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ol Se
urity?Anupam Datta1, Ralf K�usters1, John C. Mit
hell1, Ajith Ramanathan1, and Vitaly Shmatikov21 Stanford University2 SRI InternationalAbstra
t. Several related resear
h e�orts have led to three di�erent ways of spe
ifying proto
ol se-
urity properties by simulation or equivalen
e. Abstra
ting the spe
i�
ation 
onditions away from the
omputational frameworks in whi
h they have been previously applied, we show that when asyn
hronous
ommuni
ation is used, universal 
omposability, bla
k-box simulatability, and pro
ess equivalen
e ex-press the same properties of a proto
ol. Further, the equivalen
e between these 
onditions holds for any
omputational framework, su
h as pro
ess 
al
ulus, that satis�es 
ertain stru
tural properties. Similarbut slightly weaker results are a
hieved for syn
hronous 
ommuni
ation.1 Introdu
tionOne appealing and relatively natural way to spe
ify se
urity properties is through simulation or equivalen
e.Fo
using on proto
ols and equivalen
e, we 
an say what proto
ol P should a
hieve by giving an idealfun
tionality Q and saying that P be equivalent to Q in the fa
e of atta
k. For example, P may be a keyex
hange proto
ol that operates over a publi
 network, and Q an idealized proto
ol that uses some assumedform of private 
hannel to generate and distribute shared keys. If no adversary 
an make P behave di�erentlyfrom Q, then sin
e Q is impervious to atta
k by 
onstru
tion, we are assured that P 
annot be su

essfullyatta
ked. While this intuitive approa
h may seem 
lear enough, more pre
ise formulations involve a numberof details. For example, we may want to use one form of \ideal key ex
hange" with few messages to studyseveral 
ompeting proto
ols. This ideal key ex
hange proto
ol is distinguishable from key ex
hange proto
olsthat use di�erent numbers of messages, but we 
an 
onstru
t a simulator that uses the ideal key ex
hangeprimitive to produ
e additional messages. Thus a natural variation is not to expe
t P to be equivalent toQ, but ask that P be equivalent to some extension of Q that simulates P and retains the fun
tionality ofQ. Another issue is that we want users of the proto
ol to have the same positive out
ome under all uses
enarios.The main advantage of spe
i�
ation by simulation or equivalen
e is 
omposability: if proto
ol P is indis-tinguishable from ideal behavior Q, and proto
ol R is similarly indistinguishable from S, then P 
omposedwith R is indistinguishable from Q 
omposed with S. Sin
e many forms of se
urity do not 
ompose, theimportan
e of 
omposability should not be underestimated. Another advantage is generality: simulation andequivalen
e are meaningful when the proto
ol and the adversary operate in probabilisti
 polynomial time,and meaningful with nondeterministi
 
omputation and idealized 
ryptography.We examine three similar spe
i�
ation approa
hes, and 
ompare the methods over any 
omputationalframework satisfying familiar properties of pro
ess 
al
ulus. In this setting, we prove a very general 
or-responden
e: universal 
omposability, bla
k-box simulatability, and pro
ess equivalen
e express the sameproperties of a proto
ol, assuming asyn
hronous 
ommuni
ation. Sin
e our proofs hold for any pro
ess 
al-
ulus that satis�es 
ertain equational prin
iples, our results are robust and not dependent on spe
ializedproperties of any spe
i�
 
omputational setting. However, our results do not immediately apply to Turingma
hine models [7{11℄ or IO Automata models [18, 4℄ unless the assumed stru
tural properties 
an be es-tablished for these models. If syn
hronous 
ommuni
ation is available, one part of the equivalen
e be
omesweaker be
ause syn
hronous 
ommuni
ation allows pro
esses to dete
t an intermediate pro
ess a
ting as abu�er.? This work was partially supported by NSF CCR-0121403, Computational Logi
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Although our results may be most useful to resear
hers 
on
erned with one of the three methods, somehigh-level points may be understood more broadly. First, rather than �nding te
hni
al di�eren
es between
ompeting approa
hes, we �nd that three approa
hes based on essentially similar intuition are in fa
t te
hni-
ally equivalent. Someone beginning to study this literature 
an therefore start with any of the approa
hes.Se
ond, results proved about one form of spe
i�
ation may be transferred to other forms, simplifying thelikely future development of this topi
. Third, we believe that the equivalen
e of three di�erent te
hni
alde�nitions, and the fa
t that this equivalen
e holds for a broad range of 
omputational models, stronglysuggests that there is a robust, fundamental notion underlying the three de�nitions.Universal 
omposability [7{9, 11, 10℄ involves a proto
ol to be evaluated, an ideal fun
tionality, two adver-saries, and an environment. The proto
ol has the ideal fun
tionality if, for every atta
k on the proto
ol, thereexists an atta
k on the ideal fun
tionality, su
h that the observable behavior of the proto
ol under atta
kis the same as the observable behavior of the idealized fun
tionality under atta
k. Ea
h set of observationsis performed by the same environment. Bla
k-box simulatability [18, 12, 4℄ is a formally stronger notion inwhi
h the two atta
ks must be related in a uniform way. Bla
k-box simulatability involves a proto
ol to beevaluated, an ideal fun
tionality, a simulator, one adversary, and an environment. The proto
ol has the idealfun
tionality if there exists a simulator su
h that the proto
ol and simulation are indistinguishable by anyuser environment in the fa
e of any network adversary. The di�eren
e between universal 
omposability andbla
k-box simulatability is that in the �rst 
ase, for every atta
k on the proto
ol, there must be an atta
kon the ideal fun
tionality. In the se
ond 
ase, the same is true, but the se
ond atta
k must be the same asthe �rst atta
k, intera
ting with the the ideal fun
tionality through a �xed simulator. An essential di�eren
ebetween the adversary and the environment is that the adversary only has a

ess to network 
ommuni
ation,while the environment intera
ts with the system through input/output 
onne
tions that are not a

