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Abstract

Web applications written in languages such as PHP and JSP

are notoriously vulnerable to accidentally omitted authoriza-

tion checks and other security bugs. Existing techniques that

find missing security checks in library and system code as-

sume that (1) security checks can be recognized syntacti-

cally and (2) the same pattern of checks applies universally

to all programs. These assumptions do not hold for Web ap-

plications. Each Web application uses different variables and

logic to check the user’s permissions. Even within the appli-

cation, security logic varies based on the user’s role, e.g.,

regular users versus administrators.

This paper describes ROLECAST, the first system capable

of statically identifying security logic that mediates security-

sensitive events (such as database writes) in Web applica-

tions, rather than taking a specification of this logic as input.

We observe a consistent software engineering pattern—the

code that implements distinct user role functionality and its

security logic resides in distinct methods and files—and de-

velop a novel algorithm for discovering this pattern in Web

applications. Our algorithm partitions the set of file con-

texts (a coarsening of calling contexts) on which security-

sensitive events are control dependent into roles. Roles are

based on common functionality and security logic. ROLE-

CAST identifies security-critical variables and applies role-

specific variable consistency analysis to find missing se-

curity checks. ROLECAST discovered 13 previously unre-

ported, remotely exploitable vulnerabilities in 11 substantial

PHP and JSP applications, with only 3 false positives.

This paper demonstrates that (1) accurate inference of

application- and role-specific security logic improves the

security of Web applications without specifications, and (2)
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static analysis can discover security logic automatically by

exploiting distinctive software engineering features.
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1. Introduction

By design, Web applications interact with untrusted users

and receive untrusted network inputs. Therefore, they must

not perform security-sensitive operations unless users hold

proper permissions. This mechanism is known as security

mediation. In Web applications, security mediation is typ-

ically implemented by performing security checks prior to

executing security-sensitive events. For example, a program

may verify that the user is logged in as an administrator be-

fore letting the user update the administrative database.

Our objective in this paper is to develop a robust method

for finding missing security checks in Web applications. The

main challenge is that each application—and even differ-

ent roles within the same application, such as administra-

tors and regular users—implements checks in a different,

often idiosyncratic way, using different variables to deter-

mine whether the user is authorized to perform a particular

operation. Finding missing checks is easier if the program-

mer formally specifies the application’s security policy, e.g.,

via annotations or data-flow assertions [6, 27], but the over-

whelming majority of Web applications today are not ac-

companied by specifications of their intended authorization

policies.

Previous techniques for finding missing authorization

checks without a programmer-provided policy take the syn-

tactic definition of checks as input. Therefore, they must

know a priori the syntactic form of every check. For exam-

ple, Java programs perform security mediation by calling

predefined methods in the SecurityManager class from



the Java libraries [12, 17, 19, 22], and SELinux kernel code

calls known protection routines [23]. This approach is suit-

able for verifying security mediation in library and system

code, for which there exists a standard protection paradigm,

but it does not work for finding missing authorization checks

in applications because there is no standard set of checks

used by all applications or even within the same application.

Whereas analysis of security mediation in libraries requires

checks as inputs, analysis of security mediation in Web ap-

plications must infer the set of role-specific checks from the

application’s code and produce it as an output.

Our contributions. We designed and implemented ROLE-

CAST, a new static analysis tool for finding missing secu-

rity checks in Web applications. Given a Web application,

ROLECAST automatically infers (1) the set of user roles in

this application and (2) the security checks—specific to each

role—that must be performed prior to executing security-

sensitive events such as database updates. ROLECAST then

(3) finds missing security checks. ROLECAST does not rely

on programmer annotations or an external specification that

indicates the application’s intended authorization policy, nor

does it assume a priori which methods or variables imple-

ment security checks.

ROLECAST exploits common software engineering pat-

terns in Web applications. In our experience, these patterns

are almost universal. A typical Web application has only a

small number of sources for authorization information (e.g.,

session state, cookies, results of reading the user database).

Therefore, all authorization checks involve a conditional

branch on variables holding authorization information. Fur-

thermore, individual Web pages function as program mod-

ules and each role within the application is implemented

by its own set of modules (i.e., pages). Because each page

is typically implemented by one or more program files in

PHP and JSP applications, the sets of files associated with

different user roles are largely disjoint.

Our static analysis has four phases. Phase I performs

flow- and context-sensitive interprocedural analysis to col-

lect calling contexts on which security-sensitive events are

control dependent. For each context, ROLECAST analyzes

interprocedural control dependencies to identify critical

variables, i.e., variables that control reachability of security-

sensitive events. It then uses branch asymmetry to elimi-

nate conditional statements that are unlikely to implement

security checks because they do not contain branches corre-

sponding to abnormal exit in the event of a failed check. This

step alone is insufficient, however, because many critical

variables (e.g., those responsible for logging) are unrelated

to security.

Phase II performs role inference. This step is the key new

analysis and is critical because different roles within the

same application often require different checks. For exam-

ple, prior to removing an entry from the password database,

a photo-sharing application may check the session variable

to verify that the user performing the action is logged in with

administrator privileges, but this check is not needed for up-

dating the content database with users’ photos. ROLECAST

infers application-specific roles by analyzing the modular

structure of the application. As mentioned above, in PHP

and JSP applications this structure is represented by pro-

gram files. Phase II partitions file contexts that use critical

variables into roles. A file context is simply a coarsened rep-

resentation of a calling context. The partitioning algorithm

arranges file contexts into groups so as to minimize the num-

ber of files shared between groups. We call each group a role.

Phase III of ROLECAST determines, within a role, which

critical variables are checked consistently and classifies this

subset of the critical variables as security-critical variables.

Phase IV then reports potential vulnerabilities in the follow-

ing cases: (1) if a calling context reaches a security-sensitive

event without a check; or (2) if the role contains a single

context and thus there is no basis for consistency analysis;

or (3) if a check is performed inconsistently (in the majority,

but not all calling contexts of the role).

Because our approach infers the Web application’s au-

thorization logic under the assumption that the application

follows common code design patterns, it may suffer from

both false positives and false negatives. This imprecision is

inevitable because there is no standard, well-defined protec-

tion paradigm for Web applications. Furthermore, no fixed

set of operations is syntactically recognizable as security

checks (in contrast to prior approaches). Instead, ROLE-

CAST partitions the program into roles and infers, for each

role, the security checks and security-relevant program vari-

ables by recognizing how they are used consistently (or

almost consistently) within the role to control access to

security-sensitive events.

We show the generality of our approach by applying it

to Web applications written in both PHP and JSP. Without

an oracle that finds all missing security checks, we cannot

measure the number of false negatives. When evaluated on

11 substantial, real-world PHP and JSP applications, ROLE-

CAST discovered 13 previously unreported security vulnera-

bilities with only 3 false positives, demonstrating its useful-

ness for practical security analysis of Web applications.

In summary, this paper demonstrates that it is possible to

accurately infer the security logic of Web applications at the

level of individual user roles by static analysis, without using

any programmer annotations or formally specified policies

but relying instead on common software engineering pat-

terns used by application developers.

2. Related Work

Finding security vulnerabilities in Web applications. A

lot of research has been devoted to finding and analyzing

data-flow vulnerabilities in Web applications [9, 10, 13, 25,

26]. This taint analysis focuses on cross-site scripting and

SQL injection vulnerabilities, in which untrusted user in-



puts flow into sensitive database operations without proper

sanitation. Missing-check vulnerabilities considered in this

paper are control-flow vulnerabilities. Consider the follow-

ing example: if (user == ADMIN) {DB query(‘‘DROP

TABLE AllUsers’’)}. Because the query string does not

depend on user input, taint analysis will not detect an error

if the check is missing. In security parlance, there is an (im-

plicit) information flow from the conditional to the security-

sensitive event [7]. The goal of our analysis is not to find

such information flows (they are inevitable in all Web ap-

plications dealing with user authorization), but to automati-

cally identify the control-flow logic that dominates security-

sensitive database operations and check whether or not it is

present on all paths leading to these operations.

Balzarotti et al. proposed a method for finding workflow

violations caused by unintended entry points in Web appli-

cations [1]. Their method focuses on link relations between

pages and involves statically analyzing string arguments of

page redirect functions. The difficulty of resolving string ar-

guments varies greatly between applications. Their analy-

sis resolved only 78% of string arguments statically. Fur-

thermore, analyzing only inter-page links is not sufficient to

discover vulnerabilities caused by missing security checks

within the same page. By contrast, the techniques in this pa-

per analyze whole-program control flow of Web applications

and are thus more robust.

A promising line of research on finding security bugs

in application code requires the programmer to specify an

explicit security policy [3, 4, 6, 27]. Few developers today

provide such policies for their Web applications. In this

paper, we focus on finding missing security checks without

explicit policies.

Inferring security policies by static analysis. There are

many techniques for (i) inferring security policies imple-

mented by the code, implicitly or with a manual template,

and (ii) finding policy violations. Here a policy is a mapping

from security-sensitive events to security checks that must

precede them. For example, Tan et al. use interprocedural

analysis to find missing security checks in SELinux [23],

while Pistoia et al. [12, 17] and Sistla et al. [19] propose

techniques for finding missing security checks in Java library

code. These papers rely on policy specification and/or as-

sume that the same policy must hold everywhere for events

of a given type.

The problem considered in this paper is significantly

harder. In all of the papers cited above, the set of security

checks is fixed and known in advance. For example, security

checks in the Java class library are calls to methods in the

SecurityManager class, thus the correct policy must in-

clude a call to a SecurityManagermethod prior to execut-

ing a security-sensitive event. For instance, networking calls

are often protected by checkConnect calls. In this case, the

problem of policy inference is limited to (i) inferring which

of the SecurityManager methods implement the correct

policy for an event, and (ii) verifying that the policy holds

everywhere.

By contrast, there is no uniform protection paradigm for

application code. The set of security checks and related pro-

gram variables varies from application to application and

even from role to role within the same application. There-

fore, it is not possible to specify, implicitly or explicitly, uni-

versal security mediation rules that must hold for all Web ap-

plications. Figure 1 shows three instances of security checks

from different PHP applications. The checks have no syntac-

tic similarities, rendering previous approaches unusable.

1 <?php
2 / / A u t h e n t i c a t i o n check

3 i f ( ! d e f i n e d ( ’IN ADMIN ’ ) | | ! d e f i n e d ( ’IN BLOG ’ ) )
4 {
5 header ( ’ L o c a t i o n : admin . php ’ ) ;
6 e x i t ;
7 }
8 s wi tch ( $mode )
9 {

10 cas e ’ e d i t ’ :
11 . . .
12 / / S e c u r i t y−s e n s i t i v e d a t a b a s e o p e r a t i o n

13 $ s q l = mysql query ( ”UPDATE m i n i b l o g SET { $ s q l} WHERE
p o s t i d = ’{ $ i d } ’ ” ) o r d i e ( mys ql error ( ) ) ;

14 . . .
15 }
16 ?>

(a) Miniblog: security logic in adm/index.php

1 <?php
2 . . .
3 r e q u i r e o n c e ( ’ . / admin . php ’ ) ;
4 / / A u t h e n t i c a t i o n check

5 i f ( ! isAdmin ( ) )
6 d i e ( ’You a r e n o t t h e admin . ’ ) ;
7 $ p a g e t i t l e = ’ Comment S u c c e s s f u l l y D e l e t e d ’ ;
8 . . .
9 $db = DB connect ( $ s i t e , $us e r , $ p a s s ) ;

10 D B s e l e c t d b ( $ d a t a b a s e , $db ) ;
11 . . .
12 / / S e c u r i t y−s e n s i t i v e d a t a b a s e o p e r a t i o n

13 DB query ( ” d e l e t e from $tblComments where i d = $ i d ” , $db ) ;
14 ?>

(b) Wheatblog: security logic in admin/delete comment.php

1 <?php
2 s e s s i o n s t a r t ( ) ;
3 / / A u t h e n t i c a t i o n c h e c k i n g r o u t i n e

4 i f ( ! $ SESSION [ ’ member ’ ] )
5 {
6 / / n o t logged in , move t o l o g i n page

7 header ( ’ L o c a t i o n : l o g i n . php ’ ) ;
8 e x i t ;
9 }

10 i n c l u d e ’ i n c / c o n f i g . php ’ ;
11 i n c l u d e ’ i n c / conn . php ’ ;
12 . . .
13 / / S e c u r i t y−s e n s i t i v e d a t a b a s e o p e r a t i o n

14 $q5 = mysql query ( ”INSERT INTO c l o s e b i d ( i tem name ,
s e l l e r n a m e , b idde r name , c l o s e p r i c e ) ” . $ s q l 5 ) ;

15 $ d e l = mysql query ( ” d e l e t e from d n b i d where dn name = ’ ”
. $ r e s u l t [ ’ dn name ’ ] . ” ’ ” ) ;

16 . . .
17 ?>

(c) DNscript: security logic in accept bid.php

Figure 1: Examples of application-specific security logic



Unlike previous approaches, ROLECAST does not rely

on domain- or application-specific knowledge of what a se-

curity check is. Instead, ROLECAST uses new static analy-

sis algorithms to infer the semantic role that different vari-

ables play in the program and automatically identify secu-

rity checks. It then finds missing checks using role-specific

consistency analysis. The idea of analyzing consistency

of checks on critical variables was first proposed by Son

and Shmatikov [20]. In contrast, this paper is the first to

(1) demonstrate the need for role-specific analysis because

different roles of the same application use different secu-

rity checks for protection, (2) design and implement a new

static method for automatically partitioning contexts into

application-specific semantic roles, and (3) exploit the fun-

damental asymmetry between the branches corresponding

to, respectively, successful and failed security checks to help

recognize these checks in application code.

Inferring security policies using auxiliary information.

Inference and verification of security policies implemented

by a given program often benefit from auxiliary information

and specifications. For example, Livshits et al. find errors

by mining software revision histories [14]. Srivastava et al.

use independent implementations of the same Java class

library API method to find discrepancies in security policies

between implementations [22]. The approach in this paper

does not rely on any auxiliary information or specification.

Inferring security policies by dynamic analysis. Dynamic

analysis can also infer application- and role-specific poli-

cies. For example, Felmetsger et al. collect invariants at the

end of each function by dynamically monitoring the appli-

cation’s benign behavior [8]. Bond et al. dynamically ana-

lyze calling contexts in which security-sensitive events are

executed to create call-chain “signatures,” which they use to

detect anomalies [2]. Because there is no guarantee that the

set of checks observed during test executions is comprehen-

sive, dynamic analysis may miss checks on rarely executed

paths. Dynamic and static analyses are complementary. The

former is more prone to false negatives, while the latter is

more prone to false positives.

3. Security Logic in Web Applications

We focus on server-side Web applications, which are typi-

cally implemented in PHP and JSP, as opposed to client-side

applications, which are typically implemented in JavaScript.

The latter have their own security issues, but are outside

the scope of this paper. In this section, we briefly describe

PHP and JSP and explain the common design patterns for

application- and role-specific security logic.

3.1 PHP and JSP

The PHP (PHP: Hypertext Preprocessor) scripting language

is designed for dynamically generating Web pages [15]. PHP

is commonly used to implement Web applications with user-

generated content or content stored in back-end databases

(as opposed to static HTML pages). A recent survey of 120

million domains found that 59% use PHP to generate HTML

content [16].

