Information Hiding, Anonymity and Privacy:
A Modular Approach

Dominic Hughes Vitaly Shmatikov'
STANFORD UNIVERSITY SRI INTERNATIONAL

Abstract

We propose a new specification framework for informatioririgcgproperties such
as anonymity and privacy. The framework is based on the ginafea function
view, which is a concise representation of the attacker’s pamiawledge about a
function. We describe system behavior as a set of functams formalize differ-
ent information hiding properties in terms of views of th&sections. We present
an extensive case study, in which we use the function viemdraork to system-
atically classify and rigorously define a rich domain of itignrelated properties,
and to demonstrate that privacy and anonymity are indepgnde

The key feature of our approach is its modularity. It yieldsgise, formal specifi-
cations of information hiding properties fanyprotocol formalism andnychoice

of the attacker model as long as the latter induce an obsenahequivalence rela-
tion on protocol instances. In particular, specificatioasdu on function views are
suitable for any cryptographic process calculus that defseene form of indistin-
guishability between processes. Our definitions of infdfamahiding properties
take into account any feature of the security model, inclgdirobabilities, ran-
dom number generation, timingic, to the extent that it is accounted for by the
formalism in which the system is specified.

Keywords: security, information hiding, logic, knowledge, Kripkewstture, ver-
ification, anonymity, privacy

1 Introduction

Security requirements for computer systems often involding information from an
outside observer. Secrecy, anonymity, privacy, and n@rgrence each require that it
should be impossible or infeasible to infer the value of dipalar system attribute —
a transmitted credit card number, the identity of a webgggor, the sender and recip-
ient of an email message — by observing the system within dinstcaints of a given
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observer model. If formal analysis techniques are to be tmetthe analysis and veri-
fication of computer security, they must provide supporttfar formal specification of
information hiding properties as well as formal reasonibgud information leaked to
the attacker by various events and actions occurring inytsies.

In this paper we adopt an epistemological tradition that lmartraced back to the
seminal works of Kripke [Kri63] and Hintikka [Hin62]: hidginformation, modeled as
the attacker’s lack of knowledge about the system, corredpdo indistinguishability
of system states. As the starting point, we assume that wgieea a set of system
configurationsC equipped with an observational equivalence relatiorConsequently,
our methods apply tany computational model of the attacker that partitions thecspa
of all possible system configurations into observationaiivedence classes. A typical
example is the specification of a security protocol in a agpaphic process calculus
whose notion of equivalence is testing equivalence of processes in some attacker
model.

The following informal example illustrates the way in whiste shall obtain formal
definitions of security properties, parametrically~n For ease of presentation, in this
example we restrict to the case where a communication oraggghbetween agents
consists of a single message (for example, an email). Thusawe in mind a Kripke
structure whose possible worlds (states) are all possib&lexchanges, and for which
C ~ C' represents the attacker’s inability to distinguish betwpessible worlds”
andC’. Below is a natural-language expansion of the predicatehatt later obtain (in
Table 2) for defining absolute sender anonymity:

ABSOLUTE SENDER ANONYMITY holds if:
for every possible world’ of the Kripke structure,
for every message: sent inC,
for every agent:,
there exists a possible world' indistinguishable front (i.e., C' ~ C)
such that inC’, a is the sender ofn.

Thus, from the attacker’s perspective, the lineup of caatesifor the sender of any given
message is the entire set of agents. (More generallwould denote a full exchange
or ‘conversation’ between agents, potentially consisthgore than one message, and
transmitted through any medium.) This example, thoughrinéd, should convey the
idea behind our formulation of security properties paraitagty in ~.

A key advantage of this modularity with respect~as the resulting leveraging of
the expressive power of the underlying formaliseng( process calculus) in which a
protocol is specified. Depending on the formalism, thequivalence relation, which
represents the attacker’s inability to distinguish cergistem states, may take into ac-
count features such as probability distributions, gef@madf nonces and new names,
timing, etc. In this case, our framework and the formal dipeations of information
hiding properties derived using it will also take thesedeas into account.

Our framework. Information hiding properties can be formalized naturaling
modal logics of knowledge [FHMV95, SS99]. Such logics carubed to formulate di-
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rect statements about the limits of an observer’s knowledlgafying whether a system
satisfies a given information hiding property is more difficaince in order to reason
about information flows, it is necessary to formalize theawidr of all agents com-
prising the system as “knowledge-based programs.” Thiteén@ non-trivial exercise,
requiring expertise in the chosen logic.

On the other end of the formal methods spectrum, approachssdion process
algebras [Sch96, AG99, LMMS99, BNP99] are well suited tarfalizing concurrent
systems. A process algebra may include a formal model ot@gyaphic primitives —
needede.qg, for the analysis of cryptographic protocols — and typicalhmes equipped
with an equivalence relation such as bisimulation or tgséiquivalence that models an
observer’s inability to distinguish between certain pssss. Process algebras also pro-
vide proof techniques for process equivalence. The disddga of the process algebra
approach is that stating information hiding propertiesenns of process equivalence
is very subtle and error-prone, especially for complicaemperties such as anonymity
and privacy.

We introduce a modular framework for reasoning about ingiom hiding prop-
erties, independent of any particular system specificdbomalism or epistemic logic
(see Figure 1). The cornerstone of our approach is the codepfunction view A
function view is a foundational domain-theoretic notiohrdpresents partial informa-
tion about a function, and thus models an observer’s incetagtnowledge thereof.
Remarkably, just the three attributes of a function view -apdr, kernel, and image —
suffice to model many kinds of partial knowledge an observay hrave about the func-
tion of interest. We demonstrate how any system specificdtionalism that provides
an equivalence relation on system configurations inducestifin views, and how in-
formation hiding properties can be stated naturally in teafopaguenessf this view.
Therefore, security properties specified in our framewody ine amenable for formal
verification using a wide variety of formal methods and téghas.

Applications to anonymity and privacy. The application of our specification frame-
work to anonymity and privacy is especially significant. iy protection is an active

area of computer security research. Many systems have bepased that implement
different, and sometimes even contradictory, notions chtwhmeans to be “anony-

mous.” Instead of a single “anonymity” or “privacy” propgrthere are dozens of dif-

ferent flavors of anonymity, and understanding them in aesyatic way is a major

challenge in itself. There is also a need for rigorous forspalcification and verification

of identity-related security properties since such progerare often difficult to model

using conventional formal analysis techniques.

Structure of paper. The structure of the paper is as follows. In section 2, wedidce
function views. In section 3, we show how opagueness of fonatiews can be used
to formalize information hiding properties. In section 4 wse our theory of function
views and opaqueness to demonstrate how most notions oymitgrproposed in the
research literature can be formalized in a uniform way amdesented as predicates
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on observational equivalence classes, thus facilitatieg tverification in any crypto-
graphic process algebra. Perhaps our most important gahogisult is a crisp distinc-
tion between anonymity and privacy (the latter understaottedationship anonymity”),
which has implications for public policy.

2 Theory of Function Views

What can on&nowabout a functiory : X — Y? One might know its output(x) on a
certain inputz, or that a certain poinj of Y lies in the image off but that another point
y' does not. One may know distinct inputsandz’ such thatf(z) = f(z'), without
necessarily knowing the valygx).

One approach to modeling partial knowledge of a function isse domain theoretic
ideas [Sco72, AJ94], defining an approximatiwf a functionf : X — Y to be any
partial functiona C f(C X x Y). This traditional notion of an approximation as a
subset of input-output behavior has been very successta@search into semantics of
programming languages [Sto77, Gun92].

In this paper we introduce a new notion of partial knowledfe function. Aview
of a function f comprises a non-deterministic approximation of its gragpbitary re-
lation containingf), a subset of its image, and an equivalence relation cadaimits
kernel. Function views form a distributive lattice whosexinzal consistent elements
correspond to fully determined functions and whose bottlement represents absence
of any knowledge. In section 2.1 we define three primitiverfeofopaquenessone for
each of component of a view, each formalizing an observeability to discern certain
information aboutf.

In section 3 we show how to formalize information hiding pedjes in terms of
opaqueness of functions defining system behavior. The mysbriant aspect of this
formalization is thatany Kripke structure representing an observer gives rise te-fun
tion views. In sections 3.2 and 3.4, we show how function gi@ne constructed auto-
matically from the equivalence relation of a Kripke struetuWe then show how any
opaqueness property can be formalized as a predicate ovakange relations, hence
on Kripke structures.

In particular, if the system is specified in a process algétatisupports a notion of
observational equivalence, we demonstrate how opaqueness-based security properties
of the system can be expressed as predicates. oFhis conversion is parametric
in the sense that it works for any computational model of ttb@cker that partitions
the space of all possible system configurations into obenal equivalence classes.
Therefore, we do not require technical machinery for re@gpabout how the partial
knowledge represented by function views is obtained. Thissedge is implicit in the
equivalence relation induced by the attacker model. Sipag@eness properties can
be expressed as predicates on the equivalence clasaey pfocess algebra, a user is
free to employ his or her favorite algebra and preferredriegle for verifying such
predicates.