essibleto the adversary.While the �rst two methods were developed using sets of 
ommuni
ating Turing ma
hines and probabilis-ti
 I/O automata, the third method was developed using pro
ess 
al
ulus. In the third method, asso
iatedwith spi-
al
ulus [2, 3℄, applied �-
al
ulus [1℄, and a probabilisti
 polynomial-time pro
ess 
al
ulus [16, 14,17, 19℄, a proto
ol P satis�es spe
i�
ation Q if P is observationally equivalent to Q. The spe
i�
ation Qmay be the result of 
ombining some ideal pro
ess and a simulator. Observational equivalen
e is a standardnotion from the study of programming languages and 
on
urren
y theory [15℄. Pro
ess P is observationallyequivalent to Q, written P �= Q if, for every 
ontext C[ ℄ 
onsisting of a pro
ess with a pla
e to insert Por Q, the observable behavior of C[P ℄ is the same as C[Q℄. The reason observational equivalen
e is relevantto se
urity is that we 
an think of the 
ontext as an atta
k. Then P �= Q means that any atta
k on Pmust su

eed equally well on Q, and 
onversely. In [16, 14, 17, 19℄, an asymptoti
 form of pro
ess equivalen
eis used, making observational equivalen
e the same as asymptoti
 indistinguishability under probabilisti
polynomial-time atta
k.Our main results are that with syn
hronous 
ommuni
ation, pro
ess equivalen
e implies bla
k box sim-ulatability, and bla
k box simulatability is equivalent to universal 
omposability. With asyn
hronous 
om-muni
ation, all three notions are equivalent. These results are demonstrated using formal proofs based onstandard pro
ess 
al
ulus properties su
h as asso
iativity of parallel 
omposition, 
ommutativity, renamingof private 
hannels, s
ope extrusion, and 
ongruen
e, together with a few fa
ts about pro
esses that bu�eror forward messages from one 
hannel to another. Sin
e our proofs are based on relatively simple axioms, theproofs 
arry over to any pro
ess 
al
ulus that satis�es these reasonable and well-a

epted equational prin
i-ples. Although the likely equivalen
e between universal 
omposability and bla
k-box simulatability has beenmentioned in other work [7℄, we believe this is the �rst general proof of a pre
ise relationship; an independentproof of the equivalen
e of bla
k-box simulatability and universal 
omposability is presented for a spe
i�
model (I/O automata) in [5℄, whi
h appeared between the time we submitted this paper for publi
ation andthe time it appeared. Previous work on universal 
omposability and bla
k-box simulatability is not situatedin pro
ess 
al
ulus, making the kind of general result we present here, and 
omparison with pro
ess equiv-alen
e methods, diÆ
ult. In future work, we hope to extend our analysis to in
lude 
ommuni
ating Turingma
hines (as in [7℄ and other work on universal 
omposability) and I/O automata (as in [18, 4℄ and relatedwork).The rest of the paper is organized as follows. Se
tion 2 des
ribes pro
ess 
al
ulus syntax, the equationalprin
iples used in the rest of the paper, and the di�eren
es between syn
hronous and asyn
hronous 
ommu-



ni
ation. In Se
tion 3, we de�ne universal 
omposability, bla
k-box simulatability and pro
ess equivalen
eas relations on pro
ess 
al
ulus. Se
tion 4 proves that universal 
omposability is equivalent to bla
k-boxsimulatability. Se
tion 5 shows that while pro
ess equivalen
e and bla
k-box simulatability are equivalentwith asyn
hronous 
ommuni
ation, the impli
ation holds in one dire
tion only with syn
hronous 
ommuni-
ation. The proofs presented in these se
tions rely just on the equational prin
iples set forth in Se
tion 2and hen
e hold for any 
al
ulus in that 
lass. Se
tion 6 shows that two 
on
rete 
al
uli (the probabilisti
polytime pro
ess 
al
ulus of [19, 20℄ and the spi-
al
ulus [3℄) satisfy the assumed equational prin
iples andtherefore the theorems hold for them. Finally, in Se
tion 7, we summarize our 
on
lusions and mention somedire
tions for future work.2 Pro
ess Cal
ulusPro
ess 
al
ulus is a standard language for studying 
on
urren
y [15, 21℄ that has proved useful for reasoningabout se
urity proto
ols [3, 20℄. Two main organizing ideas in pro
ess 
al
ulus are a
tions and 
hannels.A
tions o

ur on 
hannels and are used to model 
ommuni
ation 
ows.Channels provide an abstra
tion of the
ommuni
ation medium. In pra
ti
e, 
hannels might represent the 
ommuni
ation network in a distributedsystem environment or the shared memory in a parallel pro
essor. In this se
tion, we des
ribe a family ofpro
ess 
al
uli by giving a sample syntax and a set of equational prin
iples. Two example 
al
uli that satisfyour equational assumptions, spi-
al
ulus [3℄ and the probabilisti
 polynomial-time pro
ess 
al
ulus of [20℄,are dis
ussed Se
tion 6.A pro
ess 
al
ulus provides a syntax and an asso
iated semanti
s. For 
on
reteness, we will use the syntaxde�ned by the following grammar, although additions to the language or 
hanges in synta
ti
 presentationare not likely to a�e
t our results.P ::= 0 (termination)�
(P) (private 
hannel)in [
; x℄ :(P) (input)out [
; T℄ :(P) (output)[T1 = T2℄:(P) (mat
h)(P j P) (parallel 
omposition)!f(x):�P� (bounded repli
ation)Intuitively 0 is the empty pro
ess taking no a
tion. An input operator in [
; x℄ :P waits until it re
eives a valueon the 
hannel 
 and then substitutes that value for the free variable x in P. Similarly, an output out [
; T℄ :Pevaluates the term T, transmits that value on the 
hannel 
, and then pro
eeds with P. Channel names thatappear in an input or an output operation 
an be either publi
 or private, with a 
hannel being private ifit is bound by a �-operator and publi
 otherwise. For 
onvenien
e, we always �-rename 
hannel names sothat they are all distin
t. The mat
h operator [T1 = T2℄ exe
utes the pro
ess following i� T1 have the T2value. The bounded repli
ation operator has bound determined by the fun
tion f aÆxed as a subs
ript. Theexpression !f(x):�P� is expanded to the f(x)-fold parallel 
omposition P j � � � j P before evaluation.Sin
e an output pro
ess out [
; T℄ :(P) only pro
eeds when another pro
ess is ready to re
eive its input, thispro
ess 
al
ulus has syn
hronous 
ommuni
ation. For maximal generality, we pro
eed using a syn
hronous
al
ulus, 
onstru
ting asyn
hronous 
hannels when desired by inserting bu�er pro
esses. In an asyn
hronoussetting, inserting an additional bu�er on a 
hannel would presumably have no e�e
t, and our results wouldtherefore remain valid.2.1 Equational Prin
iplesA pro
ess 
al
ulus syntax and semanti
s give rise to an equivalen
e relation �= 
alled observational equiva-len
e. Informally, two pro
ess 
al
ulus expressions are observationally equivalent if they produ
e the sameobservations, when exe
uted in any 
ontext. Traditionally, observations are a
tions on publi
 
