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Abstract. We demonstrate that the symbolic trace reachability prob-
lem for cryptographic protocols is decidable in the presence of an Abelian
group operator and modular exponentiation from arbitrary bases. We
represent the problem as a sequence of symbolic inference constraints
and reduce it to a system of linear Diophantine equations. For a finite
number of protocol sessions, this result enables fully automated, sound
and complete analysis of protocols that employ primitives such as Diffie-
Hellman exponentiation and modular multiplication without imposing
any bounds on the size of terms created by the attacker, but taking into
account the relevant algebraic properties.

1 Introduction

Symbolic constraint solving for cryptographic protocols is a subject of very active
research in the protocol analysis community [1,9,17,3,13,6,14,5]. While the
analysis problem is undecidable in its most general form [8], it has been proved
NP-complete [17] for a finite number of protocol sessions even without a priori
bounds on the size of terms that may be created by the attacker. Therefore,
symbolic constraint solving provides a fully automated technique for discovering
attacks on trace-based security properties such as secrecy and authentication.

Attacker’s capabilities are represented by a set of inference rules modeling
how the attacker can learn new terms from the terms he already knows. Since
protocol messages may include variables (representing data fields whose values
are not known to the honest recipient in advance), an attack is modeled as
a symbolic protocol trace or skeleton (e.g., an interleaving of several protocol
sessions, at the end of which the attacker learns the secret). The goal of symbolic
constraint solving is to determine whether there exists a consistent instantiation
of all variables such that every message sent by the attacker is derivable, using
the chosen inference rules, from the set of terms available to him.

Initial research on symbolic protocol analysis [1,17,3,13] followed the so-
called Dolev-Yao model in assuming that the attacker does not have access to the
algebraic properties of the underlying cryptographic primitives. This assumption
fails for primitives such as xor (exclusive or) and modular exponentiation, which
are widely used in protocol constructions. The attacker may exploit associativity,
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commutativity, and cancellation of inverses. Bull’s recursive authentication pro-
tocol [15,18] and group Diffie-Hellman protocol [19, 16] had been proved correct
in the free algebra model, but then attacks were discovered once algebraic prop-
erties of, respectively, xor and modular exponentiation were taken into account.
In this paper, we demonstrate that the symbolic analysis problem is decidable
even if the attacker term algebra is extended with an Abelian group operator
and modular exponentiation from an arbitrary base. In particular, this result
enables fully automated analysis of Diffie-Hellman-based protocols.

Overview. Section 2 introduces the term algebra that we use to model the at-
tacker’s capabilities, and the equational theory modeling algebraic properties of
the relevant cryptographic primitives. In Section 3, we briefly describe how the
protocol analysis problem is reduced to a sequence of symbolic inference con-
straints. In Section 4, we extend previous results on ground derivability [6] to
modular exponentiation, and, following [14], demonstrate the existence of conser-
vative solutions. Section 5 contains the main technical result: symbolic constraint
solving problem in the presence of an Abelian group operator and modular expo-
nentiation is reduced to the solvability in integers of a special decidable system
of quadratic equations. Conclusions follow in Section 6.

Related work. The techniques of this paper follow closely those of [6,14]. In [6],
the problem was only considered in the ground (as opposed to symbolic) case, and
the term algebra did not include exponential terms. The reduction to a quadratic
Diophantine system was first developed in [14], but only exponentiation from a
constant base was supported and, most importantly, decidability remained an
open question. Proving decidability is the main contribution of this paper.

Partial results for protocol analysis in the presence of Diffie-Hellman expo-
nentiation were recently obtained by Boreale and Buscemi [4], and Chevalier et
al. [5]. Neither addresses decidability for an Abelian group operator outside ex-
ponents. The decision procedure of [4] requires an a priori upper bound on the
number of factors in each product. In general, computing upper bounds on the
size of variable instantiations needed for a feasible attack is the most challenging
task in establishing decidability. Therefore, [4] does not fully solve the problem.

Chevalier et al. [5] prove that the protocol analysis problem is NP-complete
in the presence of Diffie-Hellman exponentiation, but only for a restricted class
of protocols. No more than one new variable may be introduced in each protocol
message, and the attacker is not permitted to instantiate variables with products.
These restrictions rule out not only non-deterministic protocols, but also some
well-defined, deterministic protocols.

Narendran et al. investigated decidability of unification modulo the equa-
tional theory of multiplication and exponentiation [11,10]. While equational
unification is an important subproblem in symbolic protocol analysis, unifica-
tion alone is insufficient to decide whether a particular symbolic term is derivable
given a set of attacker’s inference rules.

Pereira and Quisquater [16] analyzed the group Diffie-Hellman protocol [19]
taking into account algebraic properties of Diffie-Hellman exponents. They did



not attempt to address the general problem of deciding whether a particular
symbolic attack trace has a feasible instantiation.

2 Model

A protocol specification is a set of roles. Each role is a sequence of sent and re-
ceived messages. Messages received by the role may contain variables, represent-
ing data fields whose value is unknown to the recipient (e.g., the counterparty’s
nonce). Since the source of the received messages cannot be established on an
insecure network, we assume that the attacker receives all messages sent by the
honest roles, and sends all messages received by the honest roles.

An attack on any trace-based property of cryptographic protocols can be
represented as a symbolic attack trace (see [13,3,9] for details). A symbolic trace
is a particular interleaving of a finite number of protocol roles. For example,
an attack on secrecy is modeled by an interleaving at the end of which the
attacker outputs the value that was supposed to remain secret. An attack on
authentication is modeled by an interleaving at the end of which the attacker
has successfully authenticated himself to an honest party.

A trace is feasible if every message received by the honest roles can be derived
by the attacker from his initial knowledge and intercepted messages. Therefore,
for each message sent by the attacker, a symbolic inference problem must be
decided: is there an instantiation of variables such that the sent term is derivable
in the attacker’s term algebra? To stage the attack, the attacker may need to send
several messages in a particular order. Deciding whether the attack is feasible
thus requires solving several symbolic inference problems simultaneously.

Term algebra. The attacker’s capabilities are modeled by a term algebra with
pairing, symmetric encryption, multiplication, and exponentiation. The nota-
tion is shown in fig. 1. For multiplication, there is a unit 1 and a multiplicative
inverse. Like [5], do not allow products in the base of exponentials, nor permit ex-
ponential terms to be multiplied with other terms. This restriction is necessary,
because introducing distributive laws for exponentials results in an undecidable
equational unification problem [10]. In contrast to [5], we impose no restric-
tions on multiplication of terms other than exponentials, permit variables to be
instantiated to products, and allow more than one new variable per message.
Our algebra is untyped, e.g., we do not distinguish between keys and other
messages. This enables us to discover a wider class of attacks than strongly typed
techniques. Extensions of the algebra with primitives for public-key encryption,
digital signatures, and one-way functions do not present any conceptual problems
as far as decidability is concerned (e.g., see [17,14]) and are left out for brevity.
Since our primary motivation is analysis of protocols based on Diffie-Hellman,
we use the relations of fig. 2 to model the corresponding algebraic structure (see,
e.g., [12]). In Diffie-Hellman, exponentiation is mod prime p, and the base a
is chosen so as to generate a cyclic subgroup a,a?,... ,a? =1 mod p of some
prime order ¢ that divides p — 1. We implicitly assume that exponential terms



(t1,t2) Pairing of terms ¢1 and t2

{t1}+, Term t; encrypted with term ¢, using a symmetric algorithm
1.ty Product of terms where Vi t; # exp(u, v)
¢t Multiplicative inverse of term t where t # exp(u, v)
exp(t1, t2) t"2 where t; is not headed with -, t» # exp(u,v)

Fig. 1. Message term constructors

Rules for products: Associative, commutative, and
t-1—t
t-t7' =1
Rules for inverses: (15_1)71 —t

(t1 -t2)71 — t2_1 -tl_l

Rules for exponentials: exp(t,1) =t
exp(exp(t1,t2),ts) — exp(t1,t2 - t3)

Fig. 2. Normalization rules for products, inverses, and exponentials

are mod p, and that multiplication is mod ¢ (recall that exponential terms
may not be multiplied in our term algebra). Because - forms a cyclic Abelian
group, every member has a multiplicative inverse.

The rules of fig. 2 are convergent modulo associativity and commutativity
of -, thus every term ¢ has a unique normal form ¢ | up to associativity and
commutativity. We assume that terms are kept in normal form.

Attacker model. The attacker’s ability to derive terms is characterized as a term
set closure under the inference rules of fig. 3. These rules reflect common crypto-
graphic assumptions about the difficulty of some number-theoretic problems. For
example, the attacker cannot compute v when given exp(u,v) (the discrete loga-
rithm problem). Given exp(u,v) and exp(u,v'), there is no rule that enables the
attacker to compute exp(u,v - v') (the computational Diffie-Hellman problem).