Our chosen definition of function view is simple yet expressnough to formalize



a host of security properties and the relationships betvieem, as shown in section
4. It is interesting and surprising that attacker knowledygthis complex setting can
be reduced to triples consisting of an approximation of tiagky, image and kernel of a
function. In section 2.5, we discuss the scope of our framleyacluding its limitations
and possible extensions.

2.1 Partial knowledge of functions

We re-examine our original question: what can émewabout a function? Consider
the following properties of a functiofi: X — Y.

e lIts graph. The input-output behavior of, typically coded as a subset &f x Y.
e Itsimage.The subseim f = {f(z) |z € X} of Y.

e Its kernel. The quotient induced by, i.e., the equivalence relatioker f on X
given by(xz, z') € ker fiff f(z) = f(z').

This list is by no means exhaustive. These three propeuifises however, for formal-
izing many information hiding properties such as anonyraitg privacy, and we focus
on them for the rest of this paper. We define the following egponding notions of
knowledge of a functiorf : X — Y.

e Graph knowledge.A binary relationF C X x Y such thatf C F. ThusF
is a non-deterministic approximation ¢f F'(z) = {y € Y |zFy} is a set of
candidates for the output gfonz, andf (x) is always a candidate.

e Image knowledgeA subset/ of Y such that C im f. The fact thaty € I is an
assertion thay is an output off, without necessarily knowing any specific input
that producegy.

e Kernel knowledge.An equivalence relatiod on X such thatK C ker f, i.e,,
zKx' only if f(z) = f(z'). Thus the edges df are assertions about the equality
of f.

Note that the second and third forms of knowledge @usitivein the sense that each
pointy € I or (z,z') € K is a definite observation of the image or kernel. By contrast,
graph knowledgé is negative sincey ¢ F'(z) is a definite observation thg{(z) # v,
whereag, € F(z) does not implyf(z) = y (unlessF(x) is a singleton).

DEFINITION 1 Function knowledgeof type X — Y is a tripleN = (F. I, K) where
1. F C X xY is a binary relation betweek andY’,
2. I is a subset o¥', and
3. K is an equivalence relation ox.

We say thatV = (F I, K) is consistentwith f, denotedV LC f, if
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1. FOf,
2. I Cimf,and
3. K Cker f.

From a theoretical or foundational perspective, the choftbese three particular com-
ponents is somewhatd hoc The interesting and surprising point is that these three
components alone allowed us to express a rich spectrum ofigerelated properties:
see Figure 2, and the taxonomy in section 4.3.

A lineup of type X — Y is a set of functions of typ& — Y. Given function
knowledgeN of type X — Y, define the associated linelip(N) C Y as the set of
functions with whichV is consistent:

lin(N) = {f: X =>Y|NC/f}

Under the intuition thatV is an observer’s view of some unknown functippin(NV) is
the set of candidates fgf.

Given function knowledgeV = (F, I, K) andN' = (F',I', K') of type X — Y,
defineN C N’ (N approximatesN’, or N’ refinesN), by

F D> F
NCN «— I c r
K C K'

(conjunction on the right). Upon identifying : X — Y with function knowledge
(f,im f, ker f) of type X — Y, this extends our earlier definition of consistency. Meet
and join are pointwise:

/\je.] <F.7‘71.7‘7K.7‘> = UjEJ F;, ﬂje.] I, ﬂje.] K; )
Vjes (i1, Kj) = (Mjes - Ujes 12 Vjes Ki )
where\/, . ; K is the transitive closure af ;¢ ; K ;. With top (0, Y, X x X) and bottom

(X xY,0,=x), function knowledge of typ& — Y thus forms a distributive lattice.

2.2 Knowledge closure

Our motivation for the notion of function knowledg€é = (F. I, K) is to have a way
to represent the knowledge of an observer who is trying toetissome properties of a
hidden functionf. Ideally, we would useV to formulate assertions about the observer’s
inability to discern certain properties ¢f For example, if the cardinality of'(z) is at
least two elements for eache X, we can assert that “the observer cannot determine
the value off on any input.”

In general, however, we cannot make direct assertions aowimation hiding in
terms of a single component of the knowledge triple becausé¢hree components are
not independent. For example, in the case above, suppdsk isdhe whole ofX x X



(so the observer knows thatproduces the same output value on all inputs), andithat
is the singleton{y}. Then from/ and K the observer can infer thgt(z) = y for all

x, even if the first coordinaté’ is such thatF'(z) is always of size at least 2. In other
words, from/ and K, the observer can refine his or her knowledgef the graph off.

In order to make sound assertions about information hidsigguV, we must first take
an appropriate form of deductive or inference closure. Tdreect definition arises as
the closure operator induced by a Galois connection.

Given a lineupl C Y of functions fromX to Y, define the associated function
knowledgekn(l) of type X — Y by kn(l) = A l. Thuskn(l) is theC-maximal function
knowledge consistent with eaghe [. (In making this definition we identify a function
f with function knowledgg f,im f, ker f).) Therefore ifkn(l) = (F, I, K), thenF =

ULI=N{imf:fel}andK =\{kerf: fel}.

PROPOSITION1 (GALOIS CONNECTION) The mapsV +— lin(N) andl — kn(l) con-
stitute a contravariant Galois connection between thiedatif function knowledge of
type X — Y and the powerset-lattice of lineups of type— Y, i.e,, [ C lin(N) iff
N C kn(l).

Proof. We must show that

I C {f:X—=Y|NLCFf} 1)

N Cc Al )

Suppose (1) holds. Then ea¢he [ satisfiesV C f, so (2) follows immediately from
the fact that/\ I is a meet.

Conversely, suppose (2) holds. Writidg = (F, I, K), (2) is equivalent to the
conjunction of

F 2 J (3)
I ¢ ({imf:fel} 4)
K C (kerf:fel} 5)
We must show that for each € [, we haveN C f,ie, F DO f, I C imf, and
K C ker f. These follow from (3), (4) and (5) respectively. O

Given function knowledgeV define theclosure N of N to bekn(lin(V)). Motivated
by the discussion at the start of the section, henceforthha# enly deal with closed
function knowledge. Note that there is no easy equationatatterization of closure,
especially in applications that involve additional comeots in the definition of function
knowledge.



2.3 Function views and opaqueness

DEFINITION 2 A viewof a functionf : X — Y is any closed function knowledge of
type X — Y thatis consistent witlf.

To formalize information hiding, we shall require the fallmg predicates on views.

DEFINITION 3 (OPAQUENESY Let V = (F,I,K) be aview off : X — Y. We
define the following forms obpaquenes®f f underV :

¢ Value opaqueness:

— Givenn > 2,V isn-value opaquef |F'(z)| > n for all z € X. In other
words, the lack of information in the view is such that there at least:
candidates for the output gfon any given input:.

— GivenZ C Y,V is Z-value opaquef Z C F(x) for all z € X. In other
words, the lack of information in the view is such that anynedat ofZ is a
possibility for the value of on any inputc.

— V is absolutely value opaqué V isY -value opaque. In other words, the
view gives away nothing about the input-output behavigf:dbr all x € X,
everyy € Y is a candidate fof (x).

e V isimage opaquef I is empty. In other words, the view is such that for no
elementy € Y can one definitely assert thaties in the image of .

e V iskernel opaquef K is equality onX. In other words, beyond the trivial case
x = «', with this view of f no equalitiesf (z) = f(z') can be inferred.

PROPOSITION2 Let f be a function of typeX — Y. The various forms of opaque-
ness of a view/ of f can be characterized logically as follows, with referercehe
corresponding lineup = lin(V'):

Z-Value opaquenesss Vx € X.Vze€ Z. 3g €l.g(x) = 2.

n-Value opaquenesse Ve € X. 3g1,...,g9n €1l i #j = gi(z) # gj(x)
Image opaquenesss Vy €Y. dgel.y&img
Kernel opaquenesss  Vxi # x9 € X. 3g € 1. g(x1) # g(x2)

For absolute value opaqueness, take Y.

Proof. Each property is simply a restatement of the correspondiogepty defined in
Definition 3. O



2.4 Composition of function views

Compositionality is a notoriously difficult problem in comomer security. It is well
known that security properties typically do not composel easoning about what an
observer can learn upon putting together two views of theegayss very involved. Al-
though composition of function views is of no particulareirdgst from the perspective of
security property specification (we assume #iatnformation available in the attacker
is already embodied in the indistinguishability relatitittinduces his function view),
for the sake of completeness and mathematical curiosityewerk upon it.

