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Abstract

Many basic tasks in computational biology involve
operations on individual DNA and protein sequences.
These sequences, even when anonymized, are vulnerable
to re-identification attacks and may reveal highly sensi-
tive information about individuals.

We present a relatively efficient, privacy-preserving
implementation of fundamental genomic computations
such as calculating the edit distance and Smith-
Waterman similarity scores between two sequences. Our
techniques are cryptographically secure and signifi-
cantly more practical than previous solutions. We eval-
uate our prototype implementation on sequences from
the Pfam database of protein families, and demonstrate
that its performance is adequate for solving real-world
sequence-alignment and related problems in a privacy-
preserving manner.

Furthermore, our techniques have applications be-
yond computational biology. They can be used to ob-
tain efficient, privacy-preserving implementations for
many dynamic programming algorithms over distributed
datasets.

1 Introduction

Genomic data such as DNA and protein sequences
are increasingly collected by government agencies for
law enforcement and medical purposes, disseminated
via public repositories for research and medical stud-
ies, and even stored in private databases of commer-
cial enterprises. For example, deCODE Genetics aims
to collect the complete genome sequences of the entire
population of Iceland [8], while the non-profit HapMap
Project is developing a public repository of representa-
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tive genome sequences in order to help researchers to
discover genes associated with specific diseases [16].

The underlying genome records are typically col-
lected from specific individuals, and thus contain a lot of
sensitive personal information, including genetic mark-
ers for diseases, information that can be be used to es-
tablish paternity and maternity, and so on. Therefore,
genomic records are usually stored in an anonymized
form, that is, without explicit references to the identities
of people from whom they were collected.

Even if genome sequences are anonymized,re-
identificationis a major threat. In many cases, a ma-
licious user can easily de-anonymize the sequence and
link it to its human contributor simply by recognizing the
presence of certain markers [11]. Furthermore, many ge-
netic markers are expressible in the person’s phenotype,
which includes externally observable features [25]. In
general, protecting privacy of individual DNA when the
corresponding genome sequence is available to potential
attackers does not appear realistic. Developing practi-
cal tools which can support collaborative analysis of ge-
nomic data without requiring the participants to release
the underlying DNA and protein sequences is perhaps
the most important privacy challenge in computational
biology today.

In this paper, we design and implement cryptograph-
ically secure protocols for collaborative two-party com-
putation on genomic data which are significantly more
efficient than previously proposed solutions. Our main
focus is on the dynamic programming algorithms such
as the edit distance and the Smith-Waterman algorithm
for sequence alignment, which are among the funda-
mental building blocks of computational biology [15,
Chapter 11].

This paper makes the following contributions:

• We design and implement several privacy-
preserving protocols for computing theedit
distancebetween two stringsα and β, i.e., the
minimum number ofdelete, insert, andreplace
operations needed to convertα into β.
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• We construct a protocol for computing the
Smith-Waterman similarity score between two se-
quences [28] which is significantly more tractable
than generic solutions. Smith-Waterman scores are
used for sequence alignment (e.g., pairwise Smith-
Waterman distances are directly used in phyloge-
netic tree reconstruction) and also as a distance
metric in clustering algorithms.

• We demonstrate that, in addition to privacy-
preserving computation on genomic data, our tech-
niques generalize to a wide variety of dynamic pro-
gramming problems [4, Chapter 15].

• We evaluate our implementation on realistic case
studies, including protein sequences from the Pfam
database [2]. Our experimental results demonstrate
that our methods are tractable on sequences of up
to several hundred symbols in length.

Note: Our implementation is available for down-
load from the websitehttp://pages.cs.
wisc.edu/˜lpkruger/sfe/ .

Even though theoretical constructions for various se-
cure multi-party computation (SMC) tasks have received
much attention (see related work below), actual imple-
mentations and performance measurements are excep-
tionally rare. Asymptotic analysis can provide a rough
intuition, but in the absence of concrete implementations
and experimental evaluations it is hard to tell whether
these theoretical designs are feasible for practical prob-
lems.

The protocols presented in this paper are accompa-
nied by publicly available implementations. They have
been evaluated on real protein sequences and analysis
workloads, demonstrating that they can be applied in
practice to problem instances of realistic size, while
achieving the same level of cryptographic security as
theoretical constructions.

Related work: Public availability of personal informa-
tion due to the Internet has brought privacy concerns to
the forefront [6, 30]. Therefore, there has been consider-
able interest in developing privacy protection technolo-
gies [5, 12, 27].

One of the fundamental cryptographic primitives for
designing privacy-preserving protocols issecure func-
tion evaluation (SFE). Generic protocols for SFE [14,
31] enable two partiesA and B with respective in-
puts x and y to jointly compute any efficiently com-
putable (i.e., probabilistic polynomial-time) function
f(x, y) while preserving the privacy of their respective
inputs: A does not learn anything from the protocol

execution beyond what is revealed by her own inputx

and the resultf(x, y); a symmetric condition holds for
B. Our constructions employ Yao’s “garbled circuits”
method [21, 31] as a building block for several sub-
protocols, including privacy-preserving equality testing.
Some of our protocols use the garbled circuits construc-
tion in a non-black-box way, exploiting the specifics of
circuit encoding.

Special-purpose privacy-preserving protocols have
been developed for tasks such as auctions, surveys, re-
mote diagnostics, and so on [23, 20, 9, 10, 3], but
privacy-preserving genomic computation has received
little attention. We are aware of only two papers de-
voted to this or similar problems: Atallahet al. [1]
and Szaidaet al. [29]. Neither paper provides a proof
of security. The edit distance protocol of [1] is im-
practical even for very small problem instances due to
its immense computational cost (see Section 6 and ap-
pendix C). The distributed Smith-Waterman algorithm
of [29] involves decomposing the problem instance into
sub-problems, which are passed out to several partici-
pants. It is presumed that because each participant sees
only his sub-problem, he cannot infer the inputs for the
original problem (this does not appear to imply standard
cryptographic security). It is unclear how the protocol
of [29] may be used in the two-party case, or whether
it can be generalized to other dynamic programming al-
gorithms. By contrast, our techniques are provably se-
cure and substantially more scalable, as demonstrated by
our evaluation on realistic instances of genomic analysis
problems.

2 Cryptographic Toolkit

Oblivious transfer. Oblivious transferwas originally
proposed by Rabin [26]. Informally, a1-out-of-n oblivi-
ous transfer (denoted asOT n

1 ) is a protocol between two
parties, the chooser and the sender. The sender’s inputs
into the protocol aren valuesv1, . . . , vn. The chooser’s
input is an indexi such that1 ≤ i ≤ n. As a result of the
protocol, the chooser receivesvi, but does not learn any-
thing about the rest of the sender’s values. The sender
learns nothing. Our protocols do not depend on a par-
ticular construction of oblivious transfer; therefore, we
simply assume that we have access to a cryptographic
primitive implementingOT n

1 . In our implementations,
we rely on the Naor-Pinkas construction [22].