3 Symbolic Inference Constraints

Any symbolic trace can be converted into a ordered sequence of symbolic infer-
ence constraints. Suppose u; is the message received by some honest role, and
let T; be the set of all messages sent by the honest roles (and thus learned by the
attacker) prior to sending w;. The constraint sequence is simply C = {u; : T;}.
Each constraint u; : T; can be interpreted as “at step i, the attacker knows
messages in T; and must generate message u;.” We will refer to u; as the target
term of the constraint. Both u; and messages in 7; may contain variables. We
assume that 77 contains terms that are initially known to the attacker, such as
1 and constants specific to the protocol. Observe that constraint sequences are



Unpairing (UL, UR) Decryption (D) Pairing (P) Encryption (E)

TF (u,v)y TF{u,v) TrH{u}, THwv THuTFwv TFuTFw
Thu Tro Tru T F {u,v) TF{u}y
Multiplication (M) Inversion (I) Exponentiation (X)
TrFw ... TkFu, TkFu THFuTHFwv
Thur ... uUn Tru! T F exp(u, v)
Vi u; # exp(u',v') u #£ exp(u',v') u is not headed with -, v # exp(u', v")

Fig. 3. Attacker’s capabilities

monotonic: if j <4, then T; C T;. Also, since variables represent terms unknown
to the recipient, every variable must occur for the first time in some target term
u; (this property is sometimes referred to as origination).

A ground substitution o is a solution of u : T (written o IF w : T') if To
uo is derivable using the inference rules of fig. 3. Given a constraint sequence
C={uy:T1,...,u, : T}, o is a solution of the constraint sequence (o IF C) if
Vi T;o F u;o is derivable using the rules of fig. 3.

If T is a finite set of terms, let St(T") be the set of subterms defined in the stan-
dard way. Let St(C) = U,,..7;ec St(Ti U u;), and define S(C) = St(C) \ Var(C)
to be the set of all non-variable subterms of C. Let S?(C) be the closure of this
set under -, inverse, and exponentiation, defined inductively: (i) if t € S(C), then
te SP(C), (11) iftl,z € SP(C) and t172 # exp(u,v), then t1't2,t171,t271 S SP(C),
(iil) if ¢1,0 € SP(C) and t; is not headed with - and ¢, # exp(u,v), then
exp(t1,t2) € SP(C).

Running example. We will use the following symbolic trace as an (artificial)
running example to illustrate our constraint solving procedure. An event A — ¢
models honest role A sending message t, B <— t' models B receiving t', etc.

1.A—a-b 3. A— {a}y 5.B—(b-X,exp(c,a))
22.B+—a-X-Y 4B+ {Y}y 6.4+« exp(c,a”)

The goal of symbolic protocol analysis is to determine whether there exists an
instantiation of variables X and Y such that every term sent by the attacker
and received by an honest participant (i.e., every term ¢ appearing as P — t)
is derivable using the rules of fig. 3. This is equivalent to deciding whether the
following constraint sequence has a solution:

a-X-Y:a-b; {Y}b ta-b, {a}b ) exp(c,a7) ta-b, {a’}b: (b -X,exp(c,a))

4 Normal Proofs and Conservative Solutions

We extend the results of [6,14] to the term algebra with exponentiation.



Definition 1 (Ground proof). A proof of T & w is a tree labeled with sequents
T F v and such that (a) every leaf is labeled with T & v such that v € T; (b)
81 *+* Sp
every node has n parents sy,...,8, such that — s an instance of one
Trwo
of the inference rules of fig. 3; (c) the root is labeled with T + u.

Definition 2 (Normal ground proof). A proof P of T  u is normal if either
u € St(T') and every node is labeled T + v with v € St(T'), or P = C[Py, ... , Pp]
where every proof P; is a normal proof of some T + v; with v; € St(T) and
contert C is built using the inference rules (P),(E),(X),(M),(I) only.

Lemma 1 (Existence of normal ground proof). If there is a ground proof
of T & u, then there is a normal ground proof of T - u.

Proposition 1. If there is a ground proof of T & u that uses only rules (M),
Tru TFus
(1), and (X), then there exists a proof of T+ u of the form — where
Tkru
uy € T, and either us € T, or the proof of T & uy uses rules (M) and (I) only.

If the constraint sequence C is solvable, then it has a conservative solu-
tion [14], in which every variable is instantiated to a product of subterms (and
their inverses) that are already present in the original sequence, or to an expo-
nential with a subterm as the base and a product of subterms as the exponent.

Definition 3 (Conservative substitution). Substitution o is conservative if
Vz € Var(C) St(zo) C SP(C)o.

Theorem 1 (Existence of conservative solution). If there ezists a solution
o |k C, then there exists a conservative solution o* I+ C.

Lemma 2 (Existence of conservative proof). If o IF C is conservative,
then Vu : T € C there exists a proof of To & uo such that for every node labeled
To + v, either v € St(C)o, or node To - v is obtained by an (M), (I), or (X)
inference rule and is only used as a premise of an (M), (1), or (X) rule.

5 Decision Procedure for Symbolic Inference Constraints

For any constraint sequence C, we define a nondeterministic finite reduction ~».
For each step ~»;, we show that there are finitely many C; such that C;_; ~; C;,
and that C;_; has a solution if and only if some C; has a solution. The final
sequence has a solution if and only if a special system of quadratic Diophantine
equations has a solution. Quadratic Diophantine equations are undecidable in
general, but the system obtained in our case is solvable if and only if a particular
linear subsystem is solvable. Since linear Diophantine equations are decidable,
this establishes decidability of the symbolic protocol analysis problem.
Following Theorem 1, we will be interested only in conservative solutions.
The reduction proceeds as follows (steps 1-3 are essentially the same as in [14]):
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Guess subterm equalities.

2. For each constraint, guess all derivable subterms and add them to the set of
terms available to the attacker.

3. Remove all constraints in which the derivation involves inference rules other

than (M), (I), and (X).

Guess and instantiate bases of exponential terms.

Replace every constraint in which the derivation involves (X) with an equiv-

alent constraint in which the derivation involves only (M) and (I).

Substitute all target terms that introduce new variables.

Solve a linear Diophantine system to determine whether the final sequence

has a solution.

Sl

o

5.1 Determine subterm equalities

Suppose C has some solution o. In the first reduction step ~»;, we guess the
equivalence relation on St(C) induced by o, i.e., Vs;,s; € St(C), we guess
whether s;jo = s;jo or not. Since St(C) is finite, there are finitely many equiva-
lence relations to consider. Each relation represents a set of unification problems
in an Abelian group, which are decidable [2]. There are finitely many most
general unifiers consistent with any given equivalence relation. We nondetermin-
istically guess the right unifier 6 (in practice, # would have to be found by by
exhaustive enumeration), and let C; = C6.

Lemma 3. Jdo IF C if and only if 3o I+ Cy for some Cy such that C ~ Cy.
Proposition 2. Vs, s' € St(Cy) if s # s', then so # s'o.

Running example. In our running example (Section 3), we guess that the only
subterm equality is {Y'}» = {a}s, giving us the unifier [Y" — a] and this C;:

a®> X:a-b ) {a’}b ta-b, {a}b ) exp(c, a7) ta-b, {a}lh <b - X, exp(c, a))

5.2 Determine order of subterm derivation

Following [14], the second reduction step ~», guesses which subterms of Cyo are
derivable by the attacker using inference rules of fig. 3, and adds each derivable
subterm s to every constraint u; : T; such that s is derivable from T;o.

1. Guess S = {s € St(C1) | Ju; : T; € C; s.t. there exists a proof of T;o - so'}.
2. Vs € S guess j, s.t. there exists a proof of T, o - so, but not of T, _10 I so.
3. Guess linear ordering < on Sp such that
— If s < &', then the normal proof of T'o F so does not contain any node
labeled with T'o | s'o.
— If js < js, then s < '
Such an ordering always exists [14] and represents the order in which sub-
terms of C; are derived.
4. Arrange s1,...,S; € Sk according to the ordering <, and insert each s in
the constraint sequence immediately before the u;, : T;, constraint. Let Co
be the resulting constraint sequence.

Lemma 4. Jdo I C if and only if o I+ Co for some Cs such that C ~ Cs.



Running example. In our running example, we guess that subterms b- X and
exp(c, a) are derivable from T3. Therefore, we obtain the following Cs:

a’>-X:a-b; {a}p:a-b,{a}s;
b-X:a- b: {a}ba <b - X, exP(Ca a)); exp(c, a’) ca- ba {a}ba <b - X, exp(c, CL)), b- X;
exp(c,a’) :a-b,{a}s, {b- X,exp(c,a)),b- X,exp(c,a)

5.3 Eliminate all inferences other than (M), (I), and (X)

Lemma 5. Consider any u : T € Cy and the last inference of the proof of
Tot uo.

— Ifuoc €To, thenu eT.

— If uo is obtained by (UL), then {u,t') € T for some term t'.

— If uo is obtained by (UR), then (t',u) € T for some term t'.

— If uo is obtained by (D), then {u}y € T for some term t'.

— Ifuo is obtained by (P), then u = (u1,u2) and ui o € T for some terms uy 2.
If uo is obtained by (E), then u = {u1}y, and ui 2 € T for some terms uq a.

Lemma 5 implies that all constraints where derivation involves at least one
instance of any rule other than (M), (I), or (X) can be discovered by syntactic
inspection [14]. Let ~»3 consist in eliminating all such constraints, and let C3 be
the resulting constraint sequence.

Proposition 3. Yu : T € Cs, proof of To b uo uses only inference rules (M),
(1), and (X).

Lemma 6. Jo It C if and only if o I+ C3 for some Cs such that C ~ Cs.

Running example. In our example, we guess the first and fifth constraints were
obtained by application of rules (M), (I) and (X) only. We eliminate the middle
three constraints, obtaining the following Cs:

a>-X:a-b; exp(c,a’):a-b,{a}y,(b- X,exp(c,a)),b- X, exp(c,a)

5.4 Instantiate bases of exponential terms

For each subterm of Cs, ~+4 guesses whether the solution ¢ instantiates it to an
exponential, and, if so, nondeterministically chooses the base of exponentiation.
Let S = {s € St(C3) | so = exp(b,e)}. There are only finitely many subsets of
St(Cs), thus S = {s1,...,5-} can be computed by exhaustive enumeration of
all possibilities. By Definition 3 and because products may not appear in the
base, Vs; € S b; € S(C3)o. Since S(Cs) is finite, there are finitely many possible
values for t,, € S(C3) such that tp,0 = b;. Let x; be a fresh variable, and 6; the
(unique) most general unifier of s; and exp(tp,, ;). Define C4 = C36; .. .0,.

Proposition 4 (Explicit exponentiation bases). If sc = exp(b,e) for some
s € St(Cy), then s = exp(tp,te) s.t. tho = b, teo =e.

Lemma 7. Jdo IF C if and only if o I+ Cy4 for some Cy such that C ~ Cy.



Running example. Since exponentiation bases are already explicit, C4 = Cs.

5.5 Replace inferences using (X) with those using (M) and (I)

This step is based on the following intuition. Suppose u = exp(b,v1 - ... - vp).
Under the Diffie-Hellman assumption, the attacker cannot construct exp(b, z - y)
from exp(b,z) and exp(b,y), thus w : T has a solution if and only if T' contains
some term ¢ = exp(b, v -...-v;) (if ¢ = 0, then t = b), and v1-...-v, = v}-...-v T
where z is derivable from T'. Informally, z can be thought of as the “additional”

exponent to which ¢ must be raised in order to obtain w.

Consider all u; : T; € Cy4 in order, and define ~5 as '(\125 ... (’\1\95 where N is

the number of constraints in C4. By Propositions 1 and 3, the proof of T30 + u;o
TiO' - i1 TiU - Ui2
is of the form where u;; € T;0, and either u;s € T;o, or the
T;o - ujo
proof of T;o - u;e0 is built up using rules (M) and (I) only.
If the last inference rule in the above proof is not (X), then the entire proof

is built using inference rules (M) and (I) only. We set '@>5 to be the identity.

Now suppose the last rule in the proof of T;o b u;o is (X). Then u;o =
exp(ui1,ui2) 4 = exp(b,e) for some ground b,e. Since u;; must have the same
base as u;o, u;; = exp(b,e1) for some ground e;. By Proposition 1, u;; € T;o.
Since St(C4) C St(Cy), by Proposition 2 3t; € T; such that 10 = uj1. There
are finitely many candidates for ¢;, and '(35 chooses one nondeterministically.

By Proposition 4, u; = exp(ts,te), t1 = exp(t,,t.,) where tyo0 = tjo = b.
Therefore, t; = tj,. We conclude that (i) u; = exp(ts, te); (ii) t1 = exp(ts, te,) € T5;
(iii) teo = te,0 - u (or, equivalently, t,,0~! - t.0 = wu;2); and (iv) proof of
T;o b w2 uses inference rules (M) and (I) only.

By Propositions 1 and 3, u; : T; has a solution only if x;5 : T; has a solution

where ;5 is a fresh variable such that ;00 = us = t., 0! - t.0. Define ,@,5 to
replace u; : T; with t., 71 -t : T;.

Proposition 5. Yu : T € Cs, proof of To & uo uses only rules (M) and (I).

Proposition 6. Vx € Var(Cs) let uy, : Ty, € Cs be the constraint in which x
occurs for the first time. Then uy, = z9= -Hj>0 uk,j where g, is an integer, uy, ;
are not headed with -, and x ¢ St(Ty, U {ux,; | j > 0}).

Lemma 8. Jo It C if and only if o I+ Cy for some Cs such that C ~ Cs.