hannels, witha
tions on a 
hannel 
 bound by �
() private and unobservable.We will assume the standard equational prin
iples 
olle
ted in Table 1. Rules TRN , SYM , and CONGstate that observational equivalen
e is a 
ongruen
e. Rule RENAME renames bound 
hannels and SCOPE



allows us to \extrude" the s
ope of a private 
hannel. Intuitively, with 
hannels alpha-renamed apart, we 
anenlarge the s
ope of a 
hannel binding without 
hanging the observable behavior of the pro
ess. Rule ZEROsays that the zero pro
ess produ
es no observable a
tivity. Rules COM and ASC re
e
t the asso
iativityand 
ommutativity of parallel 
omposition. P j Q �= Q j P (COM)(P j Q) j R �= P j (Q j R) (ASC)0 j P �= P (ZERO)�(
) = �(d)�
(P) �= �d(P [d=
℄) (RENAME)
 62 Channels(C[0℄)�
(C[P℄) �= C[�
(P)℄ (SCOPE)P �= Q;Q �= RP �= R (TRN)P �= QQ �= P (SYM)P �= Q8C[ ℄ 2 Con : C[P℄ �= C[Q℄ (CONG)Table 1. Equivalen
e Prin
iplesFor reasons that will be
ome 
lear in later se
tions of the paper, we partition the set of publi
 
hannelnames into two in�nite sets: the network 
hannels and the input-output 
hannels. We use the abbreviationnet to refer to network 
hannels and io for input-output 
hannels. The di�eren
e between these two sets isthat network 
hannels will 
arry 
ommuni
ation a

essible to the adversary, while io 
hannels allow users(the environment) to provide inputs to and observe the outputs produ
ed by the proto
ol. We use �net toindi
ate binding �n1; : : : ; �nk of all network 
hannels in a pro
ess, and similarly �io for binding all io 
hannels.Throughout the paper, we use P, F, A, and S (with supers
ripts if ne
essary) for pro
esses that representa real proto
ol, an ideal fun
tionality, an adversary and a simulator. These may be arbitrary pro
esses, ex
eptthat we impose restri
tions on the names of publi
 
hannels that ea
h may 
ontain. Spe
i�
ally, all publi

hannel names in a proto
ol P, an ideal fun
tionality F, and an adversaryA must be network or input-output
hannels, while all publi
 
hannel names in a simulator S must be network 
hannels. For any given proto
olP, the io 
hannels of an adversary A atta
king P must be disjoint from the io 
hannels of P. The purposeof these restri
tions is to allow the adversary, for example, to 
onne
t to the network 
hannels of a proto
olor ideal fun
tionality, but not to its input-output 
hannels. Also, by making all network 
hannels privatewhen a proto
ol P is 
ombined with an adversary A, we ensure that only the io 
hannels are a

essible tothe environment.2.2 Bu�ers, dummy adversaries, and asyn
hronous 
ommuni
ationOne of the main di�eren
es between pro
ess equivalen
e and the two other relations is that pro
ess equiva-len
e only involves one form of 
ontext (surrounding pro
esses intera
ting with the proto
ol), as opposed toseparate adversary and environment 
ontexts in the other two relations. Therefore, while investigating the
onne
tion between pro
ess equivalen
e and the other relations, we will repla
e the adversary in the otherde�nitions by a \dummy adversary" that does nothing but pass messages to the surrounding 
ontext. Also,sin
e the underlying pro
ess 
al
ulus is assumed to be syn
hronous, we interpose \bu�ers" between pro
essesto enfor
e asyn
hronous 
ommuni
ation when desired. Consequently, our proofs require 
ertain equationalproperties of bu�ers and simple pro
esses that forward messages from one 
hannel to another.For any pair a and b of disjoint lists of 
hannel names, both of the same length, we assume two pro
essesDba and Bba, whi
h we will 
all a dummy adversary and a bu�er pro
ess, respe
tively. Intuitively, the axioms