The only sensible definition of composition of function vevs in terms of the
underlying lineupsw - w = kn({ f-¢g : f € lin(v), g € lin(w) }). One must take
closure, for in general the pairwise composite of closeeups does not yield a closed
lineup. Since in composing at type— B — C, image and kernel information iR is
lost, itis not surprising that composition is not assoe&tas witnessed by the following
example. Le2 = {0,1}, 3 = {0,1,2}, andR = {(0,0),(1,0),(2,1)} C 3 x 2.
Then foru = (R,2,= U{{0,1),(1,0)}) : 3 = 2,v = (R ',{2},=) : 2 — 3 and
w = (2 x 2,{0},=) : 2 — 2, the constant functionz.1 : 2 — 2isinlin(u - (v - w))
but is not inlin((u - v) - w), henceu - (v - w) # (u-v) - w.

Since image and kernel information i is lost upon composingt — B — C,
the only route to a compositional notion of function view wibbe to somehow encode
this information elsewhere, either by enriching the imag&esnel components, or by
adding one or more additional components. For example dbeesanon-associativity of
the composition ofi, v andw arises because in closing v we lost the information that
0 is in the image ofw. The fact thal € im w implies the following condition @): at
least one 06 and1 is in the image ofv-v. SinceC' is lost, the closure ab-v is “too big,”
including as it does the constant functidn.2, which does not satisf¢’. Motivated by
this example, one avenue towards a compositional enrichafie¢he notion of function
view might begin with extending the definition of the imagemmnent from a subset of
the range to aetof subsets of the range, with the semantics that each suclrsgins
at least one point of the image. Then the lost conditibabove can be encoded as the
set{0, 1}, and we eliminate the undesirable functidn.2 from the closure ofv - v. A
similar extension may be necessary for the kernel.

2.5 Scope of the framework

Depending on the application, one might consider incofpagaadditional properties,
for example the cardinality of ~!(y) for eachy, or a subset of the complement of the
kernel. Because of our description of “inference closuretileen components of func-
tion knowledge as a Galois connection with function line(f®position 1), the theory
of function views extends tany conceivable property of a function. In addition, one
can easily generalize from views of functions to views otighfunctions or relations.
As we apply the function view framework to reasoning abod@ibrimation hiding
in systems, we assume that the equivalence relation at=baiath the observer is
non-probabilistic. For example, we do not consider scesanihere the observer does
not know with 100% certainty the value ¢gf(z), but may be able to determine that
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f(x) = y; with probability 90%, andf(x) = vy, with probability 10%. While it re-
stricts applicability of the framework, this approach igrocoon in formal reasoning
about security properties. It is justified by assuming tmgptographic primitives hide
distributions of the underlying data, and it is thereforéisent to consider only non-
probabilistic observers such as the so calbmlev-Yaoattacker [DY83]. Any notion
of process equivalence with sound cryptographic semaR62, LMMS99] provides
a non-probabilistic equivalence relation suitable forlgig the function view frame-
work. Nonetheless, future extensions may consider prétyabistributions over func-
tion (and hence attribute) lineups in a manner similar tgpial and Tuttle [HT93]. In
the current setup, a lineup of typé — Y is equivalent to a functiot ¥ — {0, 1}. This
has an obvious generalization¥o* — [0, 1], where[0, 1] is the closed unit interval on
the real line.

Our theory of function views does not directly incorporate g&emporal features.
We are primarily concerned with reasoning about infornratttat an observer may ex-
tract from the system given a particular static equivaleratation that models his or
her inability to distinguish certain system configurationss the system evolves over
time, the observer may accumulate more observations, ippssrrowing the equiva-
lence relation and allowing extraction of more informatidinis can be modeled in our
framework by the corresponding change in the observerstiom view.

If temporal inferences, such as those involved in timingaks, can be modeled
in the underlying process specification formalism, they b reflected in the induced
observational equivalence relation and, in a modular fashn the function views rep-
resenting the attacker’s view of the system. Thereforegtian views can be used to
reason about time-related security properties. Functiews/can also be used to rep-
resent partial knowledge about relations between unknawitiess. Therefore, they are
sufficiently expressive to model “forward security” of syists. For example, kernel
opaqueness of the mapping from email messages to sendeedsntiogl attacker’s in-
ability to determine whether two emails originated from Hagne source. Even if one
of the messages is compromised, the attacker will not betalalatomatically infer the
sender of the other.

3 Opaqueness and Information Hiding

In this section, we establish the relationship between og@aess of function views and
observational equivalence of system configurations. We tleenonstrate how function
views can be used to formalize information hiding propsried derive verification
conditions stated in terms of observational equivalence.

3.1 Possible-worlds model

We will use the theory of function views developed in secohto reason about infor-
mation hiding properties of systenis., whether the attacker is prevented from know-
ing properties of the functions defining system behavior. Wilefollow the standard
approach of epistemic logic [Hin62, FHMV95] and formalizgyasystem of interes$
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as aKripke structure(C, =, ) [Kri63]. Here C is the set of all possibleonfigurations

of systemS (we may also refer to elements Gfaspossible worldor statesof S), 7 is

an interpretation that defines configuratigriss C by assigning values to all attributes
of S, andC is an equivalence relation di that models an observer’s inability to dis-
tinguish certain states @f. In general, Kripke structures can be used to model multiple
observers with their corresponding equivalence relatmn&. Since our primary goal

in this paper is to reason about security properties, weasglime a single attacker that
incorporates the abilities of all hostile observers.

In the rest of this section, we demonstrate how any Kripkecstire induces function
views. In particular, any computational model of the ateclkcluding those implicit in
cryptographic process algebras, imposes an equivalela®neonC and thus induces
function views. Any information hiding property can be defirin two ways: as opaque-
ness of the induced function view (following section 2.3)as a logical predicate on
the underlying equivalence relation. The two definitiorseqguivalent, as demonstrated
by proposition 3.

3.2 Attribute opagueness

Let S be a system with a set of configuratiofis An attribute o of S of type X — Y

is a functiona : X — Y for each configuratio’ € C, i.e., aC-indexed family of
functions(a¢c : X — Y)cec. In general,S may have a variety of attributes. Such a
representation is akin to the object-oriented view of theldyavith behavior modeled
by a set of methods.

Security properties of computer systems often involve nigidinformation about
functions defining the behavior of the system. For examplppsseS is a bank with
a set of customerX’. Writing customerz’s bank balance in configuratiofi € C as
balc(z), we have defined an attributel of S of type X — R, whereR is the set of
real numbers. Then the secrecy property of customers’ ba¢acan be formalized as
the requirement that an observer should not be able to inéevdlue of attributéal. A
richer example is noninterference [GM82], which requitest the observablew (un-
classified) behavior of the system hide all information dbugh (classified) functions
inside the system.

Define aview family V' for an attributea of S to be a function view of a¢
X — Y for eachC € C. Opaqueness lifts pointwise to attributes as follows.

DEFINITION 4 LetS be a system with set of configuratiosand an attribute: of type
X — Y. LetV be a view family fore.. For any form of opaquenegs(e.g, ¢=kernel
or ¢=image, we say that is ¢-opaque underV if, for all configurationsC € C,
ac : X — Y is ¢-opaque under the function view.

3.3 Observational equivalence

Intuitively, two processes are observationally equivaiémo context can distinguish
them. In formal models of security protocols based on pmcakuli [AG99, LMMS99,
BNP99], itis common to define security properties such asesg@nd authentication in
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terms of observational equivalence (or related concels asi may-testing equivalence
or computational indistinguishability) between severatances of the protocol, or an
instance of the protocol and that of an “ideal” protocol whis secure by design and
serves as the specification of the desired property. Probhiques for observational
equivalence depend on the choice of a particular procesglualand an attacker model.
Some of the formalisms are amenable to mechanized verificéig, via trace-by-trace
comparison). A related approach involves behavioral edginces proved via logical
relations [SPO1].

Given system configurationB and @, we will say thatP ~g @ iff an outside ob-
server (attacker), acting in coalition with all agents freetF (e.g, with access to their
secret keys), cannot distinguighand (), for whatever notion of indistinguishability is
supported by the chosen formalism and the attacker model.

We emphasize thany notion of observational equivalenee automatically pro-
vides a relatioriC for the Kripke structure defining the attacker’s knowledfj¢he sys-
tem. Therefore, once the system is formalized in a suitatilegss algebra, there is no
need to reason how function views are obtained or wherekattamowledge “comes
from.” As demonstrated in section 3.4, any observationaivedence relation induces
a particular function view, and its opaqueness can be cteaized logically in terms of
predicates on the equivalence classes as described iars8cii

3.4 Opaqueness and observational equivalence

Suppose that the set of system configuratiOns equipped with aobservational equiv-
alence~, an equivalence relation whefé~ C’ represents the inability of an observer
to distinguish between configuratioasandC’. Such an equivalence relation naturally
induces a view family for any attribute, as follows.