Oblivious circuit evaluation. We also employ two
standard methods for secure circuit evaluation: Yao’s
“garbled circuits” method and secure computation with
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shares. Consider any (arithmetic or Boolean) circuitC,
and two parties, Alice and Bob, who wish to evaluateC

on their respective inputsx andy.
Yao’s “garbled circuits” method was originally pro-

posed in [31] (a complete description and security proofs
can be found in [21]). Informally, Alice securely trans-
forms the circuit so that Bob can evaluate it without
learning her inputs or the values on any internal circuit
wire.

Alice does this by generating two random keys for
each circuit wire, one representing0 on that wire, the
other representing1. The keys representing Alice’s own
inputs into the circuit she simply sends to Bob. The keys
representing Bob’s inputs are transferred to Bob via the
OT 2

1 protocol. For each of Bob’s input wires, Bob acts
as the chooser using his input bit on that wire as his input
into OT 2

1 , and Alice acts as the sender with the two wire
keys for that wire as her inputs intoOT 2

1 . If Bob has a
q-bit input into the circuit, thenq instances ofOT 2

1 are
needed to transfer the wire keys representing his input,
since each input bit is represented by a separate key.

Alice produces the “garbled” truth table for each cir-
cuit gate in such a way that Bob, if he knows the wire
keys representing the values on the gate input wires,
can decrypt exactly one row of the garbled truth table
and obtain the key representing the value of the out-
put wire. For example, consider an AND gate whose
input wires area and b, and whose output wire isc.
Let k0

a, k1
a, k0

b , k1
b , k0

c , k1
c be the random wire keys repre-

senting the bit values on these wires. The garbled truth
table for the gate is a random permutation of the fol-
lowing four ciphertexts:Ek1

a
(Ek0

b

(k0
c )), Ek1

a
(Ek1

b

(k1
c )).

Ek0
a
(Ek1

b

(k0
c )), Ek0

a
(Ek0

b

(k0
c )). Yao’s protocol main-

tains the invariant that for every circuit wire, Bob learns
exactly onewire key.

Because wire keys are random and the mapping from
wire keys to values is not known to Bob (except for the
wire keys corresponding to his own inputs), this does not
leak any information about the actual wire values. The
circuit can thus be evaluated “obliviously.” For example,
given the above table and the input wire keysk0

a andk1
b

representing, respectively,0 on input wirea and1 on
input wire b, Bob can decrypt exactly one row of the
table, and learn the random keyk0

c representing0 (i.e.,
the correct result of evaluating the gate) on the output
wire c.

Observe that until Alice reveals the mapping, Bob
doesnot know which bits are represented by the wire
keys he holds. For the standard garbled circuit evalua-
tion, Alice reveals the mapping only for the wires that
represent the output of the entire circuit, but not for the

internal wires.
Several of our protocols rely on the representation of

bit values on circuit wires by random keys. These pro-
tocols use Yao’s construction not as a “black box” im-
plementation of secure circuit evaluation, but exploit its
internal structure in a fundamental way.

The second standard method issecure computation
with shares(SCWS) [13, Chapter 7]. This protocol
maintains the invariant that, for every circuit wirew, Al-
ice learns a random valuesA and Bob learnssB, where
sA ⊕ sB = bw, the actual bit value of the wire. In our
protocols, we use exclusive-or, but they can work with
any secret sharing scheme. Because the shares are ran-
dom, neither party knows the actual wire value. For each
output wire of the circuit, Alice and Bob can combine
their shares to reconstruct the output bit.

3 Privacy-Preserving Edit Distance

3.1 Edit distance: definition

Let α andβ be two strings over an alphabetΣ. Let
the lengths ofα andβ (denoted by| α | and| β |) be
n andm, respectively. The edit distance between the
two stringsα andβ (denoted byδ(α, β)) is the mini-
mum number of edit operations (delete, insert, andre-
place) needed to transformα into β. The following dy-
namic programming algorithm computesδ(α, β) in time
O(nm) [15].

Given a stringα, let α[1 · · · i] denote the firsti char-
acters ofα, andα[i] denote thei-th character ofα. The
dynamic programming algorithm maintains a(n + 1)×
(m + 1) matrixD(0 · · ·n, 0 · · ·m), whereD(i, j) is the
edit distance betweenα[1 · · · i] andβ[1 · · · j].

For the base case, we have the following:

D(i, 0) = i , 0 ≤ i ≤ n (1)

D(0, j) = j , 0 ≤ j ≤ m (2)

Next we describe a recursive relationship between the
valueD(i, j) and the entries ofD with indices smaller
thani andj. The(i, j)-th entryD(i, j) of the matrix is
computed as follows:

D(i, j) = min[D(i − 1, j) + 1, D(i, j − 1) + 1,

D(i − 1, j − 1) + t(i, j)] (3)

wheret(i, j) is defined to have value1 if α[i] 6= β[j],
and has value0 if α[i] = β[j]. The entire algorithm for
computing edit distance is shown in Figure 1.
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• ComputeD(i, 0) andD(0, j) for 1 ≤ i ≤ n and1 ≤ j ≤ m using equations 1 and 2.

• ComputeD(i, j) for 1 ≤ i ≤ n and1 ≤ j ≤ m in row major order using equation 3. In other words, we
first compute all entries for row1, then row2, and so on.

• The edit distanceδ(α, β) is equal toD(n, m).

Figure 1. Algorithm for computing edit distance.

3.2 Preserving privacy in edit distance
computation

In the rest of this section, we will consider Alice
(A) and Bob (B), who want to use the dynamic pro-
gramming algorithm of Section 3.1 to compute the edit
distanceδ(α, β) between their respective stringsα (of
size n) and β (of size m), but do not want to re-
veal the strings themselves. For example, “Alice” and
“Bob” could be medical institutions participating in an
NIH-sponsored collaborative study, while the strings in
questions could be genome sequences with significant
intellectual-property value.

We present three protocols. Protocol 1 is a straight-
forward application of Yao’s method. For large prob-
lem instances, it requires generation of very large circuit
representations. Protocol 2 splits the circuit for com-
puting the edit distance into smaller component circuits
and, furthermore, shares all intermediate values between
protocol participants. While the sharing of intermediate
values is not essential for the basic edit distance proto-
col, it is important for our efficient implementation of
the Smith-Waterman protocol (see Section 4). Protocol
3 is a hybrid of Protocols 1 and 2. In order to keep circuit
size manageable, it exploits the fundamental structure of
the dynamic programming problem by dividing the ma-
trix D into a grid and splitting each problem instance
into sub-problems of size(k, k), wherek divides bothn
andm. The differences between the protocols are sum-
marized in Figure 2.

3.3 Protocol 1 (generic SMC)

Recall that the edit distance algorithm maintains a
(n + 1) × (m + 1) matrix D(0 · · ·n, 0 · · ·m), where
D(i, j) is the edit distance betweenα[1 · · · i] and
β[1 · · · j]. Stringsα andβ can be expressed as bit strings
bit(α) andbit(β) of lengthqn andqm, whereq is equal
to ⌈log2(| Σ |)⌉.

The base case and recursive equations for comput-
ing D(i, j) were given in equations 1, 2, and 3. Let

CD(i,j) be the circuit for computingD(i, j) with inputs
corresponding to bit representation ofα[1, · · · , i] and
β[1, · · · , j]. Assume that we have computedCD(i−i,j),
CD(i,j−1), andCD(i−1,j−1). The recursive computa-
tion given by equation 3 can be represented as a circuit
CD(i,j), which computesD(i, j) by combining (i) the
equality testing circuit fort(i, j), (ii) three “add-1” cir-
cuits, and (iii) two “select-smaller-value” circuits.

The inputs to the circuitCD(i,j) are bit representa-
tions ofα[1, · · · , i], β[1, · · · , j] and the outputs of cir-
cuits CD(i,j−1), CD(i−1,j), and, CD(i−1,j−1). Once
we have the circuit representationCD(n,m) for the edit
distance problem, we can computeCD(n,m)(α, β) in
a privacy-preserving manner using standard algorithms
for secure circuit evaluation (see Section 2).

3.4 Protocol 2

Protocol 1 represents the entire problem instance as
a single circuit. The resulting representation, however,
is impractically large for problems of realistic size (see
Section 6). Protocol 2 splits the circuit corresponding to
the problem instance into smaller sub-circuits and shares
the result of evaluating each sub-circuit between the par-
ticipants. Protocol 2 exploits the specific circuit repre-
sentation in Yao’s “garbled circuits” method instead of
using it simply as an ideal functionality for secure circuit
evaluation.

Let w =| Σ | be the size of the alphabet from which
the two strings are drawn, and recall thatq = ⌈log2(w)⌉.
Let r be the length of wire keys in Yao’s “garbled cir-
cuits” construction (see Section 2);r can be viewed as
the security parameter for Yao’s protocol.

3.4.1 Component circuits

Protocol 2 involves evaluation of multiple instances of
the following two circuits.

Equality testing circuit. Circuit Ceq is the standard
logic circuit for testing equality of two values. Its in-
puts are twoq-bit values,x from Alice andy from Bob.
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Number of Round Optimized round Circuits
iterations complexity complexity used
Protocol 1 1 1 Circuit for
(generic) (n, m) instance
Protocol 2 O(nm) O(m + n) Circuits for

equality testing and
“minimum-of-three”

Protocol 3 O(nm
k2 ) O(m+n

k
) Circuit for

(k, k) instance

Figure 2. Characteristics of various protocols for problem of size (n, m).

The output for Alice is empty, and the output for Bob is
supposed to be the outcome of the comparison,i.e., 0 if
x = y, and1 if x 6= y. Ceq consists of2q − 1 gates.

Recall that in Yao’s construction, the circuit creator
generates two randomr-bit “wire keys” for each circuit
wire, including the output wire. Letk0

eq (respectively,
k1
eq ) be the wire key representing0 (respectively,1) on

the output wire of circuitCeq . In our protocol, we will
assume that the output ofCeq is not the bitσ, which is
the result of the comparison, but instead ther-bit ran-
dom valuekσ

eq , which representsσ. Observe that this
is not a black-box use of the “ideal two-party compu-
tation functionality,” because it critically depends on the
internal representation of circuit outputs by random wire
keys. (In other words, an alternative implementation of
the same functionality would not be sufficient for our
purposes.)

Bob, acting as the circuit evaluator in Yao’s protocol,
learnskσ

eq . He does not learn whether this value repre-
sents0 or 1, since he does not know the mapping from
random wire keys to the bit values they represent. This
property, too, is essential in our construction.

Minimum-of-three circuit. Circuit Cmin3 computes
the minimum of three values, each of which is ran-
domly shared between Alice and Bob, and splits the
result into random shares, too. Alice’s inputs are four
log(n + m)-bit valuesx1, x2, x3, and r. Bob’s in-
puts are threelog(n + m)-bit valuesy1, y2, y3, as well
as t ∈ {0, 1}. The circuit’s output for Bob isz =
min(x1 ⊕ y1 + 1, x2 ⊕ y2 + 1, x3 ⊕ y3 + t)⊕ r, where
⊕ is bitwise exclusive-OR, while+ is addition modulo
(n + m). The output for Alice is empty.

Observe that theCmin3 circuit takes a 1-bit valuet as
Bob’s input. In Yao’s construction,t is represented as a
randomr-bit wire keyk0

t ork1
t . As mentioned above, we

rely on this representation, and assume that Bob already
has (from a previous evaluation ofCeq ) some keykσ

t

representing the value oft. Bob holds this valueobliv-

iously. He knows that it is a valid wire key,i.e., that it
represents either0, or 1 on the input wire ofCmin3 cor-
responding tot, but he does not know the value ofσ = t

since he does not know the mapping from wire keys to
the bit values they represent.

3.4.2 Computing edit distance

Alice and Bob each maintains an(n + 1) × (m + 1)
matrixDA andDB, respectively. Each element of both
matrices is alog(n + m)-bit integer. All arithmetic is
modulon+m. The protocol maintains the invariant that
every value in the edit distance matrixD is randomly
shared between Alice and Bob, that is, for all0 ≤ i ≤ n

and0 ≤ j ≤ m we have thatD(i, j) = DA(i, j) ⊕
DB(i, j)

Additionally, Bob maintains ann×m matrixT , each
element of which is anr-bit value.

Phase 0. Alice fills in DA(i, 0) andDA(0, j) with ran-
dom log(n + m)-bit values and sends them to Bob.
Bob fills DB(i, 0) with i ⊕ DA(i, 0) andDB(0, j) with
j ⊕ DA(0, j).

Phase 1. Alice and Bob performn × m instances of
Yao’s secure circuit evaluation protocol on circuitCeq .
The inputs for the(i, j)-th instance areα[i] and β[j],
respectively. The output for Bob is a randomr-bit value
kσ

eq(i, j), whereσ = 0 if α[i] = β[j], 1 otherwise. Bob
setsT (i, j) = kσ

eq(i, j).
Observe that neither Alice, nor Bob learns the value

of σ, i.e., whetherα[i] is equal toβ[j] or not. Bob ob-
tains and stores a random key representingσ, but since
he does not know the mapping from random keys to the
bit values they represent, he cannot interpret this key.
Alice knows the mappings because she created them her-
self when producing a garbled version of theCeq circuit
for each instance of the protocol, but she does not know
which of the two output-wire keys Bob has obtained and
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thus does not learn the result of the equality test.
All n×m instances ofCeq can be evaluated in paral-

lel. Each instance requiresq 1-out-of-2 oblivious trans-
fers in order to transfer the wire keys representing Bob’s
q-bit input intoCeq from Alice to Bob (see Section 2).
These oblivious transfers can be parallelized. The to-
tal number of communication rounds is equal to those
of a single oblivious transfer,e.g., 2 in the case of Naor-
Pinkas protocol [22]. Evaluation of alln×m garbled cir-
cuits is performed by Bob, without any interaction with
Alice.