about Dba and Bba below state that these pro
esses forward data between 
hannels a1; : : : ; ak and b1; : : : ; bk,respe
tively. A dummy adversary may need to preserve message order to satisfy Axiom 1, but a bu�er neednot preserve message order. We assume that Dba and Bba have the 
hannel names a1; : : : ; ak and b1; : : : ; bkfree, and no other free 
hannel names.Axiom 1 (Dummy Adversary (DUMMY)). Let P be a proto
ol and A be an adversary. Then �net(P jA) �= �net;dummy(P j Ddummynet j A[dummy=net℄) where dummy is a set of fresh 
hannels of 
ardinality jnetjused to 
ommuni
ate between the dummy adversary and the modi�ed adversary.Axiom 2 (Double Bu�ering (DBLBUF)). Let Bba, B
b and B
a be three bu�ers, for disjoint lists of
hannel names a, b, 
 of the same length. Then, �b(Bba j B
b) �= B
a.Axiom 3 (Dummy and Bu�er (DUMBUF)). Let Bba, B
b and B
a be three bu�ers and let D
b and Dba bedummy adversaries, for disjoint lists of 
hannel names a, b, 
 of the same length. Then, �b(Bba j D
b) �= B
aand �b(Dba j B
b) �= B
aIntuitively, Axiom 1 states that the intera
tion between a proto
ol and adversary through the network isindistinguishable from a situation when the 
ommuni
ation between the proto
ol and the adversary is routedthrough the dummy adversary. Axiom 2 states that two bu�ers pla
ed on a 
hannel are indistinguishable fromone bu�er on that 
hannel and Axiom 3 states that pla
ing a dummy adversary and a bu�er in sequen
e on a
hannel is equivalent to just having a bu�er on that 
hannel. Spe
i�
 bu�er and dummy adversary pro
essesare presented in Se
tion 6.3 Se
urity De�nitionsIn this se
tion, we de�ne three relations on pro
esses, universal 
omposability, bla
k-box simulatability andpro
ess equivalen
e. These de�nitions are �rst presented in the syn
hronous form, then modi�ed at the endof the se
tion to assume asyn
hronous 
ommuni
ation by pla
ing bu�ers between pro
ess, adversary, andenvironment.De�nition 4. Universal Composability: A proto
ol P is said to se
urely realize an ideal fun
tionality F iffor any adversary A atta
king the proto
ol, there exists an adversary A� atta
king the ideal fun
tionality,su
h that no 
ontext 
an distinguish whether it is intera
ting with P and A or with F and A� . Formally,8A:9A� : �net(P j A) �= �net(F j A�)Figure 1 provides further intuition. The proto
ol as well as the ideal fun
tionality 
ommuni
ate with therespe
tive adversary pro
esses over the network 
hannels (denoted net in the �gure). These 
hannels arenot visible to the 
ontext (or \environment" to use the terminology of [7, 18℄). However, the 
ontext getsto 
ommuni
ate with these pro
esses over the input-output 
hannels (denoted io in the �gure). All other
hannels of P, A, F, and A� are private. The intuition behind the distin
tion between 
hannels is that if youare a user of SSL (Se
ure So
kets Layer), for example, your browser 
ommuni
ates with the implementationof SSL through io 
hannels, while an atta
ker on the network has 
ontrol of traÆ
 on net 
hannels.Sin
e the two pro
ess expressions in the de�nition of Universal Composability are observationally equiv-alent, this implies that if there is an atta
k on the real proto
ol, then there exists an equivalent atta
k onthe ideal fun
tionality. Hen
e, if the ideal fun
tionality is impervious to atta
k by 
onstru
tion, then a realproto
ol that satis�es the above de�nition wrt the ideal fun
tionality also 
annot be atta
ked. While [7{9,11, 10℄ dis
uss an adversary and environment, the environment here is provided by the 
ontext used in thede�nition of �=.In the de�nition of bla
k-box simulatability and pro
ess equivalen
e, we use a simulator pro
ess whosepubli
 
hannels 
orrespond to the union of the network 
hannels of the ideal fun
tionality (denoted simbelow) and the network 
hannels of the adversary (denoted net below).
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F A*
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Fig. 1. Universal ComposabilityDe�nition 5. Bla
k-box Simulatability: A proto
ol P is said to se
urely realize an ideal fun
tionality F ifthere exists a simulator S su
h that for any adversary A, no 
ontext 
an distinguish whether it is intera
tingwith P and A or with F, S and A. Formally,9S:8A: �net(P j A) �= �net(�sim(F j S) j A)Figure 2 depi
ts this s
enario. In e�e
t, the simulator S uses the ideal fun
tionality F to simulate thereal proto
ol P. The di�eren
e between universal 
omposability and bla
k-box simulatability is that in the�rst 
ase, for every atta
k on the proto
ol, there must be an atta
k on the ideal fun
tionality. In the se
ond
ase, the same is true, but the se
ond atta
k must be the same as the �rst atta
k, 
arried out on a simulationof the proto
ol that may rely on the ideal fun
tionality.
P A F S A

=
net sim net

io io io io

Fig. 2. Bla
k Box SimulatabilityDe�nition 6. Pro
ess Equivalen
e: A proto
ol P is said to se
urely realize an ideal fun
tionality F if thereexists a simulator S su
h that no 
ontext 
an distinguish whether it is intera
ting with P or with F and S.Formally, 9S: P �= �sim(F j S)Figure 3 depi
ts this situation. Note that, unlike the �rst two de�nitions, the 
ontext has a

ess to boththe network and the input-output 
hannels. Intuitively, the 
ontext used in the de�nition of observationalequivalen
e serves the roles of both the adversary and the environment.For ea
h of these three relations, we formulate below 
orresponding asyn
hronous 
onditions by interpos-ing message bu�ers or \bags" [15℄ on the network, input-output, and simulation 
hannels. A bu�er is anypro
ess satisfying the synta
ti
 restri
tions and axioms des
ribed in Se
tion 2.2.
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Fig. 3. Pro
ess Equivalen
eUC : 8A:9A�: �ph;pn;an;ah(Bhph j P j Banpn j A j Bh0ah) �= �fh;fn;sn;sh(Bhfh j F j Bsnfn j A� j Bh0sh)BB : 9S:8A �ph;pn;h0;ah0(Bhph j P j Bh0pn j A j Bh00ah0) �= �fh;fn;sn;sh;h0;ah0(Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0)PE : 9S: �ph;pn(Bhph j P j Bnpn) �= �fh;fn;sh;sn(Bhfh j F j Bshfn j S j Bnsn)The binding of 
hannels used in these de�nitions should be intuitively 
lear. In the UC 
ondition, forexample, Bhph bu�ers messages on P 0s input-output 
hannels; it forwards messages on the 
hannels labelledh to P 0s input-output 
hannels (denoted ph). By binding the 
hannels ph, we ensure that they are notobservable by the environmental 
ontext. Similarly, Banpn and Bh0ah bu�er messages on the network 
hannelsbetween P and A and the io 
hannels of A.4 Bla
k-box Simulatability and Universal ComposabilityIn this se
tion, we prove that universal 
omposability and bla
k-box simulatability are equivalent for bothsyn
hronous and asyn
hronous 
ommuni
ation.Theorem 7. Universal 
omposability is equivalent to bla
k-box simulatability with syn
hronous 
ommuni-
ation.Proof. (: Follows immediately by s
ope extrusion (SCOPE), asso
iativity of parallel-or (ASC) and re-naming of private 
hannels (RENAME). The formal proof is given in Table 2. A� is simply �sim(SR j AR).Thus, the 
ombination of the simulator and the real adversary gives us the ideal pro
ess adversary demandedby the universal 
omposability de�nition.BB 9S:8A: �net(P j A) �= �net(�sim(F j S) j A) (1)(1);SCOPE;ASC 9S:8A: �net(P j A) �= �sim(F j �net(S j A)) (2)(2);RENAME 9S:8A: �net(P j A) �= �net(FR j �sim(SR j AR)) (3)(3) 8A:9A�: �net(P j A) �= �net(FR j A�) (4)Table 2. Bla
k-Box Simulatability implies Universal Composability (Syn
hronous Communi
ation)): The formal proof is in Table 3. In Figure 4, the same proof is sket
hed out using intuitive diagrams ofthe form introdu
ed in Se
tion 3. We use standard pro
ess 
al
ulus proof rules: 
ongruen
e (CONG), asso-
iativity of parallel-or (ASC), renaming of private 
hannels (RENAME), and s
ope extrusion (SCOPE).The only step in the proof that does not immediately follow from our general equational prin
iples rulesis (4). We use the network-spe
i�
 equivalen
e rule DUMMY (see Axiom 1) here. This rule 
aptures theintuition that the environment 
annot distinguish whether it is intera
ting with a pro
ess P and adversary



A or it is intera
ting with P and A where the 
ommuni
ation between them is forwarded through a \dummyadversary", D, whi
h just forwards messages in the order in whi
h it re
eives them. Naturally, a dummyadversary pro
ess has to be de�ned and the assumed equivalen
e has to be proven in any 
on
rete 
al
ulusin whi
h we wish to apply our general results. In parti
ular, as dis
ussed in a later se
tion, the notion ofa \dummy adversary" is made rigorous in De�nition 16 and the equivalen
e proved in Lemma 18 for theprobabilisti
 polytime pro
ess 
al
ulus of [20℄.UC 9S: �net(P j D) �= �net(F j S) (1)(1);CONG 9S:8A: �a0(�net(P j D j AR)) �= �a0(�net(F j S) j AR) (2)(2);SCOPE;ASC 9S:8A: �net(P j �a0(D j AR)) �= �a0(�net(F j S) j AR) (3)(3);DUMMY 9S:8A: �net(P j A) �= �a0(�net(F j S) j AR) (4)(4);RENAME 9S:8A: �net(P j A) �= �net(�sim(FR j SR) j A) (5)Table 3. Universal Composability implies Bla
k-Box Simulatability (Syn
hronous Communi
ation)
Theorem 8. Universal 
omposability is equivalent to bla
k-box simulatability with asyn
hronous 
ommuni-
ation.Proof. (: Follows immediately by s
ope extrusion (SCOPE), asso
iativity of parallel-or (ASC) and renam-ing of private 
hannels (RENAME). The formal proof is exa
tly the same as the one for the syn
hronousmodel. A� is simply �sn;an(S j Bansn j A).): The formal proof is given in Table 4. The standard pro
ess 
al
ulus rules used in the proof are
ongruen
e (CONG) and s
ope extrusion (SCOPE). The two non-standard rules used are (DBLBUF)and (DUMBUF). As for (DUMMY) these rules need to be proven in any 
on
rete 
al
ulus in whi
h wewish to apply our general results. These rules are formally proved for the probabilisti
 polytime 
al
ulus inLemma 19 and Lemma 20 respe
tively.UC 9S: �ph;pn;an;ah(Bhph j P j Banpn j Dahan j Bh0ah) �= �fh;fn;sn;sh(Bhfh j F j Bsnfn j S j Bh0sh) (1)(1);CONG 9S:8A �ph;pn;an;ah;h0;ah0(Bhph j P j Banpn j Dahan j Bh0ah j A j Bh00ah0) �=�fh;fn;sn;sh;h0;ah0(Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0) (2)(2);SCOPE;DUMBUF 9S:8A �ph;pn;an;h0;ah0(Bhph j P j Banpn j Bh0an j A j Bh00ah0) �=�fh;fn;sn;sh;h0;ah0(Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0) (3)(3);SCOPE;DBLBUF 9S:8A �ph;pn;h0;ah0(Bhph j P j Bh0pn j A j Bh00ah0) �=�fh;fn;sn;sh;h0;ah0(Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0) (4)Table 4. Universal Composability implies Bla
k-Box Simulatability (Asyn
hronous Communi
ation)
5 Pro
ess Equivalen
e and Bla
k-box SimulatabilityPro
ess equivalen
e and bla
k-box simulatability are equivalent with asyn
hronous 
ommuni
ation. Withsyn
hronous 
ommuni
ation, however, pro
ess equivalen
e implies bla
k-box simulatability but not 
on-versely.
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Theorem 9. Pro
ess equivalen
e implies bla
k-box simulatability with syn
hronous 
ommuni
ation.Proof. By de�nition, we have 9S: P �= �sim(F j S). Hen
e, by the 
ongruen
e rule, CONG, we have that9S:8A: �net(P j A) �= �net(�sim(F j S) j A). This is pre
isely the de�nition of bla
k-box simulatability inthe syn
hronous 
ommuni
ation.The reason that pro
ess equivalen
e is stri
tly stronger than bla
k-box simulatability in the syn
hronous
ase is that when the the adversary and environment are 
ombined into one surrounding pro
ess 
on-text, this 
ontext may use the global ordering of events on the net and io 
hannels to distinguish be-tween real and ideal pro
esses. This global ordering is not available when the adversary and the environ-ment are separate pro
esses as in the de�nition of bla
k-box simulatability. Consider the two pro
essesP ::= out [io; �℄ :out [io; 
℄ :out [net; �℄ and Q ::= out [io; �℄ :out [net; �℄ :out [net; 
℄. These two pro
essessatisfy the de�nition of bla
k-box simulatability in a non-deterministi
 pro
ess 
al
ulus like spi-
al
ulus (us-ing a simulator that just forwards messages to the adversary). However, they do not satisfy the de�nition ofpro
ess equivalen
e sin
e the global ordering of observables on the io and net 
hannels is �; 
; � in one 
aseand �; �; 
 in the other.Theorem 10. Pro
ess equivalen
e is equivalent to bla
k-box simulatability with asyn
hronous 
ommuni
a-tion.Proof. ): By de�nition, 9S: �ph;pn(Bhph j P j Bnpn) �= �fh;fn;sh;sn(Bhfh j F j Bshfn j S j Bnsn). Hen
e, by the
ongruen
e rule, CONG, we have 9S:8A: �ph;pn;an;ah(Bhph j P j Banpn j A j Bh0ah) �= �fh;fn;sh;sn;an;ah(Bhfh j F jBshfn j S j Bansn j A j Bh0ah). This is pre
isely the de�nition of bla
k-box simulatability when 
ommuni
ation isasyn
hronous. The proof follows the same line of reasoning as the one for syn
hronous 
ommuni
ation.(: The formal proof is in Table 5. Besides s
ope extrusion, it uses (DBLBUF) and (DUMBUF) torepla
e a dummy adversary and bu�er pro
ess 
ombination as well as two sequentially 
onne
ted bu�ers bya single instan
e of a bu�er pro
ess. BB 9S: �ph;pn;an;ah(Bhph j P j Banpn j Dahan j Bh0ah) �=�fh;fn;sh;sn;an;ah(Bhfh j F j Bshfn j S j Bansn j Dahan j Bh0ah) (1)(1);SCOPE;DUMBUF 9S: �ph;pn;an(Bhph j P j Banpn j Bh0an) �=�fh;fn;sh;sn;an(Bhfh j F j Bshfn j S j Bansn j Bh0an) (2)(2);SCOPE;DBLBUF 9S: �ph;pn;an(Bhph j P j Bh0pn) �=�fh;fn;sh;sn;an(Bhfh j F j Bshfn j S j Bh0sn) (3)Table 5. Bla
k-Box Simulatability implies Pro
ess Equivalen
e (Asyn
hronous Communi
ation)
6 Appli
ations to spe
i�
 pro
ess 
al
uliIn this se
tion, we demonstrate that several standard pro
ess 
al
uli used for reasoning about se
urityproto
ols (the probabilisti
 polynomial-time pro
ess 
al
ulus of [20℄, the spi-
al
ulus [3℄, and the applied�-
al
ulus [1℄) satisfy the equational prin
iples used in the axiomati
 proofs in the previous se
tions. Theproved relations between the various se
urity de�nitions therefore hold in these 
al
uli.6.1 Probabilisti
 Poly-time Pro
ess Cal
ulusA probabilisti
 polynomial-time pro
ess 
al
ulus (PPC) for se
urity proto
ols is developed in [16, 14, 17℄; thebest 
urrent presentations are [19, 20℄. It 
onsists of a set of terms that do not perform any 
ommuni
ations,



