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Abstract. A contract signing protocol lets two parties exchange digital signa-
tures on a pre-agreed text. Optimistic contract signing protocols enable the sign-
ers to do so without invoking a trusted third party. However, an adjudicating third
party remains available should one or both signers seek timely resolution. We an-
alyze optimistic contract signing protocols using a game-theoretic approach and
prove a fundamental impossibility result: in any fair, optimistic, timely protocol,
an optimistic player yields an advantage to the opponent. The proof relies on a
careful characterization of optimistic play that postpones communication to the
third party. Since advantage cannot be completely eliminated from optimistic pro-
tocols, we argue that the strongest property attainable is the absence of provable
advantage, i.e., abuse-freeness in the sense of Garay-Jakobsson-MacKenzie.

1 Introduction

A variety of contract signing protocols have been proposed in the literature, includ-
ing gradual-release two-party protocols [5, 7, 12] and fixed-round protocols that rely
on an adjudicating “trusted third party” [2, 3, 18, 23, 26]. In this paper, we focus on
fixed-round protocols that use a trusted third party optimistically, meaning that when
all goes well, the third party is not needed. The reason for designing optimistic pro-
tocols is that if a protocol is widely or frequently used by many pairs of signers, the
third party may become a performance bottleneck. Depending on the context, seeking
resolution through the third party may delay termination, incur financial costs, or raise
privacy concerns. Obviously, the value of an optimistic protocol, as opposed to one that
requires a third party signature on every transaction, lies in the frequency with which
“optimistic” signers can complete the protocol without using the third party.

Some useful properties of contract signing protocols are fairness, which means that
either both parties get a signed contract, or neither does, and timeliness, which generally
means that each party has some recourse to avoid unbounded waiting. The reason for
using a trusted third party in fixed-round protocols is a basic limitation [14, 24] related
to the well-known impossibility of distributed consensus in the presence of faults [17]:
�
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no fixed-length two-party protocol can be fair. Although there is a trivial protocol with
a trusted third party, in which both signers always send their signatures directly to it,
protocols that are fair, timely, and usefully minimize demands on the third party have
proven subtle to design and verify.

This paper refines previous models, formalizes properties from the literature on
fixed-round two-party contract signing protocols, and establishes relationships between
them. We use the set-of-traces semantics for protocols, defining each instance of the
protocol as the set of all possible execution traces arranged in a tree. Our chosen nota-
tion is multiset rewriting [10], but the results would hold for other formalisms with the
same basic execution model.

Model for optimism. One modeling innovation is an untimed nondeterministic setting
that provides a set-of-traces semantics for optimism. Intuitively, optimistic behavior in
contract signing is easily described as a temporal concept: an optimistic signer is one
who waits for some period of time before contacting the trusted third party. If Alice is
optimistic, and Bob chooses to continue the protocol by responding, then Alice waits
for Bob’s message rather than contact the third party. Since the value of an optimistic
protocol lies in what it offers to an optimistic player, we evaluate protocols subject to
the assumption that one of the players follows an optimistic strategy. As a direct way of
mathematically characterizing optimistic play, we allow an optimistic player to give his
opponent the chance to signal (out of band) whether to wait for a message. This gives
us a relatively easy way to define the set of traces associated with an optimistic signer,
while staying within the traditional nondeterministic, untimed setting.

Impossibility result. In evaluating protocol performance for optimistic players, we prove
that in every fair, timely protocol, an optimistic player suffers a disadvantage against a
strategic adversary. The importance of this result is that optimistic protocols are only
useful to the extent that signers may complete the protocol optimistically without con-
tacting the third party. In basic terms, our theorem shows that to whatever degree a
protocol allows signers to avoid the third party, the protocol proportionally gives one
signer unilateral control over the outcome of the protocol.

To illustrate by example, consider an online stock trading protocol with signed con-
tracts for each trade. Suppose the broker starts the protocol, sending her commitment to
sell stock to the buyer at a specific price, and the buyer responds with his commitment.
To ensure timely termination, the broker also enjoys the ability to abort the exchange by
contacting the trusted third party (TTP) if the buyer has not responded. Once the buyer
commits to the purchase, he cannot use the committed funds for other purposes. Even
if he has the option to contact the TTP immediately, an optimistic buyer will wait for
some period of time for the broker to respond, hoping to resolve the transaction amica-
bly and avoid the extra cost or potential delay associated with contacting the TTP. This
waiting period may give the broker a useful window of opportunity. Once she has the
buyer’s commitment, the broker can wait to see if shares are available from a selling
customer at a matching or lower price. The longer the buyer is inclined to wait, the
greater chance the broker has to pair trades at a profit. If the broker finds the contract
unprofitable, she can abort the transaction by falsely claiming to the TTP that the buyer
has not responded. This broker strategy succeeds in proportion to the time that the buyer
optimistically waits for the broker to continue the protocol; this time interval, if known



exactly or approximately, gives the broker a period where she can decide unilaterally
whether to abort or complete the exchange.

Abuse-freeness. Since advantage against an optimistic player cannot be eliminated, the
most a protocol can do is prevent the opponent from proving that he has an advan-
tage. For example, even though the broker in our example has control over deciding
whether the sale happens, the protocol may still be able to prevent her from showing
the buyer’s commitment to other parties. Such protocols have been called abuse-free in
the literature [18]. We use a formal representation of knowledge derived from epistemic
logic [19, 16] to formalize the “ability to prove” and analyze abuse-freeness as the lack
of provable advantage.

The paper is organized as follows. In section 2, we briefly summarize our semantic
framework and define the class of two-party contract signing protocols with trusted
third party. In section 3, we formalize protocol properties such as fairness, optimism,
and timeliness. In section 4, we formalize optimistic behavior of a participant, and show
that the optimistic participant is at a disadvantage in any fair, optimistic, timely proto-
col. In section 5, we formalize provable advantage and abuse-freeness. Related work is
discussed in section 6. We summarize our results in section 7.

Acknowledgments. We are particularly grateful to D. Malkhi for pointing out the vul-
nerability of optimistic players in fair exchange. We also thank I. Cervesato, S. Even,
D. Gollmann, S. Kremer, J.F. Raskin, C. Meadows, and J. Millen for interesting and
helpful discussions.

2 Model

2.1 Multiset rewriting formalism

Our protocol formalism is multiset rewriting with existential quantification, MSR [10],
which can be seen as an extension of some standard models of computation, e.g., mul-
tiset transformation [4] and chemical abstract machine [6]. This formalism faithfully
expresses the underlying assumptions of the untimed, nondeterministic, asynchronous
model. A protocol definition in MSR defines the set of all possible execution traces for
any instance of the protocol. A number of other formalisms that do so, such as [1, 15]
and others, would have suited our purposes as well, and in this sense our main results
are independent of the MSR formalism. The synchronous model with a global clock
does not seem appropriate for our investigation because fixed-round contract signing
protocols in the literature [2, 3, 18, 23, 26] do not rely on a global clock.

MSR syntax involves terms, facts, and rules. To specify a protocol, first choose a
vocabulary, or first-order signature. We assume that our vocabulary contains some basic
sorts such as ���������
	 ���� for public keys and ������� for protocol messages. As usual, the
terms over a signature are the well-formed expressions produced by applying functions
to arguments of the correct sort. A fact is a first-order atomic formula over the chosen
signature, without free variables. Therefore, a fact is the result of applying a predicate
symbol to ground terms of the correct sort. A state is a finite multiset of facts.

A state transition is a rule written using two multisets of first-order atomic formulas
and existential quantification, in the syntactic form � ����������� ����� �"!$# �%����� !$#& � ' ���������



'�� . The meaning of this rule is that if some state
�

contains facts obtained by a ground
substitution � from first-order atomic formulas � ����������� � � , then one possible next state
is the state

���
that is similar to

�
, but with facts obtained by � from � ��������� � � � removed

and facts obtained by � from ' � ������� � ' � added, where # � ��������� # & are replaced by new
symbols. If there are free variables in the rule � � ��������� � � � � !$# � ����� !$# & � ' � �������
' � , these are treated as universally quantified throughout the rule. In an application of
a rule, these variables may be replaced by any ground terms.

As an example, consider state ���
	��	������ � �
	 ����� and rule �
	 #�� � �"!�� ��� 	��	�#�� � ��� .
The next state is obtained by instantiating this rule to �
	��	������ � � !�� � � 	��	��	������ � ��� .
Applying the rule, we choose a new value 	 for � and replace �
	��	������ by � 	��	��	������ � 	�� ,
obtaining the new state � � 	��	��	������ � 	�� � �
	 ��� � .

Timer signals. In our model, timers are interpreted as local signals, used by participants
to decide when to quit waiting for a message from the other party in the protocol.
They do not refer to any global time or imply synchronicity. Timers are formalized by
binary timer predicates, whose first argument is of the sort ���������
	 ���� and identifies the
participant who receives its signal, while the second argument is one of the following
three constants of the sort ! �
���#" �#!$��! � : ��% ���#! , ���&! , and ! �
� ��' (��)! .
Cryptography. Contract signing protocols usually employ cryptographic primitives. In
general, the purpose of cryptography is to provide messages that are meaningful to
some parties, but not subject to arbitrary (non-polynomial-time) computation by others.
For example, encryption provides messages that are meaningful to any recipient with
the decryption key, but not subject to decryption by any agent who does not possess the
decryption key. The logic-based formalism of MSR cannot capture subtle distinctions
between, for example, functions computable with high probability and functions com-
putable with low or negligible probability. Instead, we must model functions as either
feasibly computable, or not feasibly computable.

For each operation used in a protocol, we assume there is some MSR characteriza-
tion of its computability properties. To give a concrete framework for presenting these
rules, let us assume some set of predicates *,+-�&�/.10 2 is any sort � . Since the sort 2
is determined by the sort of the arguments to � . , we will not write the sort when it is
either irrelevant, or clear from context. Intuitively, a rule of the form

�
	 � � � ��������� �
	 �&34� � � � ��������� ��& � �5�
	�! � � ��������� �
	6! � � � � � ��������� � &
means that if an agent possesses data � ��������� � �&3 , then under conditions specified by
facts � ����������� � & , it is computationally feasible for him to also learn ! ��������� � ! � . For
example, here are the familiar “Dolev-Yao” [13, 25] rules given in [10]:

�
	�#�� � �
	 �7� � �5�
	 encrypt 	 � � #����
�
	 encrypt 	 � � #���� � �
	 ��8 � � � Keypair 	 � � �98 � � � �5�
	�#��

In the remainder of the paper, we assume some fixed theory Possess of rules that
characterize the computationally feasible operations on messages. As a disclaimer, we
emphasize that the results in this paper are accurate statements about a protocol using
cryptographic primitives only to the extent that Possess accurately characterizes the
computationally feasible operations. In particular, protocols that distinguish between



low-order polynomial computation and high-order polynomial computation, or rely on
probabilistic operations in some essential way, may fall outside the scope of our analysis
and may conceivably violate some of our results.

2.2 Protocol model

We say that a protocol � is a contract signing protocol if it involves three parties, �
(originator), � (responder), and � (trusted third party), and the goal of the protocol is to
enable � (respectively, � ) to obtain � ’s signature (respectively, � ’s signature) on some
pre-agreed text. For brevity, we will say signature as a shorthand for “signature on the
pre-agreed text,” use terms contract signing and signature exchange interchangeably,
and refer to � and � as signers. We specify the protocol by a set of MSR rules, which
we call a theory. Any sequence of rules consistent with the theory corresponds to a
valid execution trace of a protocol instance. If execution traces are naturally arranged in
trees, then the MSR theory defines the set of all possible execution traces as a forest of
trees. To obtain the impossibility result, we choose any contract signing protocol � and
fix it. We assume that the contract text for each instance contains a unique identifier,
and consider only a single instance of � .

A protocol theory � for the given protocol is the disjoint union of six theories:� ��� ���	� � ��
����������
�� ��� 
����������
�� , and � 
����������
�� . We will refer to
� ��� ���	� as role

theories. Each role theory specifies one of the protocol roles by giving a finite list of
role state predicates that define the internal states of the participant playing that role and
the rules for advancing from state to state. Role theory also contains another, disjoint
list of timer predicates describing the rules for the participant’s timers. A participant
may advance his state by “looking” at the state of his timers or the network (i.e., a timer
or a network predicate appears on the left side of the rule). He may also set his timer by
changing the timer’s state from ��% ���&! to ���&! , but he may not change it to ! �
� ��' (��)! .

A timeout rule is a rule of the form � 	 � � ���&!�� ��� 	 � � ! �
� ��' (���!�� , where � is the
public key of the participant associated with timer � . In the protocol theory,

� 
����������
��
,� 
����������
�� , and � 
����������
�� are the sets of timeout rules for all timers of � , � , and � ,

respectively. For simplicity, we will combine the role theory and the timeouts of � , and
call it � + �!�#"$� 
����������
�� .
Communication. Following the standard assumption that the adversary controls the net-
work and records all messages, we model communication between � and � by a unary
network predicate % whose argument is of the sort � ����� . Once a fact % 	 � � for some
� is added to the state, it is never removed. As in contract signing protocols in the
literature [3, 18], we assume that channels between signers and � are inaccessible to
the adversary and separate from the network between � and � (by contrast, [20] con-
siders security of contract signing protocols under relaxed assumptions about channel
security). Channels between signers and � are modeled by ternary �#� � 	'&7��% % ��� pred-
icates, whose arguments are of the sort ������� � 	 ���� , ���������
	 ���� and ������� , respectively.
For example, ! 	'( 	 �)( � ��* � � � models the channel between � and � carrying message � .

Threat model. We are interested in guarantees provided by contract signing protocols
when one of the signers misbehaves in an arbitrary way. � is assumed to be honest.
We will call the misbehaving signer the adversary. The adversary does not necessarily



follow the protocol, and may ignore the state of the timers or stop prematurely. He may
gather messages from the network, store them, decompose them into fragments and
construct new messages from the fragments. These abilities are formalized by theories� 
�������'


and � 
������� 
 containing dishonest rules for � and � , respectively. Each rule
models a particular dishonest operation.

A protocol definition consists of the protocol theory � , theories
� 
���� ���'


and � 
������� 
 ,
Possess theory which models computationally feasible operations on messages, and the
initial set of facts

�
	
which contains the initial states of all participants and timers.

Formal definition of protocol theory can be found in appendix A. Non-probabilistic
fixed-round contract signing protocols in the literature such as [3, 18] can all be defined
in this way.

2.3 Traces and continuation trees

A state is a finite multiset of facts. For example, the initial state
� 	

may include facts
� 	 	 �)( � � 8 �( � ��� � �9� and � 	 	 ��� � � 8 �� � �)( � ��� modeling the initial states of the originator
and the responder in protocol � : each knows his own public and private keys, and the
opponent’s public key. A trace from state

�
is a chain of nodes, with the root labeled

by
�

, each node labeled by a state, and each edge labeled by a triple
 ! � � ����� . Here� is one of � � , � , � ,

� 
����������
��
, � 
����������
�� , � 
������� 
 , � 
�������'
 � , !�� � is a state

transition rule, and � is a ground substitution. If
 ! � � ����� labels the edge from a node

labeled by
� � to a node labeled by

� � , it must be the case that the application of ! to� � � produces
� � . Any state labeling a node in this chain is said to be reachable from S.

We will simply say that a state is reachable if it is reachable from the initial state
� 	

.
An edge is a dishonest move of � if it is labeled by some !�� � 
���� ���'
 . � is said be

honest in the trace if there are no dishonest moves of � in the trace. If
�

is reachable
by a trace in which � is honest, then

�
is reachable by honest � . The definitions for �

are symmetric. Assuming that dishonest participants, if any, make only a finite number
of dishonest moves, let continuation tree 	 ! " at state

�
be the finite tree of all possible

traces from
�

. This tree can be thought of as a game tree that represents the complete
set of possible plays. Let 	�! "�� �
� be the tree obtained from 	�! " by removing all edges in� " ��
�������'
 along with their descendants. Intuitively, 	 ! "�� ��� is the set of all possible
plays if � stops participating in the protocol. Definition of 	 ! "�� ��� is symmetric. We will
say that any edge � in 	�! " that is labeled by a rule in

�
or
� 
������� 


(respectively, � or� 
�������'
 ), is under � ’s control (respectively, � ’s control). To model optimism of honest
signers (see section 4), we will also assume that some edges in

� 
����������
�� "!� 
����������
��
are under control of the dishonest participant.

3 Properties of Contract Signing Protocols

MSR definition of the protocol defines the set of all possible execution traces in the
form of a continuation tree. To define protocol properties such as fairness, optimism,
timeliness, and advantage, we view the continuation tree as a game tree containing all
possible plays, and adapt the notion of strategy from classical game theory.



For the remainder of the paper, we will assume that only one of the signers is honest.
We will use � to refer to the honest signer, i.e., � refers to either � , or � , depending
on which of them is honest. We’ll use � to refer to the other, dishonest signer.

3.1 Strategies

Following [11], we formalize strategies as truncated continuation trees. Given a set of
edges � , let �����	�
� be the tree obtained from continuation tree ����� by removing the
edges in � along with their descendants. Intuitively, if � is a subset of edges of �����
under � ’s control, then ������� is the set of possible plays that result if � does not use
transitions in � . Similarly, we can define 	�! "�� ������ (recall that 	 ! "�� ��� is the tree of all
plays if � stops participating in the protocol).

Definition 1. Let
�

be a reachable state and let 	 ! " be the continuation tree from
�

.
Let ��� ��� � � � ��� .
1. If � is a subset of edges of 	 ! " such that each edge in � is under the control of some
� ��� , then �����
�� is said to be a strategy for the coalition � . If there are no dishonest
moves of any � ��� in ������� , then �����
�� is said to be an honest strategy.
2. If � is a subset of edges of 	 ! "�� ��� such that each edge in � is under the control of
some � ��� , then 	 ! "�� �����
� is said to be an � -silent strategy for the coalition � .

This definition corresponds to the standard game-theoretic notion of strategy. �
represents the plays that the coalition � considers unfavorable, and 	 ! "	�
� represents
the continuations that � prefers. At any given state

���
in 	 ! "	�
� , an edge coming out of

the node labeled by
� �

indicates the next move for � in accordance with the strategy
	 ! "	�
� . If the edge is not under � ’s control, then the next move for � is idling, i.e.,
waiting for others to move.

To define fairness and other properties, we are interested in strategies in which the
coalition � drives the protocol to a state in which some property holds:

Definition 2. If there is a strategy 	 ! "	�
� from
�

for coalition � such that all leaf nodes
of 	 ! "	�
� are labeled by states

���
that satisfy some property � 	 ��� � , then � has a strategy

from
�

to reach a state in which � holds.

The definition for � -silent strategies is similar.
Since the players’ objective in the game is to obtain each other’s signatures, we are

interested in the states where � possesses � ’s signature and the ones where � possesses
� ’s signature. Formally, � possesses some term � in a reachable state

�
if � is derivable,

using the rules in Possess, from the terms in � ’s internal role state predicate ��� in
�

and � ’s additional memory in
�

given to him by the threat model. Possession is always
monotonic. The definition for � is symmetric, except that the threat model does not
have to be considered.

Definition 3. If there is a strategy for coalition � such that all leaf nodes in the strategy
are labeled by states in which � possesses � ’s signature, then � has a strategy from�

to give ��� ’s signature. Moreover, if �5+ ��� � , then � is said to have a strategy to
obtain � ’s signature.



3.2 Fairness, optimism, timeliness, and advantage

We now use the notion of strategy to define what it means for a contract signing pro-
tocol to be fair, optimistic, and timely, and what it means for a participant to enjoy an
advantage. The definitions are quite subtle. For example, we need to draw the distinc-
tion between a strategy for achieving some outcome, and a possibility that the outcome
will happen under the right circumstances. This requires introduction of a four-valued
variable to characterize the degree of each player’s control over the protocol game.

Fairness. Fairness is the basic symmetry property of an exchange protocol. There is a
known impossibility result [14, 24] demonstrating that no deterministic two-party pro-
tocol can be fair. Therefore, fairness requires introduction of at least one other party,
e.g., the trusted third party � . Our definition is equivalent to a common definition of
fairness in terms of state reachability [18, 11]. Intuitively, a protocol is fair for the hon-
est signer � , if, whenever � has obtained � ’s signature, � has a strategy in coalition
with � to obtain � ’s signature.

Definition 4. A protocol is fair for honest � if, for each state
�

reachable by honest
� such that � possesses � ’s signature in

�
, the coalition of � and � has an honest

strategy from
�

to give � � ’s signature for all bounds on the number of moves that a
dishonest � makes.

Advantage. Intuitively, fairness says that either both players obtain what they want,
or neither does. This is not always sufficient, however. A player’s ability to decide
unilaterally whether the transaction happens or not can be of great value in scenarios
where resource commitment is important, such as online trading and auction bidding.

To characterize the degree to which each participant controls the outcome of the
protocol in a given state, we now define a pair of values � ����� � � � ������� associated with
each reachable state. We are interested in what a participant may do in the worse pos-
sible case. Therefore, despite our assumption that � is honest, we will consider � ’s
dishonest moves when reasoning about � ’s ability to control the outcome.

Definition 5. Define � ����� � for any reachable state
�

as follows:
� ����� � 	 � � +	� , if � has a strategy to obtain � ’s signature for all bounds on

the number of dishonest moves of � ,
+�
 , if � ����� � 	 � ��+�� , but � has a � -silent strategy to reach state� �

such that � ����� � 	 � � � +�� ,
+ �

� , if � ����� � 	 � ���+ ��
 � ��� , but there is state
���

reachable from
�

such that � ����� � 	 � � � +�� , and no transition on the
� � � �

path is in � " � 
������� 
 ,
+�� , otherwise.

The strategies need not be honest. Definition of � ����� � is symmetric.

Intuitively, � ����� � 	 � � +�� if � can obtain � ’s signature no matter what � does, 

if � can obtain � ’s signature provided � stops communicating and remains silent,

�
� if

there is a possibility (but no strategy) for � to obtain � ’s signature when � is silent, and
� means that � cannot obtain � ’s signature without � ’s involvement. The difference
between 
 and

�
� is essential. For example, � ������� 	 � � +�
 if � can obtain � ’s signature



by sending a message to � as long as � is silent, while � ������� 	 � � + �
� if � is silent, but

some previously sent message is already on the channel to � , and the outcome of the
protocol depends on the race condition between this message and � ’s message.

Given an initial state
�
	

, we assume that � ����� � 	 � 	 � + � ����� � 	 � 	 � +�� . The signa-
ture exchange problem is not meaningful otherwise.

Definition 6. � has an abort strategy in
�

if � has a strategy to reach a state
���

such
that � ����� � 	 � � � + � . � has a resolve strategy in

�
if � has a strategy to reach a state� � �

such that � ������� 	 � � � � + � . � has an advantage in
�

if � has both an abort strategy
and a resolve strategy.

If � has an advantage in
�

, then � does not have an advantage in
�

, and vice versa.

Optimism. Intuitively, a protocol is optimistic if it enables two honest parties to ex-
change signatures without involving the trusted third party, assuming they do not time
out waiting for each other’s messages. Such protocols potentially provide a practical
means of fair exchange between mistrusting agents without relying on a third party in
most instances.

We say that � does not send a message to � in the transition from
�

to
���

if (i)
the transition is an application of a rule in

� " � 
������� 

, and (ii) no fact created by the

transition matches a term in the left hand side of a rule in � .

Definition 7. A fair protocol is optimistic for � if, assuming � is honest and � controls
the timeouts of both � and � , � has an honest strategy at

� 	
such that

1) no messages are sent by any signer to � ;
2) every leaf node is labeled by a state in which � possesses � ’s signature;
3) there is a trace from

�
	
to a leaf node that involves only the transitions in

� " � .
Any trace in this strategy is an optimistic trace. Definition of optimistic for � is

symmetric. A protocol is optimistic if it is optimistic for both signers.

Our definition of optimism implies that the protocol specification does not permit
honest participants to contact � nondeterministically, i.e., every rule that results in a
message sent to � is conditional on some timer timing out.

Timeliness. We now formalize the following intuition [3]: “one player cannot force the
other to wait for any length of time — a fair and timely termination can always be forced
by contacting the third party.” Timeliness has been emphasized by the designers of fair
exchange protocols, since it is essential for practical use. In any state of the protocol,
each participant should be able to terminate the exchange unilaterally. If he has not been
able to obtain the other’s signature, he can always reach a terminal state where he can
stop and be sure that the opponent will not be able to obtain his signature, either.

Definition 8. A fair, optimistic protocol is timely for � if in every state on an opti-
mistic trace � has an � -silent strategy to reach a state

���
such that � ����� � 	 ��� � + � or

� ����� � 	 � � � +�� . A protocol is timely if it is timely for both signers.

To illustrate the importance of timeliness, consider a protocol that is not timely, e.g.,
Boyd-Foo protocol [8]. In this protocol, originator � releases some information that can
be used by responder � to obtain � ’s signature from � at some later point. If � stops



communicating, � is at his mercy. He may have to wait, possibly forever, before he
learns whether the exchange has been successful.

For the rest of this paper, we assume that the protocol is fair, timely, and optimistic
for both signers.

4 Impossibility of Balance in Optimistic Protocols

As explained in the introduction, optimistic contract signing protocols are only valuable
insofar as they offer benefit to an optimistic participant. We say that the honest partici-
pant � is optimistic if, in any state where he is permitted by the protocol specification
to contact trusted third party � , he waits for � ’s response before contacting � .

The propensity of the optimistic participant to wait for the opponent’s response be-
fore contacting � can be exploited by the opponent. Recall that definition 7 implies that
an honest participant only contacts � after some timer times out. We use this to model
optimism of � by giving � the ability to schedule the timeout rules of � by an “out-
of-band” signal. In any implementation of the protocol, � does not actually schedule
� ’s timers. This is simply a technical device to restrict the set of execution traces under
consideration to those that may occur when one of the participants is optimistic.

Definition 6 can thus be extended to cases where � is optimistic by permitting � ’s
strategy to include control over timeouts of � and � . If � does not have a strategy
for reaching a state where he has an advantage over an optimistic � , we say that the
protocol is balanced for an optimistic � . As we will now show, balance cannot be
achieved by any fair, timely, optimistic protocol.

The first observation underlying our proof is that, in the interleaving semantics of
concurrency used by our model, the order of application of state transition rules that
affect independent parts of the system can be commuted. The second observation is that
the strategies available to the dishonest player are not negatively affected by messages
sent to him by the honest player or by the honest player’s timeouts because the dishonest
player is free to ignore both.

We start with an auxiliary proposition, which follows directly from definition 5.

Proposition 1. Let
� � � �

be a state transition not in � " � 
�������'
 . If � ����� � 	 � � + � ,
then � ����� � 	 � � ��+�� . If � ����� � 	 � � + � , then � ����� � 	 ��� � +�� .

Proposition 1 implies that if � ����� � 	 � � + � and � ����� � 	 � � ��� � , then the
� � � �

transition must be in � " � 
������� 
 . Similarly, if � ����� � 	 � � +�� and � ����� � 	 � � ��� � , then� � � �
is in

� " � 
�������'

. Intuitively, a player acquires some degree of control over

the outcome of the protocol for the first time only because of the other player’s move.
Just like we defined 	 ! "�� ��� to be the tree obtained from 	 ! " by removing all edges in

� " � 
�������'

, we define 	 ! "�� ��� � to be the tree obtained from 	 ! " by removing all edges

in
� " � 
�������'
 " � 
����������
��

. If � is a selection of edges in 	 ! "�� ��� � under � ’s control,
then 	�! "�� ��� ���
� is a strategy available to � if � remains silent and no timers time out.
We will call such a strategy weak � -silent strategy.

Proposition 2. Let
� � ���

be a state transition in
� 
����������
��

. � has a weak � -silent
abort [resolve] strategy at

���
if and only if � has a weak � -silent abort [resolve]

strategy at
�

.



The proof of proposition 2 relies on the fact that the moves of � and � that consti-
tute a weak � -silent strategy cannot depend on the state of � ’s timers.

Proposition 3. � has an � -silent abort [resolve] strategy at
�

if and only if � has a
weak � -silent abort [resolve] strategy at

�
.

In the proof, we use proposition 2 to construct an � -silent strategy from a weak
� -silent strategy by induction on the height of the continuation tree. Proposition 3 es-
tablishes that the strategies available to the dishonest player are not negatively affected
by the honest player’s timeouts. We now show that they are not affected by the honest
player’s messages to the dishonest player.

Lemma 1. Let
� � ���

be a transition in
� " � 
���� ���'


. If � has an � -silent abort
[resolve] strategy in

�
, and � does not send a message to � in the

� � ���
transition,

then � has an � -silent abort [resolve] strategy in
� �

.

Proof. The proof, illustrating our general proof techniques, is in appendix B.

We use lemma 1 to show that for each strategy conditional on � remaining silent,
there is an equivalent strategy in which � is not silent, but � simply ignores � ’s mes-
sages. The strategy works as long as � does not try to talk to � .

Lemma 2. If � has an � -silent abort [resolve] strategy at
�

, and � does not send any
messages to � , then � has an abort [resolve] strategy.

Proof. (Omitted for space reasons).

We now show that a strategy conditional on � not talking to � works against an
optimistic � since he waits for � ’s messages instead of trying to contact � .

Lemma 3. Let
�

be a state that does not contain � 	 � � ! �
� ��' (��)!�� for any timer pred-
icate � . If � has an � -silent abort [resolve] strategy in state

�
, then � has an abort

[resolve] strategy against optimistic � in
�

.

Proof. (Sketch) Definition 7 implies that an optimistic � contacts � only when some
timer times out. � controls the timeouts of an optimistic � . Hence � can prevent �
from sending any message to � . We then apply lemma 2.

Theorem 1 (Impossibility of Balance). Let � be a fair, optimistic, timely protocol
between signers � and � . If � is optimistic, then there is a non-initial state

� �
such

that � has an advantage against an optimistic � at
� �

.

Proof. (Sketch) By definition 7, there is an optimistic trace from the initial state
� 	

which contains only the transitions in
� " � and leads to

���
such that � ����� � 	 ��� � + � .

Consider the first transition
� � � �

on this trace such that � ����� � 	 � � +�� � � ����� � 	 � � ���
� . Proposition 1 implies that this must be a transition in

� " � 
������� 

. By definition 7,

� does not send a message to � anywhere in the trace, including this transition.
By definition 8, � has an � -silent strategy to reach a state

��� �
such that � ����� � 	 ��� � � +

� or � ����� � 	 � � � ��+	� . Since � ����� � 	 � ��+	� , it must be the case that � ����� � 	 � � � ��+	� , i.e.,



� has an � -silent abort strategy. By lemma 1, � has an � -silent abort strategy in
� �

.
Therefore, by lemma 3, � has an abort strategy against optimistic � in

� �
.

By definition 7, � has a strategy at
� 	

to obtain � ’s signature since � controls
the timeouts of � and � . Because

� �
is reached a part of this strategy (recall that

the
� � � �

transition is on an optimistic trace), � also has a strategy to obtain � ’s
signature at

� �
. Hence � has a resolve strategy against optimistic � in

� �
. Since � has

both abort and resolve strategies, � has an advantage against an optimistic � in
� �

. ��

We’d like to emphasize that the result of theorem 1 is not a trivial “second-mover”
advantage. � and � are not protocol roles, but simply notation for the honest and dis-
honest participant, respectively. An optimistic participant is at a disadvantage regardless
of the role he plays in the protocol. Even if he chooses the responder role, he will lose
control over the outcome of the protocol at some point as long as he remains optimistic.
For example, in Garay et al.’s abuse-free contract signing protocol [18], the originator
enjoys the advantage over the responder, even though the responder is the first to receive
information that potentially enables him to obtain the originator’s signature.

5 Abuse-Free Protocols and Provable Advantage

Theorem 1 states that any fair, optimistic, timely protocol necessarily provides a dis-
honest participant with control over the outcome against an optimistic opponent. The
problem may be alleviated by ensuring that no participant can prove to an outside party
that he controls the outcome. Such protocols have been called abuse-free in the litera-
ture [18], and concrete protocols [3, 18] have been constructed using zero-knowledge
cryptographic techniques such as verifiable signature escrows and designated-verifier
proofs. To formalize “ability to prove,” we rely on a knowledge-theoretic framework
borrowed from epistemic logic [19, 16].

Reasoning about knowledge. Given a participant � and a reachable state
�

, let � ’s
view of

�
be the submultiset of

�
containing all the facts corresponding to role states in

the role theory of � , timers of � and messages on � ’s channels to other participants.
Intuitively, this set represents all that � may observe in

�
. Given a trace ! " from the

initial state
� 	

to
�

, construct a new labeled chain by relabeling the nodes by � ’s view
of

�
. Relabel the edges not associated with � by � , which indicates that somebody

other than � may have moved. Since � cannot observe other players’ moves, insert
an � between any two consecutive edges labeled by rules of � (duplicate the node
connecting these edges) as well as at the start and end of the trace. If there are two
or more consecutive � edges, but � ’s view does not change when moving across one
of them, then delete that edge. The resulting chain ��� � is called � ’s observation of the
protocol, ��� ����� 	 � � ��� � . Intuitively, � ’s observation is just � ’s own history in the trace.

In the spirit of algorithmic knowledge [16, 22], observations ��� ��� � 	 � � ��� � and
��� ��� � 	 � � � ��� � � are equivalent if they are computationally indistinguishable by � .

Definition 9. Given a trace ��� from
� 	

ending in
�

, we say that � knows in 	 � � ����� that
logical formula � is true if
i) � is true in

�
, and



ii) for each trace ��� � from
� 	

to
� �

such that ��� ����� 	 � � � ��� � � is indistinguishable by
� from ��� ����� 	 � � ��� � , � is true in

� �
.

Intuitively, � knows that � is true if � holds in all possible executions of the pro-
tocol consistent with � ’s observations.

Abuse-freeness. To reason about abuse-freeness, we augment the protocol with an out-
side party � and consider his knowledge at different stages of the protocol. � does
not possess the signers’ or the third party’s private keys, and obtains all of his evidence
about the protocol from one of the protocol participants, e.g., � , who forwards arbitrary
messages to � in an attempt to cause � to know that � is participating in the protocol.

Definition 10. � has provable advantage against � in state
�

if
i) � has an advantage over � at

�
, and

ii) � can provide information, derived from the protocol execution up to
�

, that causes
� to know that � is participating in the protocol.
A protocol is abuse-free for � if � has no provable advantage in any reachable state.

Definition 10 is weaker than one might expect. If � enjoys an advantage at
�

, then
in order for � to enjoy provable advantage, � merely has to prove � ’s participation
in the protocol. � may succeed even if his protocol with � is already over. But since
we are concerned with making the protocol as safe as possible for an optimistic � , the
weaker definition is acceptable since it makes abuse-freeness (its negation) stronger.
Combining theorem 1 and definition 10, we obtain

Corollary 1. In any fair, optimistic, timely, abuse-free protocol between � and � , there
is a trace ! " from

� 	
to state

�
such that

i) � has an advantage over optimistic � at
�

,
ii) � does not know in 	 � � ! " � that � is participating in the protocol, i.e., there is another
trace ! " � from

� 	
to some

���
such that ��� ����� 	 � � � ��� � � is indistinguishable by � from

��� ��� � 	 � � ��� � , and � is not participating in ! " � .

6 Related work

Previous game-theoretic approaches to the study of fair exchange [11, 20, 21] focused
on formalizing fairness for the strongest possible honest player without taking optimism
into account. In [20], fairness is formalized as the existence of a defense strategy for the
honest player, which is not sufficient if the honest player faces nondeterministic choices
in the protocol, as is the case in the abuse-free protocol of Garay et al. [18]. Another
game-theoretic model was developed in [9], but it focuses mainly on economic equilib-
ria in fair exchange. Cryptographic proofs of correctness by protocol designers [2, 3, 18]
focus on basic fairness and ignore the issues of optimism and fundamental asymmetry
of communication between the signers and the trusted third party.

To the best of our knowledge, we are the first to apply an epistemic logic framework
to formalize the “ability to prove” and thus abuse-freeness. In [27], belief logic SVO
is used to reason about correctness of the non-repudiation protocol [26], but it is not
clear how belief logics might apply to fairness and abuse-freeness. [21] models advan-
tage, but not the concepts of proof and knowledge, which we believe provide a more
compelling characterization of abuse-freeness.



7 Conclusions and Further Work

We have studied contract signing protocols in a game-theoretic model, giving precise,
formal definitions of properties such as fairness and timeliness. We characterized op-
timism of honest protocol participants using a form of out-of-band signal that forces
the optimistic player to wait for the opponent. While the out-of-band signal does not
correspond to any realistic mechanism in distributed computation, it accurately reduces
the set of protocol traces to those where the optimistic player waits for the opponent
instead of contacting the trusted third party.

Our main result is that in any fair, optimistic, timely protocol, an optimistic player
yields an advantage to his opponent. This means that the opponent has both a strategy
to complete the signature exchange and a strategy to keep the players from obtaining
each other’s signatures. Since the protocol is fair, the outcome for both players is the
same, but the player with an advantage can choose what this outcome is. This holds
regardless of whether the optimistic player is the first or second mover.

Since advantage cannot be eliminated, the best a protocol can do to protect opti-
mistic participants is prevent the opponent from proving to any outside party that he
has reached a position of advantage. This property is known as abuse-freeness. We de-
fine abuse-freeness using the concept of algorithmic knowledge adapted from epistemic
logic to formalize what it means to “prove” something to an outside observer.

One direction for further investigation involves the notion of trusted third party ac-
countability. The relationship between our definitions and the cryptographic definitions
of fairness [3] may also merit further study. Finally, we believe that our techniques will
prove useful for investigating multi-party contract signing protocols.
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A Role and Protocol Theories

We assume that the vocabulary contains the following basic sorts: ��� (for public keys),�
(for messages), � (for pre-agreed contract texts), ��� (for protocol instances), and� � (for globally unique instance identifiers, since we assume that each protocol in-

stance has such an identifier). We also assume a function
 � � � � ��� ����� �����

���	� �
� � � �5��� , i.e., a protocol instance is determined by the signers’ public key,
the key of the trusted third party, pre-agreed contract text, the and unique identifier. For
example, � +  � ( � ��� � ��* � � � % � describes a protocol instance, identified as % , in which
signers with public keys � ( and ��� exchange signatures on the pre-agreed text � with
the help of the trusted third party whose key is � * .



Definition 11. Theory
�

is a role theory for participant � with public key ��� , where
��� is a constant of the sort ��� , if it satisfies the following:
i) � includes a finite list of predicates � 	 ��������� � � , called role state predicates, and a
finite list of timer predicates, called timers of � . The two lists are disjoint.
ii) � 	 is a binary predicate whose arguments are of the sort ��� and ��� , respectively.
We call � 	 the initial role state predicate.
iii) For each rule � �5" in

�
,

1. There is exactly one occurrence of a role state predicate in � , say � � , and exactly
one occurrence of a role state predicate in " , say � & . Furthermore, it is the case
that � ��� . If � 	 occurs in � , then � 	 	 � � � �9��� � for some term � of the sort ��� .

2. If � & is a � -ary role state predicate occurring in � , and � & is an � -ary role state
predicate occurring in " , then � � � . Furthermore, if � � 	 � � ��������� � � � � � and
� & 	�� � ��������� � 3 ��� � , then �	� and �
� are the same terms for all 
����� � .

3. Let � ��	�� � ������� � � 3 ����� , � & 	�� � ��������� � 3 � � " . Let ����� be the set of terms � such
that % 	 � � or ! 	 	 � � � � � � � � � � for some TTPchannel predicate ! 	 . For each  , ��� is
derivable from � � ��������� � 3 and ����� using the rules in Possess.

4. For each timer � of � ,
i) � and " each contain at most one occurrence of � . Occurrences are of the form
� 	 � � � ! ��� , where ! � is a constant of the sort ! �
� �&" �#!$��! � . If � occurs in " , then it
occurs in � .
ii) If � 	 ��� � ��% ���#!�� ��� , then either � 	 ��� � ��% ���&!���� " , or � 	 ��� � ���&!���� " .
iii) If � 	 ��� � ���#!�� � � , then � 	 ��� � ���&!���� " .
iv) If � 	 ��� � ! �
� ��' (���!�� ��� , then � 	 ��� � ! �
���&' (��)!���� " .

5. If % 	 � ��� � , where % is a network predicate and � is term of the sort
�

, then
% 	 � � � " . If ! 	 	 � � � � � � �9� � � , where ! 	 is a TTPchannel predicate, and terms
� � � � � � � are of the sort ��� � ��� � � , respectively, then ! 	 	 � � � � � � �9��� " .

6. For any predicate * other than a role state, timer, network, or TTPchannel predi-
cate, atomic formula * 	6! ����� � � � ! � � has the same occurrences in � as in " .

Definition 12. If � is a timer of the participant with public key ��� , then � 	 ��� � ���&!�� �
� 	 ��� � ! � ����' (���!�� is the timeout rule of � .

Definition 13. Theory � is a protocol theory for signers � and � and trusted third
party � with public keys �)( � ��� � ��* , respectively, where �)( � ��� � � * are constants of the
sort ��� , if � + ��� � � � � � � 
����������
�� � � 
�� ��������
�� � � 
����������
�� , where

1.
� ��� ��� � are role theories for, respectively, � � � � � with public keys � ( � � � � � * .

2. At most one TTPchannel predicate, say ! 	 ( , occurs in
�

. Each occurrence of ! 	 ( is
of the form ! 	 ( 	 � ( � � * � � � , where � is of the sort

�
, and ! 	 ( may not occur in � .

3. At most one TTPchannel predicate, say ! 	 � , occurs in � . Each occurrence of ! 	 � is
of the form ! 	 � 	 � � � � * � � � , where � is of the sort

�
, and ! 	 � may not occur in

�
.

4. If some TTPchannel predicate occurs in � � , then it also occurs in
�

or � .
5. The role state predicates and the timers of � (respectively, R) do not occur in �

(respectively,
�

) and � � . The role state predicates and the timers of � do not occur
in
�

or � .
6.
��
����������
�� ��� 
����������
�� � and � 
�� ��������
�� are the sets of timeout rules of all timers of
� , � , and � , respectively.



B Proof of Lemma 1

Proof. We rely on the observation that state transition rules affecting independent parts
of the system may be commuted. Intuitively, moves of � and � are independent of � ’s
internal state. Therefore, as long as � does not send any messages to � , � may ignore
any message sent to him by � and follow the same strategy in

���
as in

�
. In light of

proposition 3, all we need to show is that � has a weak � -silent abort [resolve] strategy
at

� �
if � has a weak � -silent abort [resolve] strategy at

�
. We prove this by induction

on the height of the continuation tree at
�

.
Base case: The height of the continuation tree at

�
is � . The lemma is vacuously true.

Induction hypothesis: Suppose the lemma is true for all states
�

such that the height of
the continuation tree at

�
is � % .

Induction step: Consider state
�

such that i) the height of the continuation tree at
�

is
%���
 , and ii) � has a weak � -silent abort [resolve] strategy at

�
.

Consider the continuation tree at
���

, and remove all edges that are in
� " � 
������� 
 "

� 
����������
��
along with their descendants. For each remaining edge � from

���
to some

state
� � �

, let ! be the state transition rule labeling � and consider the following cases:

Case 
 : !�� � . Since no message is sent to � in the
� � ���

transition, ! can be applied
at

�
as well, resulting in some state

��
. Observe that:

i) the height of the continuation tree at
��

is � % ;
ii) � has a weak � -silent strategy at

��
;

iii)
� � �

can be obtained from
��

by the same transition that labels
� � ���

: simply com-
mute

� � � �
and

� � � � � �
transitions.

By the induction hypothesis, � has a weak � -silent strategy at
��� �

. Replace the contin-
uation tree at

��� �
by this strategy.

Case � : ! � � " � 
������� 
 . There are three possibilities:
2.1) ! cannot be applied at

�
. Remove edge � along with its descendants.

2.2) ! can be applied at
�

, but it is not a part of the � -silent strategy at
�

. Remove edge
� along with its descendants.
2.3) ! can be applied at

�
, and it is a part of the � -silent strategy at

�
. Then, as in Case


 , replace the continuation tree at
��� �

by this strategy.

Case � : ! � � 
����������
�� . If ! is not a part of the � -silent strategy at
�

, remove edge �
along with its descendants. If it is a part of the � -silent strategy, replace the continuation
tree at

� � �
by this strategy.

By constructing the right continuation tree for any immediate descendant of
� �

, we
have constructed a weak � -silent strategy at

���
. It remains to show that it is indeed an

abort [resolve] strategy. There are two possibilities :

Case A: The height of the constructed strategy is � . From the construction, it follows
that the height of the weak � -silent abort [resolve] strategy at

�
is also � . Therefore,

� ����� � 	 � ��+ � [ � ����� � 	 � � +�� ]. By proposition 1, � ����� � 	 � � � +�� [ � ����� � 	 � � ��+�� ].
Case B: The height of the constructed strategy is ��� . By construction, all leaf nodes
are labeled by states

� �
such that � ����� � 	 � � � +�� [ � ������� 	 � � � +�� ].

We conclude that � has a weak � -silent abort [resolve] strategy at
���

, which completes
the induction. ��


