dynamic detection

1. Probabilistic
2. Deterministic – Requires API Changes, Incomplete

5. Change the interface
- Most common approach to general problems

slide 25

In the last 2 years, 13 new system calls have
been added to Linux to prevent TOCTTOU
• openat, renameat, etc. all take file descriptors

In the last 3 years, new signal handling
• pselect, ppoll change signal mask

Current proposals for close-on-exec flag to the
open system call
• Prevents a race between open and fcntl (exploitable

in a web browser)

Cluttered and complicated APIs are the enemy
of secure code

Adapting the API

Transactions
Atomic: either the entire transaction succeeds or
fails
Consistent: transactions represent a consistent
data structure update
Isolated: partial results are not visible to the
rest of the system. This allows all transactions
to be ordered (serialized).
Durable: they survive computer failures
Transactions help us reason about concurrency

slide 28

Pseudo-Transactions

Observation: many sequences of filesystem
operations are intended to be atomic
• E.g., nothing should happen betw. access() and open()

Pseudo-transaction: a sequence of filesystem calls
that always behaves as if it were executed in
isolation and free from interference
• Very well-understood concept in databases

Idea: OS should recognize when a file transaction
starts and prevent interfering system calls

[Tsyrklevich and Yee]

slide 29

Tsyrklevich-Yee System

Look at 2-call sequences of filesystem calls
• Implemented as a kernel module

Assume that first call starts a pseudo-transaction,
second call ends it
• Also need to time out misidentified transaction starts

Treat all filesystem operations originating from
the same process as part of same transaction
• Assume process doesn’t maliciously interfere with its

own filesystem access
• Assume fork()’d children run the same process image

…Also destroyed by Cai et al. ‘09

Kernel has finite resources to track fs operations
Idea: pollute the cache with enough garbage to
evict first operation
• Or manipulate scheduling for false timeout

Varies by implementation

slide 30

System Transactions – SOSP ‘09

New system calls for transactions
• sys_xbegin
• sys_xend
• sys_xabort

System calls within an active transaction
• atomic: all or nothing
• isolated: partial results invisible

Easy to adopt, just wrap code with transactions
Deterministic guarantees

32

TOCTTOU Example Redux

Attack ordered before or after check and use
• System transactions save the day

sys_xbegin();
if(access(“foo”)) {
fd = open(“foo”);
sys_xend();
…

Victim Attacker

symlink(“secret”,“foo”);

symlink(“secret”,”foo”);time

33

Prototype

A version of Linux 2.6.22 modified to support
system transactions
• Affectionately called TxOS
• Runs on commodity hardware
• Supports a range of system calls

– fs, memory allocation, fork, signals

Reasonably efficient
• Benchmark overheads: 1-2x
• Some speedups!

Questions?

porterde@cs

slide 34

Preventing TOCTTOU Races

slide 36

Typical Setuid-Root File Access

// Assume this is running inside some setuid-root program
void foo(char *filename) {

int fd;
if (access(filename, R_OK) != 0)

exit(1);
fd=open(filename, O_RDONLY);
… do something with fd …

}

Check if user has the
permission to read this file

Open file for reading

What if the file to which
filename points changed

right here?

This is known as a TOCTTOU attack
(“Time of Check To Time of Use”)

slide 37

Fixing Race Conditions

Unsafe sequence has been detected. What now?
Roll back to state before transaction
• Requires a heavy-duty file system

Lock out other processes when a “critical section”
of filesystem operations is being executed
• How to identify critical sections?
• One process gets a lock on entire filesystem (bad idea)

“Delay-lock”: temporarily delay other processes
trying to access a locked file
• How to calculate the right delay? What if attacker

wakes up before victim completes his file operation?

slide 38

Allow every 2-call sequence except these:

ACCESS REMOVE
CHDIR REMOVE
EXEC REMOVE

where REMOVE = UNLINK | RMDIR | RENAME

Default Allow Policy

slide 39

Deny any 2-call sequence except these:

PERMIT(OPEN_RW, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |
UNLINK | READLINK | CHMOD | CHOWN | RENAME)

PERMIT(OPEN_CREAT, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |
RENAME_FROM)

PERMIT(ACCESS, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC)
PERMIT(EXEC, OPEN_READ | EXEC)
PERMIT(CHDIR, OPEN_READ | CHDIR | ACCESS | READLINK)
PERMIT(RENAME_FROM, OPEN_RW | ACCESS | UNLINK | RENAME_FROM)
PERMIT(RENAME_TO, OPEN_RW)
PERMIT(CHMOD | CHOWN, OPEN_RW | ACCESS | CHMOD | CHOWN)
PERMIT(UTIMES, OPEN_RW | ACCESS | CHMOD | CHOWN)
PERMIT(READLINK, READLINK)

Default Deny Policy

	�TOCTTOU Attacks
	Definitions
	UNIX File System Security
	TOCTTOU Example – setuid
	access()/open() Exploit
	Broken passwd				
	TOCTTOU Attack on passwd
	Directory Removal Exploit
	Temporary File Exploit
	Evading System Call Interposition
	Non-Filesystem Race Conditions
	TOCTTOU Vulnerabilities in Red Hat 9
	How Hard Is It to Win a Race?
	Maze Attack
	Maze Attack, cont.
	Maze Recap
	How hard to prevent TOCTTOU?
	Hardness Amplification (Dean)
	Take 2 – (Tsafrir ‘08)
	Cai et al. ‘09
	Linux dcache
	Cai recap
	Tsafrir made Deterministic
	Caveats
	How hard to prevent TOCTTOU?
	Adapting the API
	Transactions
	Pseudo-Transactions
	Tsyrklevich-Yee System
	…Also destroyed by Cai et al. ‘09
	System Transactions – SOSP ‘09
	TOCTTOU Example Redux
	Prototype
	Questions?
	Preventing TOCTTOU Races
	Typical Setuid-Root File Access
	Fixing Race Conditions
	Default Allow Policy
	Default Deny Policy