expressions that 
an 
ommuni
ate with other expressions, and, 
hannels that are used for 
ommuni
ation.Terms 
ontain variables that re
eive values over 
hannels. There is also a spe
ial variable n 
alled the se
urityparameter. Ea
h expression de�nes a set of pro
esses, one for ea
h 
hoi
e of value for the se
urity parameter.Ea
h 
hannel name has a bandwidth polynomial in the se
urity parameter asso
iated with it by a fun
tion
alled �. The bandwidth ensures that no message gets too large and, thus, ensures that the expression 
anbe evaluated in time polynomial in the se
urity parameter.The 
lass of terms used must satisfy the following two properties:1. If � is a term with k variables, then there exists a probabilisti
 Turing ma
hine M� with k inputs and apolynomial q�(x1; : : : ; xk) su
h that:(a) The term �, with a1; : : : ; ak substituted for its k variables, redu
es to a with probability p if and onlyif M�(a1; : : : ; ak) returns a with probability p; and,(b) For any 
hoi
e of a1; : : : ; ak we have that M�(a1; : : : ; ak) halts in time at most q�(ja1j; : : : ; jakj).2. For ea
h probabilisti
 polynomial-time fun
tion f : Nm ! N, there exists a term � su
h thatM� 
omputesf .Essentially, the term language 
ompletely 
aptures the 
lass of probabilisti
 polynomial-time Turing ma-
hines. One example of su
h a set of terms is based on a term 
al
ulus 
alled OSLR studied in [16℄ (basedin turn on [6, 13℄).Although any probabilisti
 polynomial-time fun
tion 
an be 
omputed by a term, 
ommuni
ation requiresadditional synta
ti
 forms. Expressions of PPC are given by the grammar in Se
tion 2. The 
ontexts, Con,of PPC are obtained from the grammar by adding a pla
eholder symbol for a \hole" to be �lled in, as usual.Operational Semanti
s The evaluation of a variable-
losed pro
ess pro
eeds in three steps: redu
tion,sele
tion, and 
ommuni
ation. In the redu
tion step, all terms and mat
hes that are not in the s
ope of aninput expression are evaluated. Sin
e the expression is variable-
losed and only inputs 
an bind variables, weknow that every term outside the s
ope of an input has no free variables. This step simulates 
omputation.In the sele
tion step, we use a probabilisti
 s
heduler to sele
t an a
tion to perform. A
tions in
lude thesilent a
tion, � ; the input a
tion inh
; ai that reads the value a from the 
hannel 
 into the variable x; theoutput a
tion outh
; ai that pla
es the value a on the 
hannel 
; and the simultaneous a
tion � � � whereone of � and � is an input a
tion from the 
hannel 
 of the value a and the other a
tion is an output of thevalue a on the 
hannel 
 obtained by using the a
tion produ
t � on � and �. We will say that two a
tions areof the same type if they are both inputs, outputs, or simultaneous a
tions with the same 
hannel and value.The s
heduler pi
ks a parti
ular type of simultaneous a
tion from the set of available simultaneous a
tiontypes a

ording to the distribution de�ning the s
heduler. However, silent a
tions must be performed if theyare available sin
e silent a
tions have higher priority. Then, one a
tion of that type is pi
ked uniformly atrandom from the set of available a
tions of that type. Further dis
ussion may be found in [19℄.In the 
ommuni
ation step, we perform the indi
ated substitution taking 
are to trun
ate the value a

ord-ing to the bandwidth asso
iated with the 
hannel name. This is important for preserving the polynomial-timeproperty of the pro
ess 
al
ulus.We 
all this three-stage pro
edure an evaluation step; and evaluation pro
eeds in evaluation steps untilthe set of s
hedulable a
tions be
omes empty. We refer the reader to [19℄ for more details.Theorem 11. Let P be a pro
ess. Then the evaluation of P 
an be performed in time polynomial in these
urity parameter.The proof pro
eeds by 
onstru
ting a ma
hine that evaluates P. The time-bound follows from the represen-tation of terms and s
hedulers as probabilisti
 polynomial-time Turing ma
hines.A form of weak probabilisti
 bisimulation over asymptoti
ally polynomial-time pro
esses, or more simplyprobabilisti
 bisimulation, is developed in [19, 20℄ (see also [21℄). Two pro
esses P and Q are probabilisti
allybisimilar just when1. If P 
an take an a
tion � and with probability p be
ome P 0 , then Q must be able to take � to be
omepro
esses Q1; : : : ; Qk with total probability p; and,2. If Q 
an take an a
tion � and with probability p be
ome Q0 , then P must be able to take � to be
omepro
esses P1; : : : ; Pk with total probability p.



Using ' to denote the bisimulation equivalen
e relation, [19, 20℄ show that ' is a 
ongruen
e.Theorem 12. 8P;Q 2 Pro
:8C[ ℄ 2 Con : P ' Q =) C[P℄ ' C[Q℄De�nition 13. Let P and Q be two PPC expressions. Then P �= Q if, for suÆ
iently large n, Pn n isobservationally indistinguishable from Qn n.A more pre
ise de�nition 
an be found in [19, 20℄. We also have the following theorem, proved in [19℄,whi
h states that if two pro
esses are probabilisti
ally bisimilar, then they are observationally equivalent (inthe sense of [19℄). Hen
e, to prove observational equivalen
e, it is suÆ
ient to demonstrate a probabilisti
bisimulation.Theorem 14. P ' Q =) P �= Q.In [19℄, it is proved that all the equational prin
iples of Table 1 hold in PPC. It remains to show that(DUMMY), (DBLBUF), and (DUMBUF) hold in PPC. We give below pre
ise de�nitions of the dummyadversary and the bu�er pro
ess in PPC, relegating proofs of the equivalen
es to Appendix A. Hen
e, we 
an
on
lude that the results proved in the previous se
tions about the relationship between the various se
urityproperties hold for PPC.For simpli
ity we will 
onstru
t uni-dire
tional bu�ers, assuming that ea
h publi
 
hannel is dire
tionali.e., a 
hannel name is used in a pro
ess only for inputs or only for outputs. We will say that a 
hannel is aninput 
hannel (resp. output 
hannel) just when it is to be used only for inputs (resp. outputs). Bi-dire
tionalbu�ers may be 
onstru
ted by 
omposing a pair of uni-dire
tional 
hannels.De�nition 15. Let A = fa1; : : : ; akg and B = fb1; : : : ; bkg be two equinumerous sets of 
hannel names su
hthat ai 2 A is an input 
hannel i� bi 2 B is an output 
hannel. We de�ne Bbiai as!q(�):�in [ai; y℄ :out [bi; y℄�in the 
ase that ai is an output 
hannel, and!q(�):�in [bi; y℄ :out [ai; y℄�in the 
ase that ai is an input 
hannel. Then we de�ne the asyn
hronous bu�er between A and B, BBA , asthe expression Bb1a1 j � � � j Bbkak .Essentially, an asyn
hronous bu�er forwards messages between 
hannels in A and 
hannels in B withoutpreserving any message-ordering sin
e, for example, it is possible that an input on ai is read, then a se
ondinput on ai is read and forwarded onto bi before the �rst input on ai is forwarded onto bi.De�nition 16. Let A = fa1; : : : ; akg and B = fb1; : : : ; bkg be two equinumerous sets of 
hannel names su
hthat ai 2 A is an input 
hannel i� bi 2 B is an output 
hannel. We de�ne Dbiai asin [ai; y℄ :out [bi; y℄ :out [syni; 1℄ j !q(�):�in [syni; x℄ :in [ai; y℄ :out [bi; y℄ :out [syni; 1℄�in the 
ase that ai is an output 
hannel, andin [bi; y℄ :out [ai; y℄ :out [syni; 1℄ j !q(�):�in [syni; x℄ :in [bi; y℄ :out [ai; y℄ :out [syni; 1℄�in the 
ase that ai is an input 
hannel. Then we de�ne the dummy adversary between A and B, DBA , as theexpression �syn(Dbia1 j � � � j Dbkak )The expression DBA simply forwards 
ommuni
ations between ea
h 
hannel ai 2 A and bi 2 B. The 
hannelsyni is used to syn
hronize between the various inputs and outputs on the 
hannel ai in DBA to avoid situationswhere, for example, a value has been read on the 
hannel bi and, before it is forwarded, a new value is readon the 
hannel bi and then forwarded. Essentially, the use of syni allows us to preserve the ordering on
ommuni
ations on ai by guaranteeing that if DBA re
eives the message o before o0, it will transmit o beforeo0. Thus a dummy adversary is just a message-order-preserving bu�er.Theorem 17. The equivalen
e prin
iples (DUMMY), (DBLBUF), and (DUMBUF) hold in PPC.We prove these equivalen
es by 
onstru
ting a probabilisti
 bisimulation and then applying Theorem 14.Proof sket
hes are available in Appendix A.