PHP borrows syntax from Perl and C. In PHP programs,

executable statements responsible for generating content are

mixed with XML and HTML tags. PHP provides basic data

types, a dynamic typing system, rich support for string oper-

ations, some object-oriented features, and automatic mem-

ory management with garbage collection. Instead of a mod-

ule or class system, PHP programs use a flat file structure

with a designated main entry point. Consequently, (1) a net-

work user can directly invoke any PHP file by providing its

name as part of the URL, and (2) if the file contains exe-

cutable code outside of function definitions, this code will

be executed. These two features of PHP require defensive

programming of each entry point and are a source of secu-

rity errors. Security analysis of PHP code must consider that

every file comprising an application is an alternative entry

point.

JSP (Java Server Pages) is a Java technology for dy-

namically generating HTML pages [11]. It adds scripting

support to Java and mixes Java statements with XML and

HTML tags. Scripting features include libraries of page tem-

plates and an expression language. JSP is dynamically typed,

but because it builds on Java, it has more object-oriented

features than PHP. JSP executes in a Java Virtual Machine

(JVM).

Although the languages are quite different, JSP was de-

veloped with the same goals as PHP. To demonstrate that

our approach provides a generic method for analyzing se-

curity of Web applications regardless of the implementation

language, we apply our analysis to both JSP and PHP appli-

cations. We find that programming practices and application

security abstractions are quite similar in PHP and JSP appli-

cations, and our analysis works well on real-world programs

implemented in either language.

3.2 Translating Web Applications into Java

Translating scripting languages into Java is becoming a pop-

ular approach because it helps improve performance by tak-

ing advantage of mature JVM compilers and garbage collec-

tors. We exploit this practice by (1) converting Web applica-

tions into Java class files, and (2) extending the Soot static

analysis framework for Java programs [21] with new algo-

rithms for static security analysis of Web applications.

To translate JSP and PHP programs into Java class files

we use, respectively, the Tomcat Web server [24] and Quer-

cus compiler [18]. Tomcat produces well-formed Java; Quer-

cus does not. PHP is a dynamically typed language and the

target of every callsite is potentially bound at runtime. In-

stead of analyzing calls in the PHP code, Quercus translates

each PHP function into a Java class that contains a main

method and methods that initialize the global hash table and

member variables. Every function call is translated by Quer-



cus into a reflective method call or a lookup in the hash table.

This process obscures the call graph.

Because our security analysis requires a precise call

graph, we must reverse-engineer this translation. We resolve

the targets of indirect method calls produced by Quercus us-

ing a flow- and context-insensitive intraprocedural symbol

propagation. This analysis is described in the appendix.

3.3 Application-Specific Security Logic

Our security analysis targets interactive Web applications

such as blogs, e-commerce programs, and user content man-

agement systems. Interactive applications of this type con-

stitute the overwhelming majority of real-world Web ap-

plications. Since the main purpose of these applications is

to display, manage, and/or update information stored in a

back-end database(s), access control on database operations

is critical to the integrity of the application’s state.

Security-sensitive events. We consider all operations that

may affect the integrity of database to be security-sensitive

events. These include all queries that insert, delete, or update

the database. Web applications typically use SQL to interact

with the back-end database. Therefore, ROLECAST marks

INSERT, DELETE, and UPDATE mysql query statements

in PHP code as security-sensitive events. Note that statically

determining the type of a SQL query in a given statement re-

quires program analysis. ROLECAST conservatively marks

all statically unresolved SQL queries as sensitive. For JSP,

ROLECAST marks java.sql.Statement.executeQuery

and .executeUpdate calls executing INSERT, DELETE,

or UPDATE SQL queries as security-sensitive events.

We deliberately do not include SELECT and SHOW

queries which retrieve information from the database in

our definition of security-sensitive events. Many Web ap-

plications intend certain SELECT operations to be reach-

able without any prior access-control checks. For example,

during authentication, a SELECT statement may retrieve a

stored password from the database in order to compare it

with the password typed by the user. Without a programmer-

provided annotation or specification, it is not possible to

separate SELECT operations that need to be protected from

those that may be legitimately accessed without any checks.

To avoid generating a prohibitive number of false positives,

we omit SELECT and SHOW operations from our analysis

of Web applications’ security logic.

Examples of security logic. Figure 1 shows the security

logic of three sample Web applications: Miniblog, Wheat-

blog, and DNscript. DNscript is a trading application for

sellers and buyers of domain names. Figure 1(a) shows a

security-sensitive event on line 13. This database operation

is only executed if IN ADMIN and IN BLOG are defined (line

3), otherwise the program exits immediately. Figure 1(b)

shows a security-sensitive event on line 10. It is executed

only when the return value of isAdmin() is true; other-

wise the program exits by executing the die command. Fig-

ure 1(c) shows two security-sensitive events (lines 14 and

15). They are executed only if the user is logged in and the

session authentication flag in $ SESSION[‘member’] is set.

By studying these and other examples, we found several ro-

bust design patterns for security logic. These patterns guide

our analysis.

Figure 2: File structure of DNscript

Security logic as a software design pattern. To identify

application- and role-specific security logic, we take advan-

tage of the software engineering patterns commonly used by

the developers of Web applications. A Web application typ-

ically produces multiple HTML pages and generates each

page by invoking code from several files. The following

three observations guide our analysis.

Our first observation about security logic is that when

a security check fails, the program quickly terminates or

restarts. Intuitively, when a user does not hold the appro-

priate permissions or his credentials do not pass verification,

the program exits quickly.

Our second observation about correct security logic is

that every path leading to a security-sensitive event from any

program entry point must contain a security check. This ob-

servation alone, however, is not sufficient to identify checks

in application code because different paths may involve dif-

ferent checks and different program variables.

Our third observation is that distinct application-specific

roles usually involve different program files. Since the main

purpose of interactive Web applications is to manage user-

specific content and to provide services to users, users’ priv-

ileges and semantic roles determine the services that are

available to them. Therefore, the application’s file structure,

which in Web applications represents the module structure,

reflects a clear distinction between roles defined by the user’s

privileges. For instance, blog applications typically include

administrator pages that modify content and register new

user profiles. On the other hand, regular blog users may only

read other users’ content, add comments, and update their

own content. In theory, developers could structure their ap-



plications so that one file handles multiple user roles, but this

is not the case in real-world applications.

In the Web applications that we examined, individual pro-

gram files contained only code specific to a single user role.

Figure 2 shows a representative example with a simple page

structure taken from the DNscript application. DNscript

supports two types of users: an administrator and a regular

user. All administrator code and pages are in one set of files,

while all user code and pages are in a different set of files.

Our analysis exploits the observation that security checks

within each role are usually very similar. Inferring the roles

requires automatic partitioning of contexts based on com-

monalities in their security logic. This component is the most

challenging part of our analysis.

3.4 Example Vulnerability

Because every application file is also a program entry point,

PHP and JSP developers must replicate the application’s se-

curity logic in every file. In particular, even if the code con-

tained in some file is intended to be called only from other

files, it must still be programmed defensively because a user

may invoke it directly via its URL. Adding these security

checks is a repetitive, error-prone task and a common cause

of missing-check vulnerabilities.

Figure 3 shows an example of a security vulnerability

due to a missing check on a path from an unintended pro-

gram entry point. The intended entry point index.php cor-

rectly checks permissions for security-sensitive database

operations. However, a malicious user can directly invoke

delete post.php by supplying its URL to the Web server and

execute a DELETE query because delete post.php is miss-

ing a check on the $ SESSION variable. In complex appli-

cations, the number of unintended entry points can be very

large. This greatly complicates manual inspection and moti-

vates the need for automated analysis.

4. Analysis Overview

ROLECAST has four analysis phases. Phase I identifies crit-

ical variables that control whether security-sensitive events

execute or not. Phase II partitions contexts into groups that

approximate application-specific user roles. For each role,

Phase III computes the subset of critical variables respon-

sible for enforcing the security logic of that role. Phase IV

discovers missing security checks by verifying whether the

relevant variables are checked consistently within the role.

To identify critical variables, Phase I performs interpro-

cedural, flow- and context-sensitive control-dependence and

data-flow analysis. It refines the set of critical variables us-

ing branch asymmetry, based on the observation that failed

authorization checks quickly lead to program exit. To infer

application roles, Phase II maps the set of methods respon-

sible for checking critical variables to program files and par-

titions them into groups, minimizing the number of shared

files between groups. This algorithm seeks to discover the

index.php

1 / / S e c u r i t y check

2 i f ( ! $ SESSION [ ‘ l o g g e d i n ’ ] )
3 {
4 doLogin ( ) ;
5 d i e ;
6 }
7 i f ( i s s e t ( $ GET [ ’ a c t i o n ’ ] ) )
8 $ a c t i o n = $ GET [ ’ a c t i o n ’ ] ;
9 s w i t c h ( $ a c t i o n ){

10 c a s e ’ d e l e t e p o s t ’ :
11 i n c l u d e ’ d e l e t e p o s t . php ’ ;
12 b r e a k ;
13 c a s e ’ u p d a t e p o s t ’ :
14 i n c l u d e ’ u p d a t e p o s t . php ’ ;
15 b r e a k ;
16 . . . . .
17 d e f a u l t :
18 i n c l u d e ’ d e f a u l t . php ’ ;
19 }

delete post.php

1 / / No s e c u r i t y check

2 i f ( i s s e t ( $ GET [ ’ p o s t i d ’ ] ) )
3 $ p o s t i d = $ GET [ ’ p o s t i d ’ ] ;
4 DBConnect ( ) ;
5 / / S e c u r i t y−s e n s i t i v e e v e n t

6 $ s q l =”DELETE FROM b l o g d a t a WHERE p o s t i d = $ p o s t i d ” ;
7 $ r e t =mysql query ( $ s q l ) o r d i e ( ” Cannot que ry t h e

d a t a b a s e .<br>” ) ;
8 Ln6 : . . . . .

update post.php

1 / / S e c u r i t y check

2 i f ( ! $ SESSION [ ’ l o g g e d i n ’ ] ) d i e ;
3 i f ( i s s e t ( $ GET [ ’ p o s t i d ’ ] ) )
4 $ p o s t i d = $ GET [ ’ p o s t i d ’ ] ;
5 i f ( i s s e t ( $ GET [ ’ c o n t e n t ’ ] ) )
6 $ c o n t e n t = $ GET [ ’ c o n t e n t ’ ] ;
7 DBConnect ( ) ;
8 / / S e c u r i t y−s e n s i t i v e e v e n t

9 $ s q l = ”UPDATE t a b l e p o s t SET c o n t = $ c o n t e n t WHERE i d =
$ p o s t i d ” ;

10 $ r e t =mysql query ( $ s q l ) o r d i e ( ” Cannot que ry t h e
d a t a b a s e .<br>” ) ;

11 . . . .

Figure 3: Example of a missing security check

popular program structure in which developers put the code

responsible for different application roles into different files.

This heuristic is the key new component of our analysis and

works well in practice.

Phase III considers each role and computes the subset

of critical variables that are used consistently—that is, in a

sufficiently large fraction of contexts associated with this

role—to control reachability of security-sensitive events

in that role. The threshold is a parameter of the system.

Phase IV reports a potential vulnerability whenever it finds

a security-sensitive event that can be reached without check-

ing the security-critical variables specific to the role. It also



reports all roles that involve a single context and thus pre-

clude consistency analysis, but this case is relatively rare.

5. Phase I: Finding Security-Sensitive Events,

Calling Contexts, and Critical Variables

Our algorithm for identifying security logic takes advantage

of the following observations:

1. Any security check involves a branch statement on one

or more critical variables.

2. In the branch corresponding to the failed check, the pro-

gram does not reach the security-sensitive event and exits

abnormally. For example, the program calls exit, calls

die, or returns to the initial page.

3. The number of program statements in the branch from the

check to the abnormal exit is significantly smaller than

the number of program statements in the branch leading

to the security-sensitive event.

4. Correct security logic must consistently check a certain

subset of critical variables prior to executing security-

sensitive events.

This section describes our algorithms that, for each security-

sensitive event, statically compute the following: calling

contexts, critical branches (i.e., conditional statements that

determine whether or not the security-sensitive event exe-

cutes), critical methods (i.e., methods that contain critical

branches), and critical variables (i.e., variables referenced

by critical branches).

Our analysis is fairly coarse. It only computes which vari-

ables are checked prior to security-sensitive events, but not

how they are checked. Therefore, ROLECAST will miss vul-

nerabilities caused by incorrectly implemented (as opposed

to entirely missing) checks on the right variables.

5.1 Security-Sensitive Events and Calling Contexts

Our analysis starts by identifying security-sensitive opera-

tions that may affect the integrity of the database. A typ-

ical Web application specifies database operations using

a string parameter passed to a generic SQL query state-

ment. We identify all calls to mysql query in PHP and

java.sql.Statement.executeQuery and java.sql.-

Statement.executeUpdate in JSP as candidates for security-

sensitive events. The same call, however, may execute differ-

ent database operations depending on the value of its string

parameter. Therefore, we perform an imprecise context-

sensitive data-flow analysis to resolve the string arguments

of database calls and eliminate all database operations that

do not modify the database (see Section 3.3) from our set of

security-sensitive events.

ROLECAST computes the set of all calling contexts for

each security-sensitive event e. ROLECAST identifies the

methods that may directly invoke e, then performs a back-

ward depth-first pass from each such method over the call

Figure 4: Architecture of ROLECAST.

graph. (The call graph construction algorithm is described in

the appendix.) The analysis builds a tree of contexts whose

root is e and whose leaves are program entry points. For each

calling context cc corresponding to a call-chain path from e
to a leaf, the (cc, e) pair is added to the set of all calling con-

texts. This analysis records each invoked method only once

per calling context, even in the presence of cyclic contexts.

This is sufficient for determining whether or not a security

check is present in the context.

Next, ROLECAST propagates the strings passed as pa-

rameters in each calling context cc to the candidate event e.

The goal is to eliminate all pairs (cc, e) where we can stat-

ically prove that e cannot be a security-sensitive event, i.e.,

none of the statically feasible database operations at e affect



the integrity of the database because they can only execute

SELECT or SHOW queries.

We find that many Web applications generate SQL queries

by assigning a seed string constant to a variable and then

concatenating additional string constants. The seed string

usually identifies the type of the SQL query (UPDATE,

SELECT, etc.). Therefore, ROLECAST models string con-

catenation, assignment of strings, and the behavior of string

get() and set() methods. It performs forward, interpro-

cedural, context-sensitive constant propagation on the string

arguments for each calling context cc of event e. ROLECAST

does not model the value of strings returned by method calls

not in the calling context. If the string is passed as an argu-

ment to some method m /∈ cc, we conservatively assume

that the string is modified and ROLECAST marks event e as

security-sensitive. Otherwise, the analysis propagates string

values of actual arguments to the formal parameters of meth-

ods.

If this analysis proves that e is a SELECT or SHOW

query, then ROLECAST removes the (cc, e) from the set

of calling contexts. The “unresolved” column in Table 1,

explained in more detail in Section 9, shows that fewer than

5% of query types are unresolved, while for at least 95%

of all database operations in our sample Web applications,

ROLECAST successfully resolves whether or not they are

sensitive, i.e., whether they can affect the integrity of the

database.

5.2 Critical Branches and Critical Methods

For each calling context and security-sensitive event pair

(cc, e), ROLECAST performs an interprocedural control-

dependence analysis to find the critical branches B(cc, e)
performed in the critical methods CM(cc, e). These branches

determine whether or not e executes. A critical method con-

tains one or more critical branches on which e is interproce-

durally control dependent. Note that some critical methods

are in cc and some are not. For the reader’s convenience,

we review the classical intraprocedural definition of control

dependence [5].

DEFINITION 1. If G = (N, E) is a control-flow graph

(CFG) and s, b ∈ N , b ; s iff there exists at least one

path reaching from b to s in G.

DEFINITION 2. If G = (N, E) is a control-flow graph

(CFG) and s, b ∈ N , s is control dependent on b iff b ; s
and s post-dominates all v 6= b on b ; s, and s does not

post-dominate b.

The set of branch statements on which e is control dependent

is computed in two steps.

1. ROLECAST uses intraprocedural control dependence to

identify branch statements in methods from cc that con-

trol whether e executes or not. For each method mi ∈ cc
where mi calls mi+1, the algorithm finds branch state-

ments on which the callsite of mi+1 is control dependent

and adds them to B(cc, e).

2. ROLECAST then considers the set of methods N such

that the callsite of ni ∈ N dominates some method

m ∈ cc or ni is called unconditionally from nj ∈
N . Because every method ni ∈ N is invoked before

reaching e, ni interprocedurally dominates e. For each

ni ∈ N , ROLECAST finds branch statements on which

the program-exit calls in ni (if any) are control dependent

and adds them to B(cc, e).

Next, ROLECAST eliminates statements from B that do

not match our observation that failed security checks in Web

applications terminate or restart the program quickly. To

find branch statements in which one branch exits quickly

while the other executes many more statements, ROLECAST

calculates the asymmetric ratio for each b ∈ B as follows.

ROLECAST counts the number of statements in, respec-

tively, the shortest path reaching program termination and

the shortest path reaching e. Each statement in a loop counts

as one statement. The asymmetric ratio is the latter count

divided by the former. The larger the value, the more asym-

metric the branches are. If the calculated asymmetric ratio

for b is less than the threshold θasymm, we remove b from

B because b does not have a branch that causes the program

to exit quickly and thus is not likely to be security-critical.

Our experiments use 100 as the default θasymm threshold

when the calculated ratio for one or more branch statements

is greater than 100; otherwise, we use the median ratio of

all branch statements. As Table 3 shows, the results are not

very sensitive to the default value. In our sample applica-

tions, applying the default filter reduces the number of criti-

cal branches by 36% to 83% (54% on average).

After this step, the set B(cc, e) contains critical branch

statements. We map B(cc, e) to the set of critical methods

CM(cc, e) that contain one or more branches from B(cc, e).
Recall that some critical methods are in cc and some are not.

Critical methods are a superset of the methods responsible

for implementing the application’s security logic.

5.3 Critical Variables

Informally, a program variable is critical if its value de-

termines whether or not some security-sensitive event is

reached. All security-critical variables involved in the pro-

gram’s security logic (e.g., variables holding user permis-

sions, session state, etc.) are critical, but the reverse is not

always true: critical variables are a superset of security-

critical variables. We derive the set of critical variables from

the variables referenced directly or indirectly by the critical

branches B(cc, e). Section 8 further refines the set of critical

variables into the set of security-critical variables.

Given B(cc, e), we compute the set of critical variables

V (cc, e) where v ∈ V iff ∃b ∈ B that references v directly

or indirectly through an intraprocedural data-flow chain. We

use a simple reaching definitions algorithm to compute indi-



rect references within a method. We compute the backward

intraprocedural data-flow slice of v for all v referenced by b.

Thus if b references v and v depends on u (e.g., v = foo(u)),
we add v and u to V .

We found that intraprocedural analysis was sufficient for

our applications, but more sophisticated and object-oriented

applications may require interprocedural slicing.

6. Phase II: Partitioning Into Roles

This section describes how ROLECAST partitions applica-

tions into roles. We use role partitioning to answer the ques-

tion: “Which critical variables should be checked before in-

voking a security-sensitive event e in a given calling con-

text?”

Without role partitioning, critical variables are not very

useful because there are a lot of them and they are not always

checked before every security-sensitive event. Reporting a

vulnerability whenever some critical variable is checked in-

consistently results in many false positives (see Section 9).

Role partitioning exploits the observation made in Sec-

tion 3.3 that Web applications are organized around distinct

user roles (e.g., administrator and regular user). We note that

(1) applications place the code that generates pages for dif-

ferent roles into different files, and, furthermore, (2) the files

containing the security logic for a given role are distinct from

the files containing the security logic for other roles. These

observations motivate an approach that focuses on finding

sets of (cc, e) in which the critical methods CM(cc, e) use

the same files to enforce their security logic.

ROLECAST starts by coarsening its program representa-

tion from methods and calling contexts to files. This analysis

maps each set of critical methods CM(cc, e) to a set we call

the critical-file context CF . A file cf ∈ CF (cc, e) if cf de-

fines any method m ∈ CM(cc, e). We also define the file

context F (cc, e). A file f ∈ F (cc, e) if f defines any method

m which interprocedurally dominates e. F is a superset of

CF—some files in F (cc, e) are critical and some are not. We

refer to the set of all file contexts F of all security-sensitive

events in the program as F̂ and to the set of all critical-file

contexts CF as ĈF .

Since we do not know a priori which file corresponds

to which application role, our algorithm generates candi-

date partitions of ĈF and picks the one that minimizes the

number of shared files between roles. The goal is to group

similar critical-file contexts into the same element of the

partition. We consider two critical-file contexts similar if

they share critical files. To generate a candidate partition,

the algorithm chooses a “seed” critical file cf1 and puts all

critical-file contexts from ĈF that reference cf1 into the

same group, chooses another critical file cf2 and puts the re-

maining critical-file contexts from ĈF that contain cf2 into

another group, and so on. The resulting partition depends on

the order in which seed critical files are chosen. Our algo-

rithm explores all orders, but only considers frequently oc-

curring critical files. In practice, the number of such files is

small, thus generating candidate partitions based on all pos-

sible orderings of seed files is feasible.

To choose the best partition from the candidates, our

algorithm evaluates how well the candidates separate the

more general file contexts F̂ . The insight here is that since

programmers organize the entire application by roles (not

just the parts responsible for the security logic), the correct

partition of security-related file contexts should also provide

a good partition of all file contexts. ROLECAST thus prefers

the partition in which the groups are most self-contained,

i.e., do not reference many files used by other groups.

More formally, ROLECAST’s partitioning algorithm con-

sists of the following five steps.

1. For each CM(cc, e), compute the critical-file context

CF (cc, e) and file context F (cc, e).

2. Eliminate critical files that are common to all CF (cc, e),
i.e., if file f belongs to the critical-file context cf for all

cf ∈ ĈF , then remove f from all contexts in ĈF . Since

these files occur in every critical-file context, they will

not help differentiate roles.

3. Extract a set of seed files (SD) from ĈF . We put file

f into SD if it occurs in at least the θseed fraction of

critical-file contexts cf ∈ ĈF . In our experiments, we set

θseed = 0.2. We use only relatively common critical files

as the seeds of the partitioning algorithm, which helps

make the following steps more efficient.

4. Generate all ordered permutations SDi. For each SDi,

generate a partition Pi = {G1, . . . Gk} of ĈF as follows.

Let SDi = {f1, . . . fn}. Let T̂ F = ĈF and set k = 1.

For i = 1 to n, let Ci ⊆ T̂ F be the set of all critical-file

contexts from T̂ F containing file fi. If Ci is not empty,

remove these contexts from T̂ F , add them to group Gk ,

and increment k.

5. Given candidate partitions, choose the one that mini-

mizes the overlap between files from different groups.

Our algorithm evaluates each candidate {G1, . . . Gk} as

follows. First, for each group of critical-file contexts Gj ,

take the corresponding set of file contexts Fj . Then, for

each pair Fk, Fl where k 6= l, calculate the number of

files they have in common: |Fk ∩ Fl|. The algorithm

chooses the partition with the smallest
∑

k<l |Fk ∩ Fl|.

Figure 5 gives an example of the partitioning process. At

the top, we show five initial file contexts and critical-file

contexts produced by Step 1. Step 2 removes the files com-

mon to all critical-file contexts, common.php in this exam-

ple, producing three files, process.php, user.php and ad-

min.php. Step 3 selects these three files as the seed files,

because they appear in 1/5, 3/5, and 2/5 of all critical-file

contexts, respectively. There are 6 permutations of this set,

thus Step 4 produces 6 candidate partitions. In Figure 5, we

compare two of them: (admin.php, user.php, process.php)



Figure 5: Example of partitioning contexts

and (process.php, admin.php, user.php). The correspond-

ing candidates are P1 = {(A, C), (B, D, E)} and P2 =
{(B), (A, C), (D, E)}. To decide which one best approx-

imates user roles, Step 5 computes the intersection of file

contexts between every pair of groups in each partition and

selects the partition with the smallest intersection. In our ex-

ample, since P1 has the fewest files (one) in the intersection,

ROLECAST chooses it as the best partition.

The accuracy of the partitioning step depends on using

good seed files. We select files that contain critical variables

and appear in many critical-file contexts, based on our ob-

servation that Web applications use common security logic

in most contexts that belong to the same role. One concern

is that exploring all permutations of the seed-file set is ex-

ponential in the number of seed files. The selection criteria

for seed files are fairly stringent, and therefore their actual

number tends to be small. It never exceeded four in our ex-

periments. If the number of seed files grows large, the parti-

tioning algorithm could explore fewer options. For example,

Algorithm 1: Partitioning file contexts into roles

P ← φ { initialize partition candidate set }
n← |SD| { get the size of SD }
for each SDi ∈ n permutation of SD do

dTF ← dCF { initialize work list with all critical-file contexts }
k← 1
for each fj ∈ SDi do

{ put all critical-file context that contain seed file fj into Gk }

for each CF ∈ dTF do

if fj ∈ CF then

Gk ← Gk ∪ CF
dTF ← dTF − {CF}

end if

end for

if Gk is not empty then

k← k + 1 { increment the group index }
end if

if dTF is empty then

break { if work list is empty, then break }
end if

end for

Pi ← {G1 . . . Gk} { store the current groups into Pi }
DSi ← 0
{ compute the number of common files among all pairs in Gi }
for each pair (Ga, Gb)a<b from {G1 . . . Gk} do

Fa = the file contexts corresponding to critical-file contexts in Ga

Fb = the file contexts corresponding to critical-file contexts in Gb

DSi ← DSi + |Fa ∩ Fb|
end for

P ← P ∪ {Pi} { add the current partition to the candidate list }
for x = 1 to k do

Gx ← φ { reset groups for the next candidate SDi+1 }
end for

end for

Pick the best Pi ∈ P that has a minimum DSi

it could prioritize by how often a seed file occurs in the file

contexts.

7. Phase III: Finding Security-Critical

Variables

The groups in the partition computed by Phase II approxi-

mate semantic user roles in the application. Phase III com-

putes the security-critical variables for each role: the subset

of the critical variables that enforce the role’s security logic.

We assume that the application correctly checks the

security-critical variables in at least some fraction of the

critical-file contexts and use this observation to separate

security-critical variables from the rest of the critical vari-

ables. Recall that there is a one-to-one mapping between

each critical-file context CF (cc, e) and the set of its criti-

cal variables V (cc, e). Given the partition {G1, . . . , Gk} of

ĈF , let Vi be the set of all critical variables from the critical-

file contexts in Gi. We initialize the set of security-critical

variables SVi = Vi. ROLECAST then removes all variables

v ∈ SVi that appear in fewer than a θconsistent fraction of

the critical-file contexts in Gi. We use θconsistent = 0.5 as

our default. Table 5 shows that our results are not very sen-

sitive to this parameter. We define the remaining subset SVi

to be the security-critical variables for role i.



DB operations (|contexts|) critical branches
Web applications LoC Java LoC analysis time candidates sensitive unresolved candidates asymm

minibloggie 1.1 2287 5395 47 sec 13 3 0 12 7

DNscript 3150 11186 47 sec 99 26 0 27 5

mybloggie 1.0.0 8874 26958 74 min 195 26 0 135 58

FreeWebShop 2.2.9 8613 28406 110 min 699 175 0 186 82

Wheatblog 1.1 4032 11959 2 min 111 30 0 31 20

phpnews 1.3.0 6037 13086 166 min 80 14 3 65 15

Blog199j 1.9.9 8627 18749 75 min 195 68 2 104 54

eBlog 1.7 13862 24361 410 min 677 261 0 136 17

kaibb 1.0.2 4542 21062 197 min 676 160 0 306 152

JsForum (JSP) 0.1 4242 4242 52 sec 60 32 0 6 1

JSPblog (JSP) 0.2 987 987 16 sec 6 3 0 0 0

Table 1: Benchmarks and analysis characterization

8. Phase IV: Finding Missing Security

Checks

This phase reports vulnerabilities. Within each role, all con-

texts should consistently check the same security-critical

variables before performing a security-sensitive event e. For-

mally, given sv ∈ SVi, ROLECAST examines every (cc, e)
in the group of contexts corresponding to role i and verifies

whether sv ∈ V (cc, e) or not. If sv /∈ V (cc, e), ROLECAST

reports a potential security vulnerability. To help developers,

ROLECAST also reports the file(s) that contains the security-

sensitive event e for the vulnerable (cc, e).
ROLECAST reports a potential security vulnerability

in two additional cases: (1) for each file that executes a

security-sensitive event and does not check any critical vari-

ables whatsoever, and (2) for each singleton critical-file con-

text (i.e., a role with only one critical-file context). Because

there is nothing with which to compare this context, ROLE-

CAST cannot apply consistency analysis and conservatively

signals a potential vulnerability.

9. Experimental Evaluation

We evaluated ROLECAST by applying it to a representative

set of open-source PHP and JSP applications. All experi-

ments in this section were performed on a Pentium(R) D

3GHZ with 2G of RAM.

Table 1 shows the benchmarks, lines of original source

code, lines of Java source code produced by translation,

and analysis time. We have not tuned our analysis for per-

formance. For example, we unnecessarily re-analyze every

context, even if we have analyzed a similar context be-

fore. Memoizing analysis results and other optimizations

are likely to reduce analysis time. The three columns in

the middle of the table show the number of contexts for

all database operations (candidate security-sensitive events),

operations that can affect the integrity of the database

(security-sensitive events), and database operations whose

type could not be resolved by our analysis. Comparing these

three columns shows that our string propagation is effective

at resolving the type of database operations and rarely has

to assume an operation is security-sensitive because it could

not resolve the string argument determining its type. The

last two columns show the number of critical branch state-

ments before and after eliminating statements that are not

sufficiently asymmetric.

Table 2 shows the results of applying ROLECAST to our

benchmarks. As described in Section 6, ROLECAST par-

titions calling contexts containing security-sensitive events

into groups approximating application-specific user roles.

For each role, ROLECAST finds critical variables that are

checked in at least the θconsistency fraction of the contexts

in this role. If such a critical variable is not checked in one

of the contexts, ROLECAST reports a potential vulnerabil-

ity. ROLECAST also reports a potential vulnerability if a

security-sensitive event is reachable without any checks at

all. We examined each report by hand and classified it as a

false positive or real vulnerability.

Note the importance of role partitioning in Table 2 for

reducing the number of false positives. Without role parti-

tioning, a conservative analysis might assume that critical

variables should be checked consistently in all program con-

texts. All contexts associated with roles that do not require a

particular security check would then result in false positives.

The number of false positives after role-specific consis-

tency analysis is very small. There are several reasons for

the remaining false positives. First, if a role contains only

one context, ROLECAST cannot apply consistency analysis

and conservatively reports a potential vulnerability. Second,

a Web application may use a special set of critical variables

only for a small fraction of contexts (this case is rare). Con-

sider Figure 7. Both the post2() method call on Line 11

in index.php and the fullNews() method call on Line 4 in

news.php contain security-sensitive events. A large fraction

of calling contexts use $auth variable to enforce access con-

trol (Line 10 in auth.php). On the other hand, a small frac-

tion of contexts leading to the sensitive database operation



false positives no
Web applications roles no roles auth. vuln.

minibloggie 1.1 0 0 0 1

DNscript 1 5 0 3

mybloggie 2.1.6 0 0 0 1

FreeWebShop 2.2.9 0 1 0 0

Wheatblog 1.1 1 0 1 0

phpnews 1.3.0 1 12 0 0

Blog199j 1.9.9 0 1 0 0

eBlog 1.7 0 4 2 0

kaibb 1.0.2 0 11 1 0

JsForum (JSP) 0.1 0 0 0 5

JSPblog (JSP) 0.2 0 0 0 3

totals 3 34 4 13

Table 2: Accuracy (θconsistency = .5). Note the reduction in

false positives due to role partitioning.

in fullNews use only $Settings (Line 9 in news.php). Be-

cause ROLECAST decides that $auth is the variable respon-

sible for security enforcement due to its consistent presence

in the contexts of security-sensitive events, it decides that the

few contexts that only use $Settings are missing a proper

security check.

Table 2 distinguishes between two kinds of unauthorized

database operations. Some database updates may be rela-

tively harmless, e.g., updating counters. Nevertheless, if such

an update is executed without a security check, it still en-

ables a malicious user to subvert the intended semantics of

the application. Therefore, we do not consider such updates

as false positives and count them in the 3rd column of Ta-

ble 2, labeled “no auth.”. The 4th column of Table 2, labeled

“vuln.,” reports database updates that allow a malicious user

to store content into the database without an access-control

check. Because these vulnerabilities are both severe and re-

motely exploitable, we notified the authors of all affected

applications.

Figure 6 shows two files from DNscript that ROLE-

CAST reports as vulnerable. Neither file contains any se-

curity checks, thus a malicious user can alter the contents of

the back-end database by sending an HTTP request with

the name of either file as part of the URL. ROLECAST

reports that the security-sensitive events in DelCB.php

and admin/AddCat2.php should be protected by check-

ing $ SESSION[‘member’]and $ SESSION[‘admin’], re-

spectively.

Our analysis uses three thresholds: the branch asymmetry

threshold θasymm, the commonality threshold for seed files

θseed, and the consistency threshold for security-critical vari-

ables θconsistency . Tables 3 through 5 show that the analysis

is not very sensitive to these values.

Table 3 shows the sensitivity of our results to the branch

asymmetry threshold θasymm as it varies between 25 and

200. The default value is 100. With θasymm values smaller

θasymm

25 50 100 150 200

Web applications vl fp vl fp vl fp vl fp vl fp

minibloggie 1.1 1 0 1 0 1 0 1 0 1 0

DNscript 3 1 3 1 3 1 3 1 3 1

mybloggie 1.0.0 1 0 1 0 1 0 1 0 1 0

FreeWebShop 2.2.9 0 0 0 0 0 0 0 0 0 0

Wheatblog 1.1 1 1 1 1 1 1 0 0 0 0

phpnews 1.3.0 0 1 0 1 0 1 0 1 0 1

Blog199j 1.9.9 0 2 0 1 0 0 0 0 0 0

eBlog 1.7 2 0 2 0 2 0 2 0 1 0

kaibb 1.0.2 1 0 1 0 1 0 1 0 1 0

JsForum (JSP) 0.1 3 0 3 0 3 0 3 0 3 0

JSPblog (JSP) 0.2 5 0 5 0 5 0 5 0 5 0

Table 3: Sensitivity of actual vulnerabilities (vl) and false

positives (fp) to θasymm

θseed

0.2 0.3 0.4 0.5 0.6

Web applications vl fp vl fp vl fp vl fp vl fp

minibloggie 1.1 1 0 1 0 1 0 1 0 1 0

DNscript 3 1 3 1 3 2 3 1 3 1

mybloggie 1.0.0 1 0 1 0 1 0 1 0 1 0

FreeWebShop 2.2.9 0 0 0 0 0 0 0 0 0 0

Wheatblog 1.1 1 1 1 1 1 1 1 1 1 1

phpnews 1.3.0 0 1 0 1 0 1 0 1 0 1

Blog199j 1.9.9 0 0 0 0 0 0 0 0 0 0

eBlog 1.7 2 0 2 0 2 0 2 0 2 0

kaibb 1.0.2 1 0 1 0 1 0 1 0 1 11

JsForum (JSP) 0.1 3 0 3 0 3 0 3 0 3 0

JSPblog (JSP) 0.2 5 0 5 0 5 0 5 0 5 0

Table 4: Sensitivity of actual vulnerabilities (vl) and false

positives (fp) to θseed

θconsistency

0.5 0.6 0.7 0.8 0.9

Web applications vl fp vl fp vl fp vl fp vl fp

minibloggie 1.1 1 0 1 0 1 0 1 0 1 0

DNscript 3 1 3 1 3 1 3 0 0 0

mybloggie 1.0.0 1 0 1 0 1 0 1 0 1 0

FreeWebShop 2.2.9 0 0 0 0 0 0 0 0 0 0

Wheatblog 1.1 1 1 1 1 1 1 1 1 1 1

phpnews 1.3.0 0 1 0 1 0 1 0 1 0 1

Blog199j 1.9.9 0 0 0 0 0 0 0 0 0 0

eBlog 1.7 2 0 2 0 1 0 1 0 1 0

kaibb 1.0.2 1 0 1 0 1 0 1 0 1 0

JsForum (JSP) 0.1 3 0 3 0 3 0 3 0 3 0

JSPblog (JSP) 0.2 5 0 5 0 5 0 5 0 5 0

Table 5: Sensitivity of actual vulnerabilities (vl) and false

positives (fp) to θconsistency



admin/AddCat2.php

1 <?php
2 / / No s e c u r i t y check . I t s h o u l d have been checked

w i t h $ SESSION [ ‘ admin ’]

3 i n c l u d e ’ i n c / c o n f i g . php ’ ;
4 i n c l u d e ’ i n c / conn . php ’ ;
5 $ v a l u e s = ’VALUES ( ” ’ . $ POST [ ’ ca t name ’ ] . ’ ” ) ’ ;
6 / / S e c u r i t y−s e n s i t i v e e v e n t

7 $ i n s e r t = mysql query ( ”INSERT INTO g e n c a t ( ca t name )
” . $ v a l u e s ) ;

8 i f ( $ i n s e r t )
9 {

10 m y s q l c l o s e ( $conn ) ;
11 . . .
12 }
13

14 ?>

DelCB.php

1 <?php
2 / / No s e c u r i t y check . I t s h o u l d have been checked

w i t h $ SESSION [ ‘ member ’]

3 i n c l u d e ’ i n c / c o n f i g . php ’ ;
4 i n c l u d e ’ i n c / conn . php ’ ;
5 / / S e c u r i t y−s e n s i t i v e e v e n t

6 $ d e l e t e = mysql query ( ”DELETE FROM c l o s e b i d where
i tem name = ’ ” . $i tem name . ” ’ ” ) ;

7 i f ( $ d e l e t e )
8 {
9 m y s q l c l o s e ( $conn ) ;

10 . . .
11 }
12 ?>

Figure 6: Detected vulnerable files in DNscript

than 100, ROLECAST analyzes more branches, more critical

methods, and more critical variables, but still finds the same

vulnerabilities, although with two more false positives when

θasymm = 25.

Table 4 shows the sensitivity of our results to the value

of the seed threshold θseed used to generate role partitions.

The default value is 0.2. For kaibb, when θseed is too large,

ROLECAST may exclude seed files that actually play an

important role in partitioning the application into roles. Note

that the results for DNscript do not change monotonically

with the value of θseed. When θseed = .2 or .3, ROLECAST

finds three seed files. Two of them correspond to actual

user roles (administrator and regular user) and ROLECAST

produces the correct partition. When θseed = .4, there are

only two seed files, one of which corresponds to the user

role, while the other produces a spurious “role” with a single

context, resulting in a false positive. When θseed = .5 or

.6, ROLECAST finds a single seed file, which corresponds

to the administrator role. The resulting partition has two

groups—contexts that use the seed file and contexts that do

not use the seed file—which are exactly the same as in the

partition created when θseed = .2 or .3.

index.php

1 i f ( $ GET [ ‘ a c t i o n ’ ] == ‘ r e d i r e c t ’ )
2 {
3 . . .
4 }
5 $ t i m e s t a r t = g e t M i c r o t i m e ( ) ;
6 d e f i n e ( ‘ PHPNews ’ , 1 ) ;
7 s e s s i o n s t a r t ( ) ;
8 r e q u i r e ( ‘ a u t h . php ’ ) ;
9 . . .

10 / / S e c u r i t y−s e n s i t i v e o p e r a t i o n i s i n p o s t 2

11 p o s t 2 ( ) ;

auth.php

1 s e s s i o n s t a r t ( ) ;
2 . . .
3 $ r e s u l t = mysql query ( ’SELECT ∗ FROM ’ . $ d b p r e f i x . ’

p o s t e r s WHERE username = \ ’ ’ . $ i n u s e r . ’\ ’ AND
pas s word = pas s word (\ ’ ’ . $ i n p a s s w o r d . ’ \ ’) ’ ) ;

4 $dbQuer ie s ++;
5 i f ( mysql numrows ( $ r e s u l t ) != 0)
6 {
7 $ a u t h = true ;
8 . . .
9 / / S e c u r i t y check u s i n g c r i t i c a l v a r i a b l e $au th

10 i f ( ! $ a u t h ) {
11 e x i t ;
12 }
13 }

news.php

1 i n c l u d e ( ’ s e t t i n g s . php ’ ) ;
2 . . .
3 e l s e i f ( $ GET [ ’ a c t i o n ’ ] == ’ p o s t ’ )
4 fu l lNews ( ) ;
5 . . .
6 f u n c t i o n fu l lNews ( ) {
7 . . .
8 / / C r i t i c a l v a r i a b l e $ S e t t i n g s

9 i f ( $ S e t t i n g s [ ’ e n a b l e c o u n t v i e w s ’ ] == ’ 1 ’ ) {
10 $coun tv iews = mysql query ( ”UPDATE ” . $ d b p r e f i x . ”

news SET views = views +1 WHERE i d = ’ ” . $ GET [ ’ i d ’
] . ” ’ ” ) ;

11 }
12 . . .
13 }

Figure 7: Example of a false positive in phpnews 1.3.0

Table 5 shows how our results change as the θconsistency

threshold varies between 0.5 and 0.9. This threshold con-

trols the fraction of critical-file contexts in which a variable

must appear in order to be considered security-critical for

the given role. The default value is 0.5. In two applications,

increasing the threshold decreases both the number of vul-

nerabilities detected and the number of false positives (as ex-

pected). For most applications, there is no difference because

the root cause of many reported vulnerabilities is either the

absence of any checks prior to some security-sensitive event,

or roles containing a single context.



In summary, the algorithm is not sensitive to its three

thresholds, requires role analysis to reduce the false positive

rate, and finds actual vulnerabilities.

10. Conclusion

We designed and implemented ROLECAST, a new tool for

statically finding missing security checks in the source code

of Web applications without an explicit policy specification.

Prior approaches to static, “specification-less” verification of

security mediation assumed that security checks are syntac-

tically recognizable and/or that the same pattern of security

checks must be used consistently in all applications. Nei-

ther approach works for Web applications because different

applications and even different roles within the same appli-

cation use different, idiosyncratic security checks.

ROLECAST exploits the standard software engineer-

ing conventions used in server-side Web programming to

(1) identify security-sensitive operations such as database

updates, (2) automatically partition all contexts in which

such operations are executed into groups approximating

application-specific user roles, (3) identify application- and

role-specific security checks by their semantic function in

the application (namely, these checks control reachability

of security-sensitive operations and a failed check results in

quickly terminating or restarting the application), and (4)

find missing checks by consistency analysis of critical vari-

ables within each role.

When evaluated on a representative sample of open-

source, relatively large PHP and JSP applications, ROLE-

CAST discovered 13 previously unreported vulnerabilities

with only 3 false positives.
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A. Building the Call Graph

Security analysis performed by ROLECAST requires a pre-

cise call graph. As mentioned in Section 3.2, we first trans-

late Web applications into Java. For JSP, this translation pro-

duces well-formed method invocations and we construct an



accurate call graph for the resulting Java code using the

class hierarchy analysis (CHA) in Soot. For PHP, however,

the translation performed by the Quercus compiler makes

all method calls indirect, either via reflective calls or via

lookups in a hash table. The CHA analysis in Soot does not

support either and thus cannot be used directly to construct

the call graph of the resulting Java program.

Quercus translates each PHP function into a distinct Java

class. Therefore, to statically find the targets of unresolved

method calls, it is sufficient to perform intraprocedural prop-

agation of symbolic method names in the main method of

the Quercus-generated class. First, ROLECAST analyzes the

initialization methods, which assign to the global method

lookup hash table. It initializes each member variable in

the class to the symbolic method name(s) in the initializa-

tion methods. ROLECAST then propagates symbolic names

within the main function of each class until it reaches a fixed

point. Reflective calls dynamically reference an actual argu-

ment to resolve their target methods. Therefore, ROLECAST

also checks symbolic values of arguments at unresolved call-

sites. ROLECAST then adds a call-graph edge between the

callsite and the target method.

The call graph constructed by ROLECAST using this

technique is object- and context-insensitive. As described

in Section 5.1, ROLECAST then uses a context-sensitive al-

gorithm to compute the contexts in which security-sensitive

operations may be executed. In our experimental evaluation,

ROLECAST resolved 95% or more of user-defined method

calls in every benchmark Web application. The remaining

unresolved callsites were all due to missing plug-in func-

tion bodies. Only two callsites in our benchmarks required

manual annotation.

Recall that in Web applications, each program file can be

invoked directly by the network user and thus represents a

potential entry point. These entry points require additional

edges in the call graph. The call-graph analysis in ROLE-

CAST identifies all potential program entry points and con-

structs a single call graph with multiple entry points—one

entry point for each program file and all methods it contains.

However, programmers often neglect to defensively pro-

gram unintended entry points. This creates calling sequences

in the call graph that include methods not defined in the cur-

rent file, since the programmer intended this file to be in-

voked only from some other file which does define these

methods. The PHP interpreter will stop execution if the pro-

gram invokes an undefined method.

In theory, we simply need to eliminate all calls to unde-

fined methods in the call graph. In our current implementa-

tion, we perform this pruning of undefined methods on the

set of calling contexts CC for each security-sensitive event

e. We compute the dominator relationship for every method.

For each method m ∈ cc ∈ CC, if it dominates e inter-

procedurally but m is undefined, we eliminate the calling

context cc from the set CC. Eliminating undefined methods
in the call graph should produce the same result as eliminat-

ing them in the set of calling contexts, and the efficiency of

our analysis can be improved by performing this elimination

directly on the call graph.