DEFINITION 5 Let S be a system with set of configuratiofisequipped with an obser-
vational equivalence-, and leta be an attribute of of type X — Y. Every configu-
rationC € C defines a function lineupy, , = {acr : X — Y | C" ~ C'}, hence we
obtain an attribute view familyiew™ () of , given byview™ ()¢ = kn(L7 )

Note thatview™(a)¢ is indeed a view ofxc becausexc € L7, andkn(!) is closed
for any function lineud. Since any observational equivalence induces an attribewe
family, any form of opaqueness lifts to a predicate on olzt@wmal equivalence.

DEFINITION 6 Let S be a system with set of configuratioisand let«. be an attribute
of S of type X — Y. Let~ be an observational equivalence ©n For any form of
opaquenesg, we say thatv is ¢-opaque under if the attribute view familywiew™ ()
of « induced by~ is ¢-opaque.

3.5 Logical characterization of attribute opaqueness

Proposition 2 generalises to attribute opagueness in thiewbway.

13



PROPOSITION3 LetS be a system with set of configuratiofisequipped with an ob-
servational equivalence, and leta. be an attribute of of type X — Y. Opaqueness
of o under~ can be characterized as follows:

7 -Value opaqueness< VYC € C.Vz € X.Vz € Z.3C" ~ C.ac/(z) = 2.

n-Value opaquenesss VC € C.Vx € X.3C4,... ,C,_ 1€ C.C; ~C
Nac,(z) # ac(z) A fi £ § = ac, () £ ac, (@)

Image opaqueness= VYC € C.Vy € Y.3C' ~C.y ¢ imacr
Kernel opaquenesss YC € C.Vz, # z9 € X.3C" ~ C. acr(z1) # acr(22)

For absolute value opaqueness, take Y.

Proof. An immediate corollary of Proposition 2, since attributeaqgpeness is defined
pointwise. O

3.6 Formalization of information hiding properties

We now present a modular two-step approach to formalizifmyrimation hiding prop-
erties, illustrated with a case study in section 4. The fiegh § to represent the system
in question as a set of configurations parameterized by {eearg attributes. Given
an intuitive notion of a security property, we specify thegerty in terms of attribute
opaqueness (see Table 1 in the case study for examples).

The second step is to define an observational equivalenatorel on configura-
tions: C ~ C' if and only if an observer cannot distinguish betwégmndC’. If the
system is specified in a suitable cryptographic calcudug, [AG99, BNP99, SPO01],
the calculus will provide such a relation. Definition 6 themmediately yields a formal
equivalence-based definition of the security propertycivlian be written as a logical
predicate on~ following Proposition 3 (see Table 2 for examples).

Our method applies to any formalism that induces an equicalegelation on the
space of all possible system configurations. In particitlapplies to any cryptographic
process algebra formalism and any notion of process indisishability associated with
the chosen attacker model. It permits formalization of sgcproperties which would
otherwise be difficult to model directly in process calculus key advantage of the
approach is that our formalization of security properte@idependent of the compu-
tational model of the observer, since it is based on functiews. In many cases, the
obtained observational equivalence properties can béegbrising proof techniques of
the underlying calculus.

Figure 1 summarizes the difference between conventioqabaphes to formalizing
information hiding and the modular approach proposed mphper. Any approach re-
quires formalization of both the system g, a communication protocol) and the desired
property, as represented by the downward arrows in eacledhtke sub-figures. Sub-
figures (1) and (2) depict conventional approaches. In (parécular process algebra
naturally models the system. However, reasoning aboutriberledge an observer can
extract from the system is fairly complicateeld, [SS96]). Dually, in (2), a particular
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logic of knowledge is used to naturally model the knowledgailable to an observer,
but the system may no longer be specified in a standard pratgsisra é.g, [SS99]).
Process algebras and epistemic logics are typically sestilfears of evolution specific
to their respective domains of application. In an approaasetl on one of the two, the
other is pushed beyond its natural boundaries.

Our goal is to leverage the best of both approaches, with tenface between the
two. Sub-figure (3) depicts the modular approach introdueedis paper. Technically,
we achieve modularity by combining our theory of functioaws (section 2) and the at-
tacker’s observational equivalence relation implicithie process algebra (section 3.3).
In fact, the interface layer is designed so thay process algebra or logic can be em-
ployed — in our framework, specification of information hidiproperties is not linked
to a particular choice of either. This may not always be gefficto ensure that the
property can be verified using the proof techniques of sogehbaé, since the specifica-
tion is in terms of a predicate on the observational equiaderelation~, which may
be difficult to verify directly. Nevertheless, it is a usefiep towards bridging the gap
between logic-based specification of desired informatidimp properties and process
algebra-based specification of system behavior.

4 Case Study: Anonymity and Privacy

Protection of personal information is one of the most imaatrisecurity goals of com-
munication protocols on public networks. This goal canmofte characterized as a
set of secrecy properties that must be satisfied by the miotderoperties that relate
to the secrecy of data (credit card numbers, medical recetd$ have been exten-
sively researched in the literature on security protocallysis. In this study, we are
concerned withanonymityand privacy, that is, the secrecy of the identities of com-
municating agents as well as the secrecy of relationshipgdem agents, such as the
patient-doctor or sender-recipient relationship. Not tkelationship secrecy is differ-
ent from the conventional notion of data secrecy. For exapiphn observer can find
out that a particular person is a patient at an HIV clinics thiay violate privacy even if
the actual contents of communication remain secret.

In sections 4.1 and 4.2, we formalize systems of commumigatgents as protocol
graphs. When modeling a specific system configuration, aa &dthe protocol graph
represents the fact that a certain pair of agents are engageadonversation, while
abstracting away from the details of the actual data exahéag edge is an abstraction
for any number of messages that may flow between the comniungjcagents as part
of the protocol). Protocol graphs can be used to model conwation in any medium,
including pairwise channels, broadcast, connectionlessmtunicationgtc.

Each protocol graph can be fully defined as a collection oftions, enabling us to
apply the function view framework developed in section 2 famohally state information
hiding properties as opaquenesses of certain functionsviewsection 4.3, we present a
taxonomy of anonymity and privacy properties, followed kgkated discussion in sec-
tion 4.4. In section 4.5, we demonstrate how propertiesigealby existing anonymity
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systems can be expressed as opaquenesses of certainrfsrzetd) therefore, as predi-
cates over the observational equivalence classes of tkensy# section 4.6, we show
how to define privacy as relationship anonymity, and in sec.7 demonstrate that
anonymity and privacy (expressed as relationship anogyrare independent. Finally,
in section 4.8 we show how the protocol graph model can bendgtk so that function

views can be applied to model richer anonymity propertieh s pseudonymity.

Related work. Syverson and Stubblebine proposed a special-purposemigsiogic
for reasoning about anonymity in [SS99]. In general, themaaivantage of modal log-
ics of knowledge is that even fairly complex informationihgl properties can be stated
directly as formulas in the logic. To verify whether a giverstem satisfies a partic-
ular anonymity property, it is necessary, however, to fdizeahe behavior of system
agents as knowledge-based programs [FHMV95], which istrieial and requires ex-
pert knowledge of the chosen logic.

On the other end of the spectrum, Schneider and Sidiroup¢81896] give a defini-
tion of anonymity using CSP process calculus, a well-unidedsprocess specification
formalism. In general, using a process algebra greatlyititeis the task of formally
specifying the behavior of system agents. Unfortunategmélly stating information
hiding properties is quite difficult. The paper considerly@me form of anonymity, and
it is not immediately clear how it can be extended to coveetbrms of anonymity and
privacy such as untraceability or relationship anonymity.

Our modular approach allows us to develop formal definitioha wide range of
anonymity and privacy properties in a manner that does npértd on the choice of
a particular formalism, and is therefore complementarydthbmodal logics such as
that of [SS99] and process algebras such as that of [SS9gicaldormulas describing
the desired information hiding properties can be easilyatiarized as opaquenesses of
certain function views, converted into predicates oveeolztional equivalence classes,
and verified, when possible, using the proof techniqueseothtosen process formalism
without the need to specify the system as a collection of kedge-based programs. In
fact, even CSP can be used as such a formalism. Our techriquigirees the benefits
of the knowledge-based approach, namely, natural spamficaf information hiding
properties, with those of the process algebra-based agproamely, natural specifica-
tion of system behavior. It is also sufficiently expressiventodel many different flavors
of anonymity and privacy, as demonstrated by section 4.3.

4.1 Protocol graphs

Let A be a finite set ofagents{a,b,...}. Given a setl’ of relationship types let
T: Ax A—T be an assignment of types to ordered pairs of agents. Forpeam

a protocol for mobile phone communications, we carfllet= {subscriber, roaming,
unauthorised}, and interpretr(ph149, GSMnet) = roaming as “mobile phoneh1/9
has roaming rights on networ&cSMnet.” In general,7 helps model protocols where
a participant’s behavior varies depending on the identitthe counterparty. A more
general framework might express a dynamically changjray evenr that is an arbitrary
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program.

Given any two-party communication protocBl, let 7p(a, b, 7,m) be the term in
a suitable process calculus representing a single inst@infebetween agents and
b, parameterized by the relationship typingand withs a unique identifier marking
the instance. The process (a,b, T, m) is parameterized by because, in general, the
protocol executed betweenandb will depend on the value of(a, b). For example, if
b is the website of a medical clinic, affd= {patient, nonpatient}, thenmp(a, b, 7, m)
will depend on whether or naetis a patient ob.

Consider a concurrent execution of one or more protocohiTtss:

P =mp(ar,bi,7,m1) | - | wp(ag, by, 7,my) | Sp

Each identifier or markern; is distinct since we make the standard assumption that
the attacker can observe the communication medium andgiissh different instances
of communication taking place, without necessarily knayine identities of the com-
municating agents.Sp represents the unobservable system process, if@agy §»
may model the behavior of a secure anonymous remailer). Ve te each term
7p(a;i, bi, T,m;) @s aconversationbetweern: andb. Although unnatural from a linguis-
tic point of view, we speak of as thesenderandb as therecipientof the conversation,
since this makes our subsequent definitions of anonymityegstis consistent with the
standard terminologye(g. [PKS01]). Sendern and recipienth are treated asymmet-
rically because, in general, the protocol specification magcribe different behavior
depending on whether a participant is playing the senddreordcipient role. Note that,
inthe process displayed above, we do not preclude the pldgditiat a; = a; orb; = b;
for some: # j, ora; = b; for some: andj. In other words, the same agent may be
involved in several conversations, either as sender opiegti

Any observable communication based®rcan be represented by a protocol graph,
defined below. First, we require two auxilary graph-thdordéfinitions.

DEFINITION 7 A multigraph (V, E. s,t) consists of a seV of vertices, a seE of
edges, a source functien £ — V, and a target functioh: E — V.

There is an important distinction between multigraphs daskical graphs. In a classical
graph, consisting of a vertex setand set of edge& C V x V, each edgémplicitly
determines its endpoints. By contrast, a multigraph is &set “abstract edges” and
a set of V' of vertices together with functions, ¢ : £ — V assigning a source and
target vertex to each edge. It is quite possible that two ®tigee the same source and
target. This, for example, will allow for the possibility tf/o concurrent conversations
between a clinie: and a patienp, modeled by two edges ¢/ € E each with source
s(e) = s(e') = cand target(e) = t(e') = p.

DEFINITION 8 A colored multigraph (G, K, k) is a multigraphG = (V, E, s,t) to-

gether with a seK (of colors) and an assignmeint V x V — K of colors to pairs of
vertices.
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Note that here we are colorirggdered pairsof vertices, and not vertices or edges, as is
usual for colored graphs. This allows us to represent ogiahiip types as colore g,
clinic-patient, network-subscriber). Simply coloringrtrees would not be sufficient.
Suppose we have three vertices, a clini@ clinic ¢/, and a persop. To express the
fact thatp is a patient ofc, but not a patient of’, we need to color ordered pairs:
k(c,p) = patient andk(c’, p) = non-patient.

For convenience and brevity, we shall denote a colored grajth(G, K, k), with
G = (V, E, s, t), by the associated diagram of functions:

Jo SR VLN e

Here, given functionsf : X — Y andg : X — Z, we use(f,g) to denote the
canonically associated function of typeé — Y x Z (i.e., (f,g)(z) = (f(x),g(x)) €
Y x Z). Now we are ready for the main definition in this section.

DEFINITION 9 A protocol graphC = (s¢,rc,7¢) over M, A andT is a colored
multigraph with edge setl, vertex setA, and set of color¥, as follows:

<SC’rC> TC

M — AxA — T
We writeCy, a1 for the set of protocol graphs ovef, A andT'.

We refer to the edges aff as abstract conversationsthe vertices ofA as agents
the colors ofT" asrelationship typesthe source functios as thesenderfunction,
the targetr~ as therecipient function, andr¢ as therelationship typing(or typing)
function. We shall writesrc : M — A x A as shorthand for theender-recipient
function (sc,re) : M — A x A.

The communication medium is by assumptmrservablei.e., an observer can de-
tect that some communication has occurred by overhearing an encrypted message
on a broadcast network), even though its origin and destimahay be unobservable.
Therefore, each member 81 is literally an “abstract conversation,&., a conversation
with unknown endpoints. A typical goal of the attacker is talfthe mappingsc and
rc from the conversations to their senders and recipients.

Depending on the protocol, the attacker may also be abledereby def TC O SIC.
For example, in a medical clinic example, if the protocolsgatients and nonpatients
are observably different, the attacker may able to determwimether a particular instance
of communication with the clinic originates from a patienamonpatient, without nec-
essarily knowing the originator’s identity.

Given a two-party communication protocBl, as described at the beginning of sec-
tion 4.1, every observable communication

P = 7T’P((l],b]77'7m]) | ‘ Wp(ak,bk77',mk) | SP
determines a protocol gragh(P) in the obvious way, over

M = {mili=1,... .k}
A = {aili=1,...,k} U {bli=1,...,k}
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andT the set of relationship types specified as pafPotiefine sendesp (¢ (m;) = a;,
recipientrp(¢ (m;) = b;, and typingrpcy = 7 (recall thatr, as part of the data d?,
is a priori a coloring of agent pairs). Naturally(C') is also a protocol graph ovet,
A’ andT’ forany A’ D AandT’ D T.

Conversely, given a protocol grajghover M, A andT, the corresponding protocol
instances can be reconstructed as

P(C) =mp(sc(mi),rc(mi),7¢) | - | mp(sc(mn), re(mn), 7¢) | Sp

wherem; € M are the abstract conversations (edges).

We emphasize that an edge in the protocol graph represemstiamconversation
between two agents, not just a single message. The protoaph gnodel abstracts
away from the details of the underlying communication mediurhe presence of an
edge in the graph with senderand recipienth doesnot indicate that there is an es-
tablished pairwise channel between agentmdb; it models only the fact that and
b are communicatingi.e., are engaged in an instance of the communication protocol.
The actual communication may be conducted (for examplepuaoadcast medium,
and may involve a sequence of messages, each of which mayeregmerating new
nonces, computing encryptionstc. So long as the actual message exchange is mod-
eled in a process calculus that gives rise to observatianavaence classes on system
configurations, the function view framework from sectiors 2pplicable.

4.2 Observational equivalence of protocol graphs

Observational equivalence on processes induces obserahdquivalence on protocol
graphs as follows. For protocol grapsC’ over M, A andT (i.e., C,C" € Cy a.1),
definegraph equivalence

P
C~C = P(C)~paavcc) P(C)
whereactv(C, C") is the set of agents who communicatediror C':
actv(C,C") =sc(M) Ure(M) Uscr (M) Urer (M)

The intuition behind the restrictiod \ actv(C, C’) is that an agent can always observe
the difference between two instances of the protocol ifef@mple, he communicated in
one instance but not the other. The instances (modeled &xptgraphs) are equivalent
if any coalition of agentsotinvolved in conversations in either instance cannot oleserv
any difference.

4.3 Taxonomy of atomic anonymity and privacy properties

Given our abstract representation of observable commiimicas a protocol grapty
overM, A and7,i.e,

Sro

M IS Ax A ST
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we systematically obtain a space of anonymity and privaop@rties by considering
opaqueness of the following attributes (families of fuoies indexed by”):

s : M— A

r . M— A

st ¢+ M—AxA
AxXxA—=T

T

7%« A—=T
7%0s : M —T
T%o0r + M —>T
Tosr : M —T

Herer® denotes the curried typing function givenby(b) = 7(a, b). For each function,
we obtain a security property corresponding to each of teeliarms of opaqueness:

e k-value opaqueness;

e absolute value opaqueness;

Z-value opaqueness (for subsé&tsrising canonically in the function range);

image opaqueness;

kernel opaqueness.

Sender functions : M — A

1. k-value opaqueness of sender function M — A. Attacker can only discern
the originator of any given conversation up to a lineup oégiz This property
is sometimes referred to as (sendkfrainonymity or lineup anonymity [SS98,
MalO1].

2. absolute value opaqueness of sender functionM — A. Attacker cannot in-
fer the identities of the senders since every agent is a iplausender for every
observed conversation. This property corresponddbsmlute sender anonymity
and is implementede.g, by persistent pseudonyms such as those provided by
Web-based email. While messages sent from a Web-based anailnt can be
traced to that account, the real identity of the person lketiie account remains
absolutely anonymous since every person in the world withriret access is in
the lineup of potential senders. Chaum’s DC-nets [Cha8588hcan also pro-
vide absolute sender anonymity but only if every potengalder in the world uses
the DC-net for communication; otherwise, the attacker damimate agents not
participating in the protocol from the lineup, and the sgrest property provided
is type-anonymitysee below).