6.2 Spi-Cal
ulus and Applied �-Cal
ulusSpi-
al
ulus [3℄ and applied �-
al
ulus [1℄ are two other pro
ess 
al
uli that have been used to reason aboutse
urity proto
ols. All the standard stru
tural equivalen
e rules: asso
iativity of parallel 
omposition (ASC),renaming of private 
hannels (RENAME), s
ope extrusion (SCOPE), 
ongruen
e (CONG), whi
h were
olle
ted in Table 1, hold in these 
al
uli. The network-spe
i�
 equivalen
es are also satis�ed with appropriatede�nitions of dummy adversary and bu�er pro
esses. Hen
e the results proved in Se
tion 4 and Se
tion 5also hold for these 
al
uli. A representative proof for spi-
al
ulus is given in Appendix B.7 Con
lusionsWe 
ompare three similar ways of spe
ifying proto
ol properties by formulating universal 
omposability,bla
k-box simulatability, and pro
ess equivalen
e over pro
ess 
al
ulus. Our main results are that all threeare equivalent when asyn
hronous 
ommuni
ation is used; with syn
hronous 
ommuni
ation, the �rst twoare equivalent and implied by the third. While some pro
ess 
al
uli provide syn
hronous 
ommuni
ation, theasyn
hronous 
ase is 
loser to 
omputational pra
ti
e. Although we model asyn
hronous 
ommuni
ation byadding bu�ers to a syn
hronous 
al
ulus, we 
onje
ture that the same results 
ould also be a
hieved startingwith a purely asyn
hronous form of pro
ess 
al
ulus.Sin
e universal 
omposability, bla
k-box simulatability, and pro
ess equivalen
e are all based on similarintuition about spe
ifying se
urity properties using indistinguishability, it is reassuring to know that they 
anbe proved te
hni
ally equivalent. We expe
t this equivalen
e to be useful in further resear
h, sin
e it allowsus to transfer results about one form of spe
i�
ation to other forms. In addition, the equivalen
e of threedi�erent te
hni
al de�nitions, and the fa
t that this equivalen
e holds for a broad range of 
omputationalmodels, indi
ate the mathemati
al robustness of the underlying 
on
ept.Our proofs use standard pro
ess 
al
ulus proof rules su
h as asso
iativity of parallel 
omposition, 
om-mutativity, renaming of private 
hannels, s
ope extrusion, and 
ongruen
e. The only subtlety is that twopro
esses 
ommuni
ating over a private 
hannel must be observationally equivalent to two pro
esses 
om-muni
ating through a dummy pro
ess that just forwards messages in both dire
tions. Therefore, the proofswill 
arry over to any pro
ess 
al
ulus that has the ne
essary features (su
h as private 
hannels) and satis�esreasonable and well-a

epted equational prin
iples. In future work, we hope to extend our arguments to 
over
ommuni
ating Turing ma
hines (as in [7℄ and other work on universal 
omposability) and I/O automata(as in [18℄ and related work).A
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ation between P and A 
an be identi�ed immediately with transitions of�net;dummy(P j �syn(Dudummynet ) j A[dummy=net℄). The only 
on
ern are those 
ommuni
ations between P andA. These, though, 
an be simulated via a three stage pro
edure. Without loss of generality let us assumethat a message is going from A to P along a net 
hannel. In the �rst stage, the message is transmittedfrom A[dummy=net℄ to the dummy. In the se
ond stage, the message is transmitted along the appropriate net
hannel to P. Finally, a syn
hronization bit in the dummy is transmitted to allow further 
ommuni
ationsto o

ur. While there is only one 
hoi
e of transition for the �rst two stages, there are several 
hoi
es forthe third sin
e any one of the q(i) inputs for the syn
hronization bit in the dummy 
an re
eive the message.



However, ea
h of the pro
esses obtained after the third step are stru
turally identi
al (they only vary inwhi
h of the q(i) remaining bridges between the dummy 
hannel and its 
orresponding net 
hannel a

eptsthe syn
hronization bit). Thus we 
an identify them and repla
e the �nal q(i)-fold step with a single step.This means that every transition of �net(P j A) 
an be uniquely mat
hed with either a transition or alength-three path of �net;dummy(P j �syn(Dudummynet ) j A[dummy=net℄). The uniqueness of the mapping followsfrom its 
onstru
tion. Thus we 
an infer the desired bisimilarity whi
h implies observational equivalen
e.Lemma 19 (Double Bu�ering). Let Bba, B
b and B
a be asyn
hronous bu�ers. Then, �b(Bba j B
b) �= B
a.Proof. We will show that �b(Bba j B
b) is probabilisti
ally bisimilar to B
a from whi
h it follows that the twoexpressions are observationally equivalent. For simpli
ity, we will assume that jaj = jbj = j
j = 1. Let us alsoassume that a is an input 
hannel (when
e 
 must be an output 
hannel). In that 
ase B
a is just!q(�):�in [a; y℄ :out [
; y℄�and �b(Bba j B
b) is just �b(!q(�):�in [a; y℄ :out [b; y℄� j !q(�):�in [b; y℄ :out [
; y℄�)We will identify expressions equivalent by virtue of the asso
iativity and 
ommutativity of j, the parallel
omposition operator, and the equivalen
e P j 0 �= P. Making use of these identi�
ations, it is easy to verifythat the set of pairsfh!q(�):�in [a; y℄ :out [
; y℄� j !q(�):�out [
; y℄�;�b(!q(�):�in [a; y℄ :out [b; y℄� j !q(�):�in [b; y℄ :out [
; y℄�) j !q(�):�out [
; y℄�igis a suitable probabilisti
 bisimulation.Lemma 20 (Dummy and Bu