Phase 2. Recall that the recursive equation for comput-
ing D(i, j) is

D(i, j) = min[D(i − 1, j) + 1, D(i, j − 1) + 1,

D(i − 1, j − 1) + t(i, j)]

wheret(i, j) is defined to have value1 if α[i] 6= β[j],
and0 otherwise.

Phase 2 requiresn×m iterations. Let(i, j) be the in-
dices of the iterations. In the(i, j)-th iteration, Alice and
Bob perform an instance of Yao’s secure circuit evalua-
tion protocol on circuitCmin3 . Alice creates a garbled
instance ofCmin3 in the usual way (see Section 2), gen-
erating two fresh random wire keys for each circuit wire
exceptBob’s input wire corresponding to valuet.

Instead of generating new wire keys for this wire, Al-
ice re-uses the same wire keysk0

eq(i, j) andk1
eq(i, j) that

she used when creating a garbled equality-testing circuit
Ceq in the (i, j)-th instance of Phase 1. This re-use of
random wire keys is an important technical device which
exploits the internal circuit representation in Yao’s pro-
tocol. It allows us to “connect up” the evaluations of
circuitsCeq(i, j) andCmin3 (i, j), even though these cir-
cuits are evaluated at different points in the protocol.

Bob obliviously stores the keykσ(i,j)
eq (i, j) = T (i, j).

This key is the result of evaluatingCeq(i, j) and repre-
sentsσ(i, j), which is equal to0 if α[i] = β[j], and1
otherwise. Observe thatσ(i, j) = t(i, j). Effectively,
Bob stores the representation oft(i, j), without know-
ing what he is storing, until this representation is used as
an input intoCmin3 (i, j).

Alice and Bob execute standard Yao’s protocol to
evaluate the(i, j)-th instance ofCmin3 . Alice’s in-
puts are threelog(n + m)-bit values DA(i − 1, j),
DA(i, j − 1), andDA(i − 1, j − 1). Alice’s fourth in-
put is a fresh randomlog(n + m)-bit value r. Bob’s
first three inputs arelog(n+m)-bit valuesDB(i−1, j),
DB(i, j−1), andDB(i−1, j−1), and his fourth input is
T (i, j), i.e., the result of evaluating the equality-testing
circuit Ceq(i, j) onα[i] andβ[j].

Alice setsDA(i, j) = r. Bob obtains outputz from
the protocol, and setsDB(i, j) = z. Observe that
DA(i, j) ⊕ DB(i, j) is equal to

min(DA(i − 1, j) ⊕ DB(i − 1, j) + 1,

DA(i, j − 1) ⊕ DB(i, j − 1) + 1,

DA(i − 1, j − 1) ⊕ DB(i − 1, j − 1) + t(i, j))
⊕r ⊕ r

= min(D(i − 1, j) + 1, D(i, j − 1) + 1,

D(i − 1, j − 1) + t(i, j))
= D(i, j)

After the last iteration, Alice sends to Bob her ran-
dom shareDA(n, m) and Bob sends Alice his random
shareDB(n, m). This enables both Alice and Bob to
reconstruct the edit distance asDA(n, m) ⊕ DB(n, m).

Each iteration of Phase 2 requires3 log(n + m) in-
stances ofOT 2

1 in order to transfer the wire keys repre-
senting Bob’s inputs intoCmin3 (i, j) from Alice to Bob
(see Section 2). These oblivious transfers can be paral-
lelized. The total number of iterations is equal to2nm,
assuming a 2-round oblivious transfer protocol.

Pre-computation and online complexity. All gar-
bled circuits for both phases of Protocol 2 can be pre-
computed by Alice since circuit representation in Yao’s
protocol is independent of the actual inputs. The only
online cost is that ofqnm 1-out-of-2 oblivious transfers
in Phase 1 (a total of 2 iterations), and3nm log(n + m)
oblivious transfers in Phase 2 (a total of2nm iterations).

Optimization. The matrixD hasn + m − 1 diagonals,
where thek-th diagonal (0 ≤ k ≤ m + n) Diagk of
the matrixD is the set of elements{D(i, j) | i +
j = k}. Since there is no dependency between the
elements of the diagonalDiagk, they can computed in
parallel. Hence the round complexity of Protocol 2 can
be brought down toO(m+n) by evaluating all elements
of Diagk in parallel.

3.5 Protocol 3

Protocol 1 is fairly efficient, requiring onlynq exe-
cutions ofOT 2

1 , whereq = ⌈log2(| Σ |)⌉, but it has to
compute a large circuitCD(n,m). As we show in Sec-
tion 6, for large problem instances the circuit represen-
tation requires several Gigabytes of memory.

Protocol 2 splits this circuit into very small compo-
nent circuits for equality testing and computing the min-
imum of three values. Each of the small circuits is eval-
uated separately. Furthermore, Protocol 2 shares each
intermediate value (the result of evaluating a component
circuit) between the two participants. This sharing—
which will be essential in the Smith-Waterman protocol
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of Section 4—comes at a significant cost, because Pro-
tocol 2 requiresqnm + 3nm log(n + m) executions of
OT 2

1 .
In this section, we present Protocol 3, which exploits

the geometric structure of the dynamic programming
problem to split the single circuit of Protocol 1 into
smaller sub-circuits. Recall that the edit distance algo-
rithm maintains a(n + 1) × (m + 1) matrix D. Let k

be a number that divides bothn andm, i.e., k | n and
k | m.1 The union of the following sets constitutes a
grid of granularityk:

{D(i, j) | 0 ≤ i ≤ n andj ∈ {0, k, 2k, · · · , m
k

k}}
{D(i, j) | i ∈ {0, k, 2k, · · · , n

k
k} and0 ≤ j ≤ m}

Given an elementD(i, j), therectangleof lengthl and
width w with D(i, j) at the top right corner (denoted
by rect(D(i, j), l, w)) is the union of the following four
sets of points :

{D(i, j − l), D(i, j − l + 1), · · · ,

D(i, j − 1), D(i, j)}
{D(i − w, j − l), D(i − w, j − l + 1), · · · ,

D(i − w, j − 1), D(i − w, j)}
{D(i − w, j), D(i − w + 1, j), · · · ,

D(i − 1, j), D(i, j)}
{D(i − w, j − l), D(i − w + 1, j − l), · · · ,

D(i − 1, j − l), D(i, j − l)}

The above four sets of points correspond to the
top, bottom, right, and left sides of the rectangle
rect(D(i, j), l, w). Therefore, we denote these set
of points astop(D(i, j), l, w), bottom(D(i, j), l, w),
right(D(i, j), l, w), andleft(D(i, j), l, w), respectively.
We have the following lemma:

Lemma 1 D(i, j), can be expressed as a function of
bottom(D(i, j), l, w), left(D(i, j), l, w), α[i − w +
1 · · · i], andβ[j − l + 1 · · · j].

The proof for this lemma is straightforward but tedious,
and is provided in appendix A.

Protocol 3 is described in Figure 4 and proceeds in
three phases similar to Protocol 2. Phase 0 and 1 of Pro-
tocol 3 are exactly the same as Protocol 2. In Phase 2,
we compute all other values on the grid using the recur-
rence implicit in the proof of Lemma 1.

Consider the grid shown in Figure 3. First, the ran-
dom shares of the values that correspond to left and bot-
tom edge of the grid are computed. Now assume that we

1Our protocol can be easily extended to remove the assumptionthat
k divides bothn andm.

A

BC

D

X 

YZ

W

Figure 3. Example grid.

want to compute the random shares of the value corre-
sponding to pointA. Using Lemma 1, the value corre-
sponding to pointA can be expressed as a function of the
values corresponding to sidesCB andDC, α[CB], and
β[DC] (we are abusing the notation slightly by using
CB to denote all indices that lie on the segmentCB).
A straightforward implementation of Protocol 3 takes
O(mn

k2 ) iterations. However, using the optimization dis-
cussed in the previous subsection the number of rounds
can be brought down toO(m+n

k
).

4 Privacy-Preserving Smith-Waterman

We now give a privacy-preserving version of the
Smith-Waterman algorithm for comparing genome se-
quences [28]. This algorithm is more sophisticated than
the edit distance algorithm, because the cost ofdelete,
insert, andreplace operations may no longer be equal
to 1, but determined by special functions.

As before, letα and β be two strings over the al-
phabetΣ. The Smith-Waterman algorithm uses a cost
function c and a gap functiong. The cost function
c : Σ × Σ → ℜ associates a costc(u, v) with each pair
(u, v). Typically,c(u, v) has the following form:

c(u, v) =

{

a if u = v

−b if u 6= v

If a symbol is deleted or inserted, a special symbol
“−” is inserted. For example, if the fourth symbol is
deleted from CTGTTA, it is written as CTG−TA. A
sequence of “−” is called agap. Gaps are scored using
agap functiong, which typically has anaffineform:

g(k) = x + y(k − 1)

In the above equationk is the size of the gap (number of
consecutive “−” in a sequence), whilex > 0 andy > 0
are constants.

DefineH(i, j) as the following equation:

max{ 0, ∆(α[x · · · i], β[y · · · j])
for 1 ≤ x ≤ i and1 ≤ y ≤ j }

7



• Phases0 and1 are the same as in Protocol 2.
• Phase2: Compute random shares for values on the grid.
We compute the random shares for all values on the grid in the row-major order. Consider a valueD(i, j) on the
grid and the rectanglerect(D(i, j, ), l, w) with l = i−k⌊ i−1

k
⌋ andw = j−k⌊ j−1

k
⌋. The reader can check that

all values in the gridrect(D(i, j, ), l, w) lie on the grid of granularityk. Let CD(i,j) be the circuit for computing
D(i, j) from inputsbottom(D(i, j), l, w), left(D(i, j), l, w), α[i − l + 1 · · · i], andβ[j −w + 1 · · · j]. Note that
circuit CD(i,j) can be constructed by mimicking the proof of Lemma 1. Recall that we also have random shares
for the values in the setsbottom(D(i, j), l, w) andleft(D(i, j), l, w). We can now compute the random shares
for D(i, j). Essentially this is similar to Phase 2 of Protocol 2, but usingCD(i,j) instead ofCmin3 .

Figure 4. Protocol 3.

Recall thatα[x · · · i] is the stringα[x]α[x + 1] · · ·α[i].
The distance between stringsα[x · · · i] andβ[y · · · j] ac-
cording to the cost functionc and gap functiong is de-
noted by∆(α[x · · · i], β[y · · · j]). TheSmith-Waterman
distance between two stringsα and β (denoted by
δSW (α, β)) is simplyH(n, m), wheren andm are the
lengths of the two stringsα andβ. ValuesH(i, 0) and
H(0, j) are defined to be zero for0 ≤ i ≤ n and
0 ≤ j ≤ m. For1 ≤ i ≤ n and1 ≤ j ≤ m, H(i, j) is
defined using the following recursive equation:

H(i, j) = max [ 0
max1≤o≤i{H(i − o, j) − g(o)},
max1≤l≤j{H(i, j − l) − g(l)},
H(i − 1, j − 1) + c(α[i], β[j]) ]

We now adapt the privacy-preserving protocols for
computing the edit distance to compute the Smith-
Waterman distance. Note that the size of each element
of the matrix is no longerlog(n + m) bits, but depends
on the specific cost function used.

As before, Protocol 1 requires a single circuitCH(i,j)

for computingH(i, j) using the recursive equation. This
circuit, however, is significantly more complex. Unlike
in the edit distance protocol, whereσ = 0 if α[i] = β[j]
and 1 otherwise,σ now is an arbitrary cost function
c(α[i], β[j]). Therefore, the circuit has to perform a ta-
ble lookup onc(α[i], β[j]) to determine the lowest cost
alignment. Likewise, the gap function, which is a con-
stant1 for edit distance, is replaced by the gap value
of the scoring function for Smith-Waterman. By con-
vention, lower numbers represent higher costs (higher
numbers represent a similarity score), so a maximum-
of-three circuit is used instead of minimum-of-three.

Protocol 3 can also be easily adapted for computing
the Smith-Waterman distance. The key observation is
that if H(i, j) lies on the grid, then the values used in
the recursive equation

{H(i − o, j) | 1 ≤ o ≤ i}
{H(i, j − l) | 1 ≤ l ≤ j}

also lie on the grid.
Protocol 2 can be adapted to compute the Smith-

Waterman distance with significantspace savingsvs.
Protocols 1 and 3. Unlike the edit distance protocol,
where the cumulative size of circuits used by Protocol
2 is the same as the size of the single circuit used by
Protocol 1, Protocol 2 for Smith-Waterman can avoid
“embedding” the values of the cost and gap functions in
the circuit.

As in the case of edit distance, Alice and Bob must
maintain a(n + 1) × (m + 1) matrix HA andHB, re-
spectively, with the following invariant:

H(i, j) = HA(i, j) ⊕ HB(i, j)

In Phase 0, Alice fills inHA(i, 0) andHA(0, j) with ran-
dom values and sends them to Bob. Bob fillsHB(i, 0)
with HA(i, 0) andHB(0, j) with HA(0, j).

Recall that during Phase 1 of Protocol 2 for com-
puting the edit distance (see Section 3.4), a circuit to
test equality of Alice’s and Bob’s respective characters
is evaluated. In Protocol 2 for Smith-Waterman,OT 1

|Σ|

is performed instead. Alice, acting as the sender, sends
valuesv1, . . . , v|Σ|, wherevl = r − c(α[i], β[l]) andr

is Alice’s random share of the current matrix element.
Bob, acting as the chooser, selects the element with in-
dexβ[j], thus obtainingr−c(α[i], β[j]). In Phase 2, Al-
ice and Bob’s shares are input into a maximum-of-three
circuit which computes and shares the next value of the
dynamic programming matrix. The remaining details of
the protocol are the same as for edit distance.

5 Generalization to Privacy-Preserving
Dynamic Programming

We now generalize the protocols of Section 3 to ar-
bitrary dynamic programming problems. LetP(x, y) be
a problem with two inputsx andy, e.g., in the edit dis-
tance case,x andy are the two strings. Typically, a dy-
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namic programming algorithmAP for problemP has
the following components:
• A set S of sub-problems and a dependency relation
R ⊆ S × S between the sub-problems. Intuitively,
(s, s′) ∈ R means that the sub-problems′ depends on
the sub-problems. If there is a dependency betweens

ands′, we write it ass → s′. In the case of the prob-
lem of computing the edit distance between two strings
α and β of length n and m, the set of sub-problems
is [0, · · · , n] × [0, · · · , m]. For all sub-problems(i, j)
such thati 6= 0 andj 6= 0, we have the following de-
pendencies:(i − 1, j) → (i, j), (i, j − 1) → (i, j),
and(i − 1, j − 1) → (i, j). Thebase sub-problemsare
s ∈ S such that they have no dependencies. For the edit
distance problem, the base sub-problems are:

{(i, 0) | 0 ≤ i ≤ n}
{(0, j) | 0 ≤ j ≤ m}

We also assume that there is a unique root sub-problem
root ∈ S such that there does not exist a sub-problem
that depends onroot . For the edit distance problem, the
unique root sub-problem is(n, m).
• Each sub-problems is assigned a valueval (s). The
goal is to computeval (root). The functionval from S

to ℜ assigns values to sub-problems so that it satisfies
the following properties:

• For all base sub-problemss ∈ S, val (s) is defined.

• Let s ∈ S be a non-base sub-problem. De-
fine pred(s) as all predecessors ofs, i.e., the set
pred(s) is defined as{s′ | s′ → s}. As-
sume thatpred(s) is equal to{s1, · · · , sk}. There
is a recursive functionf definingval (s) in terms
of val(s1), val (s2), · · · , val(sk), s(x), and s(y),
wheres(x) ands(y) are parts of the inputx and
y that are relevant to the sub-problems. In the case
of the edit distance problem,val ((i, j)) is equal to
D(i, j). The values for the base and non-base sub-
problems for the edit distance problem are defined
in equations 1 and 3 in Section 3.1.

Consider a problemP(x, y) with two inputsx and
y. Assume that problemP has a dynamic programming
algorithmAP with the space of sub-problemsS. We
now design a privacy-preserving protocol forP(x, y),
where Alice has inputx and Bob has inputy.
Protocol 1: Recall thatval : S → ℜ assigns a value
to each sub-problem. Lets be a sub-problem andCs

be the circuit with inputss(x) ands(y) that computes
val(s). The circuitCs can be constructed using the re-
cursive equationf for defining the value of non-base

sub-problems and the circuits for sub-problemss′ that
are predecessors ofs. Assume that we have constructed
a circuitCroot for the root sub-problem. Using the cir-
cuitCroot and standard protocols, we can privately com-
pute theval(root).
Protocol 2: In this protocol, we randomly splitval (s)
for all sub-problems. We denote the two shares ofval (s)
by valA(s) and valB(s). Assume that we have ran-
domly splitval (s) for all base sub-problemss. Consider
a sub-problems such thatpred(s) = {s1, · · · , sk}.
Assume that we have computed random sharesvalA(si)
andvalB(si) for val(si) (where1 ≤ i ≤ k). Recall
that we have the following recursive equation describ-
ing val(s):

val (s) = f(val(s1), · · · , val (sk), s(x), s(y))

Since we have computed the random shares forval (si)
(1 ≤ i ≤ k), we can compute the random shares
of val (s). At the end of the protocol,valA(root) ⊕
valB(root) gives the desired result.
Protocol 3: Protocol 3 depends heavily on the structure
of the spaceS of sub-problems. For example, for the
edit distance problem, Protocol 3 fundamentally relies
on the matrix structure ofS.

6 Experimental Evaluation

In this section we present experimental results for our
protocols for computing the edit distance and the Smith-
Waterman distance between two strings. For edit dis-
tance, our tests were performed on random strings. For
the Smith-Waterman distance, we aligned representative
protein sequences from the Pfam database of protein
sequences [2] in protein familyQH-AmDH gamma
(PF08992), which is a crystalline quinohemoprotein
amine dehydrogenase from Pseudomonas putida. The
average length of these proteins is 78 amino acids. In
order to demonstrate the scalability of the algorithm, we
truncate the proteins to various lengths as shown in fig-
ure 6. For the cost function, we used the BLOSUM62
matrix [7] which is a(20, 20) substitution matrix based
on log-odds statistics derived from experimental protein
data which approximates the probability of substitution
of amino acids in homologous proteins. It is a com-
monly used metric in genomic research.

6.1 Edit distance

We implemented the standard methods for secure cir-
cuit evaluation,i.e., the Yao’s “garbled circuits” method
and secure computation with shares (see Section 2). We
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used the oblivious transfer protocol due to Naor and
Pinkas [22]. For the minimum-of-three computation, we
used the lowest-price auction circuit of Kurosawa and
Ogata [18]. Using these primitives, we implemented
the three protocols of Section 3. For comparison pur-
poses, we also implemented the edit distance protocol
of Atallah et al. [1], using the Lin-Tzeng construction
for the millionaires’ protocol [19] and Paillier homomor-
phic encryption [24] (see appendix C). All of the code
was written in Java.

The experiments were executed on two 3-GHz Pen-
tium 4 machines, with 2 Gigabytes of memory, and con-
nected via a local LAN. Using this setup, we obtained
measurements (network bandwidth and execution times)
for the three protocols on various problem sizes. The
reason for performing the experiment on a local LAN is
to provide a “best-case” result for execution times in an
environment where network bandwidth is not a bottle-
neck. Because the bandwidth numbers presented do not
depend on the experimental setup, execution times for
bandwidth-limited networks can be estimated from the
numbers presented here.

The size of the problem instance is(n, m), where
n andm are the sizes of the two strings. For simplic-
ity, all experiments were performed on problems where
m = n. We used the alphabet size of256 in our exper-
iments. The main conclusions that can be drawn from
our measurements are:

• Protocol 1 (generic SMC) is very fast.Protocol 1 is
ideal for small strings because the entire computa-
tion is performed in one round, but the circuit size
is extremely large for longer strings. Our prototype
circuit compiler can compile circuits for problems
of size(200, 200) but uses almost 2 GB of memory
to do so. Significantly larger circuits would be con-
strained by available memory for constructing their
garbled versions.

• Protocol 3 is most suitable for large problems.Pro-
tocol 3 uses the grid structure of the problem space,
which makes it most suitable for large instances.
For example, a problem instance of size(500, 500)
takes under an hour. Asymptotically, Protocol 3 has
the same performance as Protocol 2, but in practice
it is substantially faster.

• Bandwidth requirements are asymmetrical.Be-
cause Alice sends the majority of data in the Naor-
Pinkas oblivious transfer [22], bandwidth require-
ments are asymmetrical. Specifically, Alice sends
far more data than she receives, while the opposite
is the case for Bob. This fact can be exploited if

the communication channel is asymmetric, such as
with ADSL or cable lines, which typically offer a
greater bandwidth for transmitting data in one di-
rection than in the other. In this case, Alice’s role
can be assigned to the party that has higher upload
bandwidth.

• The edit distance protocol by Atallah et al. [1] is
not practical.In our edit-distance experiments, the
protocol of [1] performed at least an order of mag-
nitude worse than our protocols. This is because
many large numbers (Paillier ciphertexts) are com-
puted and sent multiple times by both Alice and
Bob at each step. For example, on a problem in-
stance of size(25, 25) the protocol by Atallahet al.
took 5 and half minutes. Our Protocol3 took 14
seconds on the same problem instance.

Figure 5 shows the execution times for our three pro-
tocols. Clearly, Protocol3 scales the best as the problem
size increases. Protocol1 is suitable for small problems.
Protocol2 has a larger execution time, but only requires
limited bandwidth per round. Our experimental results
confirm the protocol characteristics shown in Figure 2.

Detailed results for Protocols 1 and 2 are presented in
the appendix. We discuss results for Protocol 3 in detail.
Recall that in this protocol a grid structure is used (see
Section 3.5). Using Protocol 3, we were able to solve
problem instances of considerable size; here we present
measurements for a problem instance of size (200,200).
Table 1 shows the results using various grid sizes. Per-
formance steadily improves up to the grid size of20,
but begins to decrease slightly after that. In spite of
decreased overall performance, further increases in the
grid size slightly decrease network bandwidth require-
ments, which results in fewer round trips, so even larger
grid sizes may be suitable for environments with lim-
ited network bandwidth. With a grid size of20, Protocol
3 requires about as much time for an instance of size
(200, 200) as Protocol 2 requires for an instance of size
(25, 25).

6.2 Smith-Waterman

Figure 6 shows the timing measurements for the three
protocols. For Protocols 1 and 3, the computation time
scales with the size of the score matrix, which is|Σ|2.
For example, the bytes transferred over the network
aligning protein sequences using BLOSUM62 are ap-
proximately 40 times that of for simple edit distance of
the same size problem. This is caused by the use of extra
gates in the Yao circuit which encode each value of the
score function.
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Figure 5. Timing measurements (in minutes and seconds) comparing edit distance Protocols
1, 2, and 3. The protocol by Atallah et al. [1] could not complete problems of size (20, 20) and
(25, 25) within the 3-minute cutoff for this experiment.

Protocol 2 scales with the alphabet size| Σ |. For a
very large alphabet with hundreds of symbols, Protocol
2 is the best choice because the cost of embedding the
entire matrix into a Yao circuit becomes prohibitive.

7 Conclusion

We presented several privacy-preserving protocols
for computing on genomic data, including calculating
the edit distance and Smith-Waterman similarity scores
between genome sequences. We evaluated our imple-
mentation on real problem instances involving align-
ment of protein sequences, and demonstrated that its
performance is tractable even for instances of substantial
size. Our techniques generalize to other dynamic pro-
gramming algorithms, and we expect that they will find
application in other contexts,e.g., in hierarchical clus-
tering algorithms which use edit distance as the metric.

Our protocols are but a first step towards practical
methods for achieving privacy in genomic computation.
In our solutions, cryptographic security comes at a sub-
stantial cost in computation and communication. Devel-
opment of more efficient, yet provably secure techniques
for collaborative computation on genome sequences is
an important challenge for future research.
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A Proof of Lemma 1

The proof is by simultaneous induction onl andw.
For l = 1 andw = 1 the results follows using the fol-
lowing recursive relationship:

D(i, j) = min[D(i − 1, j) + 1, D(i, j − 1) + 1,

D(i − 1, j − 1) + t(i, j)]

The induction step is tedious but simple. Assume that
the result is true for alll′ andw′ such thatl′ ≤ l and
w′ ≤ w. We will prove the result that forl + 1 and
w. Recall that we have to prove thatD(i, j), can be
expressed as a function ofbottom(D(i, j), l + 1, w),
left(D(i, j), l+1, w), α[i−w+1 · · · i], andβ[j−l · · · j].
The following three statements are true by induction hy-
pothesis:

• D(i − 1, j) can be expressed as a function of
bottom(D(i− 1, j), l + 1, w− 1), left(D(i, j), l +
1, w − 1), α[i − w + 1 · · · i − 1], andβ[j − l · · · j]

• D(i, j − 1) can be expressed as a function of
bottom(D(i, j − 1), l, w), left(D(i, j − 1), l, w),
α[i − w + 1 · · · i], andβ[j − l · · · j − 1]

• D(i − 1, j − 1) can be expressed as a function of
bottom(D(i−1, j−1), l, w−1), left(D(i−1, j−
1), l, w−1), α[i−w+1 · · · i−1], andβ[j−l · · · j−
1].

Notice thatD(i, j) can be expressed in terms ofD(i −
1, j), D(i, j − 1), D(i − 1, j − 1), α[i], andβ[j]. Now
the result is clear by combining the the four statements
mentioned above. Similarly, we can prove thatD(i, j),
can be expressed as a function ofbottom(D(i, j), l, w+
1), left(D(i, j), l, w + 1), α[i − w · · · i], andβ[j − l +
1 · · · j]. 2

B Detailed Results for Protocols 1 and 2

As a preparation step, a specific garbled circuit must
be constructed for each problem instance. To create
circuits, we used a prototype circuit compiler we are
developing, which can be downloaded from the web-
site athttp://www.cs.wisc.edu/˜lpkruger/
sfe/ . Table 2 shows the network bandwidth (in bytes)
and execution times (in seconds) for various problem in-
stances. In this experiment, the circuits operate on8-bit
integers, which allows for a maximum edit distance of
255. Results for Protocol 2 can be found in Table 3.

C Comparison with the Edit Distance Pro-
tocol of Atallah et al. [1]

In [1], Atallah et al. presented a privacy-preserving
edit distance protocol, which is superficially similar to
our Protocol 2 in that the intermediate valuesD(i, j) are
additively shared between Alice and Bob. The protocol
of [1] relies on different cryptographic techniques, in-
cluding special-purpose solutions to the so called “mil-
lionaires’ problem” (a two-party protocol, in which the
parties determine whose input is bigger without reveal-
ing the actual input values) and additively homomorphic
encryption.

In this section, we present a detailed comparison of
the online computational cost of our protocol vs. that
of [1]. Let q = ⌈log w⌉ be the length of each alphabet
symbol, and lets = log(n + m) be the length of ran-
dom shares used to maskD(i, j) in our protocol. In the
protocol of [1], masking is done by adding random val-
ues under homomorphic encryption, in a group of very
larger order (e.g., RSA modulusN in the case of Paillier
encryption) which is much bigger thann + m. Modular
addition requires random shares to beN bits long and
will make the computations unrealistically expensive.
The alternative is to perform addition of random shares
to encrypted values over integers. To achieve standard
cryptographic security in this case, the length of random
shares in bits must be at leasts′ = log(n + m) + 80 =
s + 80.
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Problem Bandwidth Bandwidth ) CPU CPU wall
size (Alice) (Bob) (Alice) (Bob) clock

(8,8) 0.37 M 3633 0.74 0.39 1.12
(12,12) 0.96 M 5348 1.30 0.54 1.92
(16,16) 1.83 M 7057 2.12 0.68 3.02
(20,20) 2.97 M 8764 3.10 0.88 4.46
(25,25) 4.38M 10472 4.26 1.17 5.94

(100,100) 86.7M 43029 71.5 14.1 92.4

Table 2. Network bandwidth (in bytes) and timing measurements (in seconds) for the edit dis-
tance Protocol 1 (M refers to Megabytes).

Problem Bandwidth Bandwidth ) CPU CPU wall
size (Alice) (Bob) (Alice) (Bob) clock

(8,8) 717 k 68 k 3.03 1.29 4.05
(12,12) 1.60 M 154 k 5.96 2.37 7.68
(16,16) 3.36 M 315 k 11.5 4.38 14.7
(20,20) 5.26 M 492 k 17.5 6.54 22.1
(25,25) 8.21 M 769 k 26.8 9.7 33.7

(100,100) 171.1 M 32.0 M 519 177 649

Table 3. Network bandwidth (in bytes) and timing measurements (in seconds) for the edit dis-
tance Protocol 2 with various problem sizes (k and M refer to Kilobytes and Megabytes, respec-
tively).

Below, we compare the cost for a single iteration,
since the number of iterations is equal tonm in both
protocols.

Online computational cost of [1]. Each iteration has to
compute a minimum or maximum three times: twice in
step 1 onq-bit values, and once in step 5 ons′-bit val-
ues [1, section 4.1]. Each minimum/maximum finding
protocol requires two instances of the millionaires’ sub-
protocol, and six re-randomizations of Paillier cipher-
texts. The latter involves exponentiation moduloN2,
whereN2 is the modulus of an instance of Paillier cryp-
tosystem.N itself is an RSA modulus and must be at
least 1024 bits; therefore,N2 is at least 2048 bits.

The implementations of the millionaires’ protocol
suggested in [1] are relatively inefficient. For fair com-
parison, we will assume that the construction of [1] is
instantiated with a state-of-the-art sub-protocol for the
millionaires’ problem,e.g., the Lin-Tzeng protocol [19].
This protocol requires(1540s′−6) online modular mul-
tiplications per instance ifs′-bit values are being com-
pared (1540q−6 if q-bit values are being compared), as-
suming the standard size of 512 bits for the prime moduli
in ElGamal encryption.

Assuming that the permutations required by [1] are

free, the online cost of each iteration is thus equivalent
to2×(2×(1540q−6)+6×2048)+(2×(1540s′−6)+6×
2048) = 2×(3080q−12+12288)+(3080s′−12+12288)
= 3080s′ + 6160q + 36828 = 3080s + 6160q + 283228
modular multiplications.

Online computational cost of our Protocol 2. Each it-
eration of our Protocol 2 involves evaluation of several
“garbled circuits.” EachCeq circuit has2q gates of ar-
ity 2, and eachCmin3 circuit has10s gates of arity 2,
and5s − 6 gates of arity 3. In each iteration, a single
instance ofCeq and a single instance ofCmin3 must be
evaluated (in our presentation, evaluation of circuitsCeq

andCmin3 is split between two phases, but there is a 1:1
correspondence between the iterations of each phase).

All garbled circuits can be pre-computed in advance,
because the representation of the circuit in Yao’s pro-
tocol is independent of the actual input values. Each
row of the truth table of each gate becomes a double-
encrypted symmetric ciphertext (see Section 2), for a to-
tal of 4×2q +(4×10s+8× (5s−6)) = 8q +80s−48
ciphertexts. Decrypting each double-encrypted cipher-
text requires two online symmetric decryptions, but, on
average, the evaluator of a garbled gate will only need
to try decrypting half the ciphertexts before decryption

14



succeeds and he obtains the wire key representing the bit
value of the gate’s output wire.

Transferring the wire-key representation of Bob’sq-
bit input intoCeq requiresq instances ofOT 2

1 . The on-
line cost of each instance is 2 modular exponentiations
and 1 modular multiplication. Therefore, assuming 512-
bit moduli, the total online cost of obliviously transfer-
ring the inputs toCeq is equivalent to1025q modular
multiplications.

In the same iteration, a single instance ofCmin3 must
be evaluated. Bob has threes-bit inputs (after evaluat-
ing Ceq , he already has the representation for his fourth
input). Obliviously transferring the wire-key represen-
tation of these inputs requires3s instances ofOT 2

1 , for
a total cost of3075s modular multiplications.

Therefore, the total online cost of each iteration of
our Protocol 2 is(3075s + 1025q) modular multipli-
cations and8q + 80s − 48 symmetric decryptions vs.
(3080s + 6160q + 283228) modular multiplications in
each iteration of [1]. Since symmetric decryption is
much cheaper than modular multiplication, we conclude
that our Protocol 2 offers significantly better efficiency
than the protocol of [1]. In general, the protocol of [1]
requires at least 300,000 modular multiplications per it-
eration, rendering it unrealistically expensive for practi-
cal applications.

D Security Proofs

Our protocols are secure in the so called thesemi-
honestmodel of secure computation,i.e., under the as-
sumption that both participants faithfully follow the pro-
tocol specification. To achieve security in themalicious
model, where participants may deviate arbitrarily from
protocol specification, participants would need to com-
mit to their respective inputs prior to protocol start and
then prove in zero knowledge that they follow the proto-
col specification.

Since we use Yao’s “garbled circuits” method as the
underlying primitive, security in the malicious model,
if needed, can be achieved at a constant cost [17].
For practical usage scenarios, however, it is not clear
whether security in the malicious model offers signifi-
cant advantages over security in the semi-honest model.
For example, there is no external validation of the par-
ties’ inputs. Even if the protocol forces each party to run
the protocol on previously committed inputs, this does
not guarantee that the inputs are not maliciously chosen
in the first place. In other words, a malicious party may
simply commit to a “bad” input (deliberately chosen so
that the result of the edit distance computation reveals

some information about the other party’s input) and pass
all proofs.

In general, we expect that our protocols will be used
for tasks such as collaborative analysis of genome se-
quence in joint medical studies, where it is reasonable
to assume that participants provide actual sequences as
inputs into the protocol, and are not deliberately sup-
plying fake sequences in an attempt to learn something
about the other participant’s data.

Security of our protocols follows directly from (i) se-
curity of subprotocols performed using standard meth-
ods for secure multi-party computation, and (ii) compo-
sition theorem for the semi-honest model [13, Theorem
7.3.3]. Proofs are standard and omitted from the confer-
ence version of the paper. Note that it is not possible to
completely hide the length of the sequences, as an upper
bound can be inferred from the size of the computation.
Random padding of the sequences can be used to miti-
gate this with a corresponding performance penalty.
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