The attacker is still permitted to discern other informatsuch as whether two
conversations originated from the same (unknown) sendes Has implications
for forward security. If persistent pseudonyms have beew ts ensure absolute
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sender anonymity, and the mapping from the pseudonym toeifleidentity is

compromised even for a single conversation, the attackeaatomatically infer
the identity of the sender for all other conversations aatjng from the same
pseudonym. In section 4.8, we describe an extension to tieqml graph model
of section 4.1 that allows direct specification of unlinkiypiof pseudonyms and
real identities.

. (7%)~1(t)-value opaqueness of sender function M — A. The attacker may
learn the type of the sender with respect to the recipientbithe sender’s iden-
tity. We will call this flavor of anonymitytype-anonymity For example, if the
communication tower of a mobile phone network executesrobbty different
protocols with subscribers and roaming users, the attankgrlearn that a partic-
ular phone is a subscriber of the network without learnirggghone’s identity.

Type-anonymity effectively reduces the lineup of plausibenders to an entire
type. Therefore, the system is vulnerable if the type is bnfabr example, if
there are only two people in the world using a particular se@mail protocol,
then observing an instance of the protocol is sufficient duce the sender lineup
to 2.

All anonymity systems that involve routing messages thinoggecialized servers
such as those based on Chaum’s MIX-nets [Cha81, Ano], owiating [SGR97],
Crowds [RR98]etc. provide type-anonymity, since they require users to engage
in an observably distinct communication protocol. Thidé®adrue for approaches
based on DC-nets [Cha85, Cha88].

. (ims)-value opaqueness of sender function M — A. Session-level sender
anonymity. The attacker may know the entire set of sendensjsbunable to
link conversations to the identities of the senders. Thigoflaf anonymity is
provided,e.g, by online chatrooms. An observer may be able to see theflist 0
all users logged on at the time a particular message appdaredannot find out
who actually posted the message.

Since in this case the attacker is able to observe whethertiaybar agent is
engaged in communication or not, this form of anonymity meguthe lineup to the
set of session participants and is thus vulnerable if thesshall. For example,
if only one person was logged on at the time a message appdaeaaitacker can
infer the identity of the sender.

. iImage opaqueness of sender functiomn M — A. This flavor of anonymity
is required (but is not sufficient) fannobservability[PW87, PPW91, PKSO01].
For image opaqueness to hold, there should be no agent wheoattttker can
pinpoint as one of the senders. This implies that for evenfigaration in which
some agent sent something, even if the contents and theatasti of the message
are protected, there should be another, observationaligtinguishable configu-
ration in which the same agent ditbt send anything. In other words, the act
of sending a message should be unobservable: an observad slod be able to
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determine whether a particular agent is engaged in an arigmgrprotocol or
not.

Note that even MIX-nets with dummy traffic are insufficientgoarantee this
property, unless users access MIX-nets via secure “nymser{GWB97] that
create online identities for them which are unlinkable titheal identities.

6. kernel opaqueness of sender functsonM — A. This type of anonymity is re-
quired (but not sufficient) fountraceability[SMA95]. An observer should not be
able to determine whether two conversations have the samiersel his prevents
the attacker from linking multiple instances of communimats originating from
the same source and/or tracing an agent through multipkeecsations. Forward
security requires kernel opaqueness so that if one conig@rsa compromised,
others are not affected.

To implement this form of anonymity, it is necessary to ceemthew identity each
time a user engages in a conversation on an observable kdimlar

Recipient functionr : M — A

Recipient anonymity properties are symmetric to sendgugaties enumerated above.

Sender-recipient functionsr : M — A x A

1. k-value opaqueness of sender-recipient functiondM — A x A. Fork = 2, this
form of anonymity means that the attacker may be able to mhirterthe sender
or the recipient, but not both at the same time. kor 2, the lineup of plausible
sender-recipient pairs should contain at Idastandidates. No system that we
are aware of provides this form of anonymity alone. Theresystems.e.q,
Mixmaster-type remailers [Cot96], that provide strongeorgymity guarantees,
which imply k-value opaqueness fer, among other properties.

2. absolute value opaqueness of sender-recipient funstiod — A x A. Equiv-
alent to absolute sender and absolute recipient anonymity.

3. 77 !(t)-value opaqueness of sender-recipient function M — A x A. ltis
possible to observe the type of communicatias.,(relationship between com-
municating agents), but not their identities. For examiple attacker may be able
to determine that a particular email is sent by some clingotme patient without
being able to tell who the clinic or the patient is. This pndpes dual to rela-
tionship anonymity, in which the attacker is permitted tartethe identities of
communicating agents but not their relationship.

4. (imsr)-value opaqueness of sender-recipient functionM — A x A. Session-
level relationship anonymity. This is provided by MIX-netghout dummy traf-
fic. The attacker can observe whether communication oatueed who par-
ticipated in it, but cannot link senders with recipients.r Each message on an
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incoming link, an observer can determine the sender, angdon outgoing mes-
sage, the recipient, but since messages are re-encryptiae bjiX, an observer
cannot determinboththe sender and the recipient for any message.

. iImage opaqueness of sender-recipient funcion M — A x A. Universal

relationship anonymity. Any observation of the system lgydktacker should be
consistent with any given pair of agents communicating draoonmunicating.

This form of anonymity can be implemented by MIX-nets witmstant dummy

traffic and pseudonyms for all participants.

. kernel opaqueness of sender-recipient funcéionM — A x A. It should not be

possible to observe whether two conversations followed#mee pathi(e., went
from the same sender to the same recipient) even if the tentif the sender and
recipient are unknown. Implementation requires randorelyegated identities.

Curried typing function 7% : A - T

Fixing a particular agent, opaqueness properties of the curried typing functién
A — T model hiding information about relationships betweaesnd other agents.

1.

k-value opaqueness of curried typing functigh: A — T'. The lineup of possi-
ble relationships has at ledstandidates. For example, [Et= {Danish, Dutch,
Spanish,ltalian}, with 7(a, b) = I denoting the fact that ageattalks to agenb in
language € T. Use of a primitive cipher may result in the attacker beintgab
to discern whethed talks tob in a Germanic language (Danish or Dutch), or in a
Romance language (Spanish or Italian). Thtiss 2-value opaque.

. absolute value opaqueness of curried typing functibn A — T. A form of

privacy: observations of the system are consistent withpasgible relationship
betweeru and any other agent.

. (im7%)-value opaqueness of curried typing functioh: A — T. The lineup

of possible relationships can be reduced to those that pweif themselves in
actual communication. Consider an online chatroom whergsages are posted
in different languages. An observer may be able to tell thewtet are posters who
communicate in French and German, but not who they are. Aerebiscan also
determine that there are no posters communicating in Russia

. image opaqueness of curried typing functieh : A — T. For any type of

relationship, it should not be possible to determine whtiere exist any agents
that have this relationship with. For example, ifa is a clinic treating various

illnesses, it should not be possible to infer whether it hattepts suffering from

a particular illness.

. kernel opaqueness of curried typing functieh : A — T. Inability to deter-

mine whether two agents have the same relationshipavikequired for forward
security.
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Typing function 7: Ax A — T

These properties are similar to those 8t The main difference is that they are not
defined with respect to a particular agent, but range oveelallionships existing in the
world.

1. k-value opaqueness of typing function A x A — T'. Any observed relationship
between agents can plausibly belong to an¥ tfpes.

2. absolute value opaqueness of typing functiand x A — T'. A form of privacy:
an observer cannot determine the relationship betweennamgdents.

3. (im 7)-value opaqueness of typing function A x A — T. An observer can
tell which types are emptye(g, there are no smallpox patients in the world) and
which are noté.g, there exist malaria patients), but no more. For examplen ev
if he observes an agent communicating with a clinic, he catelowhether the
agent is a patient or not, or what he is being treated for.

4. image opaqueness of typing function A x A — T Itis impossible to determine
which relationships exisi.€., the type is non-empty) and which do not.

5. kernel opaqueness of typing functien: A x A — T. Inability to determine
that two pairs of agents have the same relationship. Faariost this prevents
the attacker from learning that two pairs of (unknown) ageme communicating
in the same (unknown) cipher. If the cipher is broken for oag, gt will not be
automatically broken for the other.

Composite functionstosr, 7%os, 7%or: M — T

Atomic opagqueness properties of the three compositesr, 7 o s, and7® o r can

be defined in a similar manner. We mention explicitly onlyueabpaqueness of the
compositey = Tosr : M — T, as it is important for our analysis of the distinction
between anonymity and privacy (see section 4.7). Each fdrimaloe opaqueness of
x asserts the observer’s inability to discern the type of theversations for which he
knows the sender and the recipiemtjnability to determine the sender and the recipient
of the conversations for which he knows the type. For exammigacy (defined as
relationship anonymity) is guaranteed even if the attagkiercepts a message from a
known agent to a known clinic as long as he cannot determiregheh the message is
from a patient or a non-patient.

One of the more subtle distinctions in the above taxonontyashetweenifn s)-value
opaqueness and image opaqueness of sender fumncfldnis distinction models the dif-
ference between session-level and universal anonymite [dtter is sometimes called
unobservabilitf PKS01]). With session-level anonymity, an observer capergine the
identities of the agents who are actually engaged in coatierss, but not link these
identities to specific conversations. This is an “Agathai€li®” form of anonymity:
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there is a finite set of suspects who were in the house at tleedinie murder. Univer-
sal anonymity (unobservability) is a stronger property. dhserver cannot determine
whether or not any given agent was engaged in communicafldns is a “Georges
Simenon” form of anonymity: a body is found, and any of theesavmillion city resi-
dents may or may not have been involved.

4.4 Hiding identities vs. hiding relationships

In section 4.3, we gave a taxonomy of atomic anonymity anebpyi properties. Each
one of them deals with what is sometimes calia#dability [PKS01] of various system
elements such as conversations and their senders andergsipiOpaqueness of the
corresponding function models the attacker’s inabilityiri& the items, that is, to obtain
knowledge about their relationship. In section 4.5, we show properties provided by
many proposed anonymity systems can be characterized as treatomic properties
from section 4.3 or a combination thereof. Following the moeblogy of section 3.6,
each combination of opaqueness-based properties can beriszhinto a compound
logical predicate over the observational equivalencesel®f the underlying calculus,
which may then be amenable to verification.

Properties defined in section 4.3 fall naturally into two gyah classes: those deal-
ing with the unlinkability of conversations and agengsg( “did this phone make this
call?”), and those dealing with the unlinkability of ageK¢sg, “is this phone a sub-
scriber on this network?”). Roughly, the former can be joteted asanonymityprop-
erties since they are concerned with hiding identities @ndg who performed certain
actions. The latter can be interpretechasacy properties since they are concerned with
hiding relationships between agents. Our formalizatiaovigies a crisp mathematical
boundary between the two classes of properties. In sectibbelow, we discuss this
distinction in more detail, and argue that, contrary to gapbelief, anonymity is neither
necessary, nor sufficient for privacy. It is possible for momunication protocol to guar-
antee privacy of relationships without hiding identitiaed vice versa: some anonymous
protocols may be exploited to learn protected informatibou relationships between
agents.

While the protocol graphs defined in section 4.1 are suffideneason about many
flavors of anonymity and privacy, some forms of anonymityuregja richer data struc-
ture in order to model them correctly. In section 4.8, we destate how pseudonymity
can be modeled by extending protocol graphs with mappirage fiseudonyms to real
identities. The function view framework and opagquenesedalefinitions of informa-
tion hiding properties are still applicable, but the funos to which they are applied
must be chosen differently.

4.5 EXxisting systems

Anonymity is an active area of computer security researcld, @ozens of protocols
and systems have been proposed to implement various nati@monymity. Unfortu-
nately, there is no universally accepted terminology inftbke, and different authors

25



Property

Informal definition

| Opaqueness definition

Sender
untraceability

Attacker may not know anythin
about senders e(g, MiIX-net
[Cha81, Dai95] with nymserver
and dummy traffic, [SMA95])

) s is absolutely value opaqu
and kernel opaque
5

Absolute  sender Attacker may not know who the s is absolutely value opaque
anonymity senders are but may know whether

2 conversations originate from the

same (unknown) agent(, Web-

based email)
Sender Attacker may only know senders ups is k-value opaque
k-anonymity to a lineup of sizek (e.g, [SS98,

Mal01])

Recipient properties are obtained from the above by sultistifr for s

Blender anonymity

Attacker may know which agentss isims-value opaque;

sent and received communication

but any sender (recipient) is a plaus

ble source (destination) for any co
versation €.g, MIX-nets [Cha81,
SGR97] without dummy traffic)

s, isim r-value opaque

D

']_

Conversation-agen

Attacker may not know both sends

2rsr is 2-value opaque

2-unlinkability and recipient for any conversation

Privacy Attacker may not determine the rela-r is 2-value opaque
(relationship tionship between any 2 agentsd,

anonymity) [SMA95, Aba02])

h

Table 1: Definitions of anonymity and privacy based on opagss.
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invest terms such amlinkability, unobservability privacy, etc.with different meaning.
Our descriptions are not intended to be a definitive dictipred anonymity terms (cf.
[PKSO01]), but rather an intuitive explanation of how theg amterpreted for the pur-
poses of our case study. Since our framework is non-prabadilwe do not attempt to
model probabilistic notions of anonymity and/or quanttig tevel of identity protection
provided by systems such as Crowds [RR98] and Freenet [CRIVIlbnetheless, as
remarked in section 2.5, our technique is still applicabthé chosen process specifica-
tion formalism provides a suitable observational equivederelation that abstracts away
from probabilities.

We give brief informal descriptions of several common amoity properties with
references to relevant protocols in Table 1. We also showthewcorrespond to atomic
properties (or combinations thereof) from the taxonomyeatien 4.3, by defining each
property formally in terms of opaqueness of the underlyiygiesn attributes. Since the

equivalence relatio” on protocol graphs partitionSy; 4,7 into equivalence classes,
we can apply Proposition 3 and derive the predicates thatldsses must satisfy in
order for the protocol to satisfy the corresponding propefhe predicates are listed in
Table 2. Figure 2 shows implications between the variousyamdy properties. A solid
arrow denotes implication, a dashed arrow conjunction.

A common design is based on Chaum’s MIX-nets [Cha81] andwegoa network
of anonymizing servers [Dai95, Cot96, SGR97]. This appnogamvides identity pro-
tection in a situation where the “Big Brother” attacker mdpgerve traffic on the wires
connecting everyone’s computer to the network, but all comications are encrypted
and travel through a secure server(s) which blends thenthtegand distributes to their
respective destinations in a manner which prevents thekaitdrom linking the origin
and destination of any given message. Without constant dutrafiic to make all con-
versations unobservable, MIX-nets only provide blendengmity: the attacker is able
to observe all senders and all recipients, but cannot deterboth the sender and the
recipient for any message.

Note that even if the mapping from conversations to senglgpient pairs is secure,
i.e., sr is opaque, the attacker may still be able to infer who is craig with whom.
Consider, for example, a protocol employing a central anomyg blender and the

following protocol graph:
m
—C
%
e
n

a

b——d

If the attacker is permitted to observe the senders and tligieats, he can infer
thatb is conversing withc by observing thab is involved in 2 conversations, whilé
is involved in only 1 conversation. Therefore, onebisfconversations must be with
Even though the attacker’s ability to obtain this knowledgeld be considered an attack
on anonymity, it isnot a violation of blender anonymity. For any given convergatio
the attacker cannot determine the sender or the recipienknblws thatitherp, or ¢ is
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Sender Untraceability Recipient Untraceability

Absolute Sender Anonymity Absolute Recipient Anonymity
v T e |
Sender k-Anonymity ¢ Recipient k-Anonymity
¢ Blender Anonymity o )
Sender 2-Anonymity i y’t 2-Anonymity

Conversation-Agent 2-Unlinkability

Figure 2: Hierarchy of anonymity properties

an instance ob conversing withe, but if communication is routed through a blender, he
cannot know which one.

This illustrates the importance of posing the correct amgty requirement. To
hide the fact that two agents are communicating, the needsukqy is relationship
anonymity, where relationship can be modeledrby, y) = true iff = andy are com-
municating. This is a stronger property than simple blersdemymity. In particular,
it requires that an agent’s participation in communicati@nunobservable, in order to
prevent the attacker from counting conversations with thX bh each link. Typically,
this is implemented by adding dummy traffic to the system. rBwethis case, unless
the MIX is accessed through a nymserver, the strongest gyoihat can be guaranteed
is type-anonymity, where the type is the set of all peoplagihe anonymous commu-
nication software, since the attacker can observe whichtagee running the software
(e.g, by observing traffic to the MIX from their computers, withidanowing whether
the traffic is dummy or real).

4.6 Privacy as relationship anonymity

Many definitions of privacy, often contradictory, can beridun the literature [CB95,
SMA95, STRLOO]. The colloquial meaning of privacy concesgither the secrecy of
personal data (which is beyond the scope of this researctipecsecrecy of relation-
ships between agents. In the context of secure communicsyistems, the latter is of
paramount importance. For example, it should not be passiolan observer to infer
that a particular person is patient of a certain medicalglihat the user of a particular
mobile phone has an account with a certain bad,

In the protocol graph framework described in section 4.lhtiens between agents
are formalized as a type assignment A x A — T. While anonymity properties
have to do with hiding information abosit (i.e., protecting identities of the endpoints
of conversations), privacy has to do with hiding informataboutr. In Table 1, privacy
is formally defined as the requirement thats 2-value opaque. The corresponding
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VC € Cyrar.-Yme MVYae A.3C" € Cpra7.
c Lo n scr(m) =a
Absolute sender anonymity
Sender untraceability VO € Cprar-Ym € M.¥n € M.sg(n) = sc(m).
3C" € Cppar.C' X C A sei(m) # scr(n)
VC; € (CMyAyT.Vm € M. 3027 L ,Ck S (CM,A,T-
Ci 2 Cj Ai#§= s, (m) #50,(m)]
Recipient properties are obtained from the above by sultistg r for s
VC € Cproa,r7.Ym € M.
Blender anonymity [Va € imsc¢.3C" € Cppa1.C’ Lo nse (m) =a] A
[Va € imre.3C" € Cppoa,7.C’ Zon re(m) = al
VC € CMyAyT.Vm e M.3C" € (CM,A,T-
c' XA ste (m) # sra(m)
VC € CMyAyT.Vm e M.3C" € (CM,A,T-
' X C A 1ei(m) # e(m)

Absolute sender anonymity

Sendetk-anonymity

Conversation-agent
2-unlinkability

Privacy

Table 2: Predicates on equivalence classes for anonymityavacy.

predicate on observational equivalence is listed in Table 2

In some situationsz(a, b) may influence which protocol is executed betweeand
b when they communicate on an observable network. Opaquehesioesnot require
that the protocols be observationally equivalent for aluga ofr(a,b). Consider the
following protocol between an agent and a medical clinic websit€' (pubk(X) is
agentX'’s public key, Nx is a fresh random number generatedXoy

A—C: {“hi”, A, NaYpubk(c)
C — A (patient): {“0k”, C, N¢ } pubk(a)
C — A (nonpatient): N,

A — C (patient): {Nc }pubk(e)

In this protocol, the attacker can tell the difference betmvthe clinic-patient and clinic-
nonpatient protocols (the former has 3 messages, the Bttén the language of sec-
tion 4.3, the property provided by the protocoliis 7¢“")-value opaqueness.

The attacker cannot, however, determine the identity optirson communicating
with the clinic, even though he knows whether this unknowrsqie is a patient or not.
There is, therefore, no agamt—other than the attacker himself and his allies—for which
the attacker can determine the valuer@f, clinic). The protocol preserves relationship
anonymity, and thus privacy.

4.7 Independence of anonymity and privacy

Contrary to the popular idea that anonymity is necessarprigacy [GWB97, Hug93],
our formalization demonstrates that privacy of commuinces requireseither hiding
st : M — A x A (i.e, anonymity),or hiding x = 7 o sr. If neither is hidden,
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then privacy fails (the converse is not true: even when kotand y are hidden, re-
lationship anonymity may still fail). For example, if thetatker can establish that
sr(m) = (a, clinic) for some conversatiom: and agent: (i.e., the protocol is not
anonymous in any sense) agn) = patient (i.e., the protocols executed by the clinic
with patients and nonpatients are observably differehBntthe attacker can infer that
7(a, clinic) = patient, thus violatinga’s privacy.

For some simple relationships anonymity may be sufficierguarantee privacy.
For example, ifr(a,b) = true whena andb are conversingi.e., 3m € M S.t.sr(m) =
(a,b), andfalse otherwise, then sender anonymity will ensure relationstmipnymity
for a. In general, however, anonymity does not guarantee prieaey if y is opaque,
nor does privacy require anonymity. Consider two artifipiadtocols between agent
and clinicC (K 4 is a fresh key generated bY):

Protocol 1 Protocol 2
A=C: {“hi”, At pubk(cy  {“hi", A, Ka}pupk(o)
C - A (patlent): {“Ok‘” , N’C}pubk(A) {“Ok” }KA
C — A (nonpatient): N¢ N¢

If the public-key encryption function happens to be deteistic, Protocol 1 provides
relationship anonymity without sender or recipient anoitymThe attacker can pre-
compute a table with all possible values of the—+ C' message using all agent names
he knows. Whenever he observes a message on the networkn hefeawho the
sender is by looking up the message in the table. Still, tisame way for the attacker to
determine whetheA (or any other agent except the attacker and his allies) igiarpa
of C. Note thaty = 7o sr is opaque in Protocol 1.

Protocol 2 provides absolute sender anonymity (untratiBabin fact) and keeps
x opaque, but does not guarantee privacy. The attacker cdeterimine whod is by
observing the protocol, nor can he figure out whether the omvknsender is a patient
or not. At the same time, due to the lack of authenticatiom, dttacker can exploit
the protocol to find out whether any given agetitis a patient by creating a message
{“hi”, A", K.} pubk(c), WhereK, is known to the attacker, and sending itgpretend-
ing to be A’. Since the attacker can tell the difference betwg&sk” } . and N¢, he
can infer fromC’s response whethet’ is a patient. The attack on Protocol 2 is similar
to the attack described by Abadi in the context of privatdentication [Aba02].

4.8 Pseudonymity

We have already remarked in section 2.5 how the notion oftiomosiew can be ex-
tended to express a larger class of information hiding ptmse For example, one
could add a fourth component to the function knowledge dripl record information
about the cardinality of inverse images of points in the ean@orrespondingly, one
would obtain an additional form of opaqueness.

Another form of extension arises at the level of the datacsire over which we
express our forms of opaqueness. In the case study we usettificsprotocol graph
with three functions (sender, recipient, and type) to systecally generate a space of
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anonymity and privacy properties. By design, this spackider many of the properties
found in the literature. The underlying graph, howeverjténthe set of properties that
can be arrived at in this manner.

Other security situations may demand a different protocaply. For example, con-
sider pseudonymitylSO99, PKS01]. In a pseudonymity system, agents empl@s-int
mediate identities opseudonymé$rom which they send and receive communications.
Each agent may own multiple pseudonyrasgy, numerous free Web-based email ad-
dresses. This richer setting admits a richer class of aniyand privacy properties.
Following the same general methodology as in section 4.3 amexplore the class sys-
tematically using opaqueness of the functions in the datetstre associated naturally
with this setting:

M PxPXT

P A

where M, A andT are as before (conversations, agents, and typesk a set of
pseudonymssr assigns sender-recipient pairs of pseudonyms to coni@rsat is

a typing, andvc determines ownership of pseudonyms. Now in order to systeatis
generate a space of anonymity and privacy properties, oa@ hher basis of func-
tions than in our original case study. In addition to the famis, r, sr andr, one has
w:P— A wos: M - Aw: M — A and(w xw)osr : M — A x A. A systematic
exploration of the various forms of opaqueness of thesetifumg; in the manner of sec-
tion 4.3, yields an array of formal anonymity and privacygedies for pseudonymity
systems.

The pseudonymity example complements our original casdy 4ty emphasizing
our general methodology. For any security scenario, anogpijate choice of the un-
derlying abstract data structure (above, protocol graphf)matically yields a range
of atomic information hiding properties as opaquenessehefunctions (attributes)
comprising the data structure.

5 Conclusion

We developed a modular framework for formalizing propert computer systems in
which an observer has only partial information about sydtetravior. Figure 1 summa-
rizes the difference between our approach and conventapuebaches based on process
algebra or epistemic logic. Our techniques combine thefiierd the knowledge-based
approach, namely, natural specification of informationrtgdoroperties, with those of
the process algebra-based approach, namely, naturafisgéon of system behavior.
Furthermore, our framework is parametric, leaving openctice of underlying pro-
cess algebra and logic.

We proposed the notion offanction view a succinct mathematical abstraction of
partial knowledge of a function. Remarkably, the thredlaites of a function view —
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graph, kernel, and image — suffice to model many forms of glaktiowledge an ob-

server may have about a function of interest. We demonsttater any formalism for

system specification that provides an equivalence relatiogystem configurations in-
duces function views, and how information hiding properteuld be stated naturally
in terms ofopaquenessf these views.

In the case study of section 4 we employed our framework ttesyatically cir-
cumscribe, formalize and classify a range of anonymity arvhpy properties. One
important result of this systematic exploration is a crisgtimematical distinction be-
tween anonymity and privacy of communications (the lattéerpreted as relationship
anonymity), which were shown to be independent (sectiohid.@ rigorous technical
sense.

The independence of anonymity and privacy has significaptications for pub-
lic policy in the area of personal information protection tbe Internet. It shows that
care must be exercised when deciding on the appropriate anisch for privacy. In
particular, we conclude that anonymity is neither necessar sufficient to ensure that
personal information about one’s relationships with otbeople and organizations is
protected in online communications.
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