Definition 4. Define Qpoz = HzeVar(%) q. where q, is the power of x in the
constraint in which it occurs for the first time.

Running example. Replace exp(c,a”) with a=! - a7 = a®, obtaining this Cs:

a®> X:a-b; a®:a-b{a}y,(b- X,exp(c,a)),b- X, exp(c,a)



5.6 Substitute target terms that introduce new variables

The ~»¢ step takes each target term in which some variable occurs for the first
time, and replaces the entire term with a new variable. In the resulting sequence,
every variable appears for the first time as the target term of some constraint.
For example, if z occurs for the first time in a -z : T}, let 6; = [z — i3 - a’%]
where Z is a new variable, and apply 6; to the entire constraint sequence.

Let k, be the index of u; : T; in which variable z first occurs. By Proposi-
tion 6, u; = x9* - szo u;; for some integer g,.

Definition 5. Vu; : T; € Cs, define

_a

g. = J [z — $e “[Tu;;* ] if i = kg for some x; % is a fresh variable

;=
] otherwise

If more than one variable appears for the first time in u;, any one of them may

be chosen.

Let C¢ = Csb; ... 0N, where Nj is the number of constraints in Cs. Although
only integer powers appear in Cs, Cg may contain rational powers.

Proposition 7. Vi € Var(Cg) & first occurs in & : T € Cg where & ¢ St(T).

Informally, term sets 7; are well-ordered if terms appearing in multiple sets
always appear in the same position. Due to monotonicity (Section 3), if i < ',
then T; C Ty. Without loss of generality, we can assume that Cg is well-ordered.

Definition 6. Cg is well-ordered if, Vt;; € T; Vty; € Ty ti5 = turj.

Proposition 8. For any rational r appearing as a power of some term in Cg,
r- Qmaz 1S an integer.

Lemma 9. 3o It C if and only if o I+ Cg for some Cg such that C ~ Cg.

Running example. In our example, 6, = [X — X a=?], 63 = 0. Therefore,
Cﬁ = C50192 is:

A

X:a-b; a®:a-b, {a}b,(b-X-a_z,exp(c,a)),b-X-a_2,exp(c,a)

5.7 Solve system of linear Diophantine equations

We now convert the constraint sequence Cg into a system of quadratic Diophan-
tine equations which is solvable if and only if 3 ¢ IF C4. We then demonstrate
that the quadratic part alwaeys has a solution as long as a particular linear
subsystem is solvable. Since linear Diophantine equations are decidable [7], this
establishes that the symbolic protocol analysis problem is also decidable.

The key to this result is Lemma 10. Intuitively, we prove that, for every
constraint u : T € Cg, the target term uo must be equal to some product



of integer powers of non-variable terms appearing in set T. We then represent
each power as an integer variable, and convert the derivation problem for each
constraint into a system of linear Diophantine equations.

Define &(t) to be the set of all top-level factors of ¢. If ¢ = ¢* - ... - ¢I»
where none of ¢; are headed with -, then &(¢t) = {t]*,... ¢’ }. For example,
B(a=2-b3) = {a~2,b3}. Define ¥(t) = {t7 € (t) | t; # & € Var(Cq)} to be the
set of all non-variable factors of ¢. Let ¢(t) = [[;cu(y) f5 t-€-, ¥(¢) is ¢ with all

~

factors of the form 2" removed. For example, 1(a - ({#}x)? - #3) = a - ({#}x)°.

Lemma 10. Vi € Var(Cs), let k, be the index of the constraint in which vari-
able x occurs for the first time. Then Yo I+ Cg,Vu; : T; € Cg

el | R (5.1)
ti; €T
such that
Bli, 5] =206, 31+ > (Y (Elkasd] -7 - 2[,5)) (5.2)

i'>5 &med(t; ;1)

for some integers Z[i,j),2[i, 5], where 1 < i < |Cgl|, Vi 1 < 4,5 < |Ty|, and
Vi > Tk, | 2[kz,7] = 0.

Proof. By induction over the length of the constraint sequence. For the induction
basis, consider u; : T; € Cg. By Proposition 5, the proof of Tio F ujo contains
only rules (M) and (I) Therefore, U0 = Htlj ey (tljg)z[l,j] for some integers
2[1, j], where 1 < j < |T}|. By Proposition 7, no variables occur in T} . Therefore,
VJ tlj = ¢(t1j) and Vi € Var(CG),j',r z" ¢ @(tljl). Then VJ 2[1,]] = Z[l,j],
and we obtain u0 = []; cr, ((t1)o)? .

Now suppose the lemma is true for all constraints up to and including u; 1 :
T;_1, i > 2. Applying Proposition 5 to u; : T;, we obtain that

u;o = H (t”/ O')Z[i’j,] (53)

ti]-l eT;

Consider any t¢;; from the above product. By definition of ¢ (t;;), tijy = (tsj)-

27t - ... - &' for some variables #1,...,%, and rational constants rq,... 7y
where m > 0. Consider any variable & € {#1,...,%n,}, and let k, be the index

of the first constraint in which x occurs. By Proposition 7, the fact that & occurs
in T; implies that u; : T; cannot be the first constraint in which £ occurs.
There must be a preceding constraint of the form z : T}, € Cg and k, < i.
By the induction hypothesis, o = HtkmjeTkm (1(tr, ;)0)*F=31. By monotonicity,
Ty, C T;. By Definition 6, Vj < |Tk, | ty,; = ti;. Moreover, since & occurs in t;;,
|Tk,| < j' by Proposition 7. Set Z[k,,j] = 0 Vj > |Tk,|, and replace each t,;
with the corresponding #;;, obtaining #o = [];_, ((tij)o)? kil

Substituting values for #io,...,Z,0 into equation 5.3, we obtain u;oc =

Htij,eTi( ¢(tij’)‘7'H;@reqs(tij,)(njq'(@b(tij)a)i[km’j]'r) )Z[i’jl]-



Distributing the exponent z[i, j'], obtain that u;o is equal to

T @o) e - T TIC @ltg)e)>eeoca Clm=iib )
ti; €T t, €Ty §<j’
Observing that Ht,-j,eT,v(HKj' tig o) = Tyern sy - ti---), we

COnClude that wio = HtijeTi (w(tij)o_)z[iyj]+zj’>j(Ei"eé(tﬁ,)(2[kmij]'r'z[i7j ]))7

pleting the induction.

com-

We now convert each constraint into an equivalent system of linear Diophan-
tine equations. If this system is unsolvable, the constraint cannot be satisfied. If,
on the other hand, there exist some values of Z[i, j] that solve the linear system,
we will prove that quadratic equations 5.2 are guaranteed to have a solution.

Consider any u; : T; € Cg. By Lemma 10, ujo = [],, e, (1h(ti;)0)*B]. By
definition, 1) (t;;) does not contain any variables as top-level factors. It is possible
that Z}* € ®(u;) for some variable #; and rational py. Applying Proposition 7
and Lemma 10, we obtain that VZj, € Var(Cg) o = HtkijTkm (1 (tg, j)o)? kel
Therefore, equation 5.1 can be rewritten as

Mg
Hiik e‘p(ui)(ntkmie.rkm (¢(tkmj)a)2[ ,J])Pk ) HuuGW(ui) a0
[1s., ex, (¥ (tij)o)?l]

For any variable #; occurring in wu;, it must be that k, < 4 since k, is

the index of the first constraint in which Z occurs. According to Definition 6,

V&g, tr,; € Tk, tr,; = tij- Dividing the right-hand side of equation 5.4 by

[Lsz ca(u) s, em, ((tk,5)0) k)P we obtain

(5.4)

IT wao= J] @) (5.5)
it €% (ui) ti; €T;
where
ylind) = 2Aidl = . P 2lke ] (5.6)

Pk ed(u;)

Recall that 2[k;,j] =0if j > |Tk, |-

Let F(Cs) = Uy, .o, (¥(ui) U{¥(ti;) | tij € Ti}) be the set of all factors
appearing in equations 5.5. Since F(Cg) C St(Cg) C St(Cy), by Proposition 2
Vt,t' € F(Cg) if t # ¢/, then to # t'o. Therefore, Vt € F(Cg) Vu; : T; € Cg, the
following system of linear equations must hold:

\q/_/ = Zt,-]-eT,- q; - yli, j]
if t7 € U(uy), if t9 € W(ty), (5.7)
0 otherwise 0 otherwise

where yli, j] are integer variables (i ranges over the length of the constraint
sequence, and, for each i, j ranges from 1 to |T}|), and g, q1, ... , q7;| are rational
constants. Multiplying equation 5.7 by the lowest common multiplier of the
denominators of ¢, q, ... ,q1;|, we obtain a linear system over y[i, j].



Lemma 11. C has a solution if and only if the system of equations 5.7 has a
solution in integers for some Cg such that C ~ Cg.

Proof. Tt follows immediately from the reduction in this section that if system 5.7
does not have a solution in integers, then Cg does not have a solution, either. It
is necessary to show that if system 5.7 has a solution in integers, then system 5.6
and, especially, the quadratic system 5.2 also have a solution.

Let {y[i,j]} be any solution of system 5.7. First, Vi € Cg Vj set y[k,,j] =
0. Since VZ € Cg ¥(u,) = ¥(£) = 0, equation 5.7 degenerates into 0 =
EtkzjeTkw g; - ylkz, j] and is still satisfied. By Proposition 7, uj, = Z;. There-
fore, Zi:keq}(ukm)pk - 2lks, §] = 2lks,J], and ylks, ] = 2[ks, j] — Z[ks, 4] = 0.
System 5.6 is thus satisfied by y[k,, j] = 0 as well.

Now, Vz € Cg Vj set 2[ks, j] = Qmaz- Recall from Proposition 8 that Qe
is an integer such that r - Q,4, is an integer for any rational power r appearing
in Cg. We need to show that systems 5.6 and 5.2 are solvable in integers.

First, consider system 5.6. If ¢ = k,, for some z, it becomes 0 = Q00 — Qmaz-
If Vz i # ky, it becomes y[i, j] = 2[i, j] — Zi:k€¢(ui) Pi * Qmasz, and is solved by
setting 2[i, j] = y[i, j] + 2574 cap(us) Ph - Qmas since pr - Qmas is an integer.

It remains to show that the quadratic system 5.2 has a solution in integers.
Pick any w; : T; € Cg and fix it. Proof is by induction over j from |T;| to 1. For
the base case, consider j = |T;|. Because there are no j' > j, set z[i, j] = 2[¢, 5].

Now suppose the proposition is true for z[i, j +1],... , 2[i, |T;|]. To complete
the proof, it is sufficient to show that there exists an integer value for z[¢, j] that
satisfies equation 5.2. Observe that z[i, j'] is an integer Vj' > j (by the induction
hypothesis), and 2[kz,j]-7 = Qmaqg - 7 is an integer V& such that 2" € &(t;5-) (by
Proposition 8). Therefore, z[i, j] = 2[i, j]— Zj’>j(ZiTe<P(tij/)(2[k$7j] -r-2[i, 5']))
is an integer solution for equation 5.2. This completes the induction.

Running example. In our running example, we are solving the following Cg:
X:a-b; a%:a-b,{a}s,(b-X a2 exp(c,a)),b- X - a=2, exp(c, a)
Cg¢ has a solution iff the following system 5.5 is solvable in integers:

1= (a-b)yL1l
a® = (- D)1 ({a},)2 - (b X -0, exp(c, )))U>:
(b-a2)v4](exp(c, )12

Since ¥ (u1) = 0, [1,,,, co(uy vrio = 1, and (b- X -a7?) =b-a™2

We set y[1,1] = 0 because k, = 1, and convert the second equation into an
equivalent linear Diophantine system 5.7, treating all non-atomic terms such as
(... ,...) and exp(c,a) as constants:

6=y[2,1]-2-y[2,4] 0=y[2,2]
0= y[2, 1] + y[254] 0= y[253]
0= y[2a 5]



The solution of this system is y[2,1] = 2,y[2,4] = —2. Therefore, the con-
straint sequence has a solution, and the corresponding symbolic trace is feasible.
In this example, Quqe = 1, therefore, 2[1,1] = 1, and X = (a - b)*I"1 = a - b.
Reconstructing the values of original variables, we obtain X = X -a=2 = a~!-b.

Theorem 2 (Soundness and completeness). Symbolic constraint sequence
C has a solution if and only if the system of linear equations 5.7 has a solution
in integers for some Cg such that C ~ Cg.

6 Conclusions

We have presented a decision procedure for symbolic analysis of cryptographic
protocols employing Abelian group operators and modular exponentiation from
arbitrary bases, assuming the number of protocol sessions is bounded. Decid-
ability is proved by reducing the symbolic constraint satisfiability problem to
the solvability of a particular system of linear Diophantine equations.

This result enables fully automated analysis of a wide class of cryptographic
protocols, such as those based on group Diffie-Hellman, that cannot be analyzed
in the standard Dolev-Yao model. The next step is development of practical
protocol analysis techniques. Instead of nondeterministically guessing subterm
equalities and the order of subterm derivation, the analysis tool would search for
a solution by inductively analyzing the structure of target terms, similar to the
techniques of [13]. We expect that this approach will result in better average-case
complexity than the generic decision procedure presented here.

Acknowledgments. Thanks to the anonymous reviewers for insightful comments,
and to Jon Millen whose collaboration was invaluable in developing the symbolic

protocol analysis framework on which the results presented in this paper are
based.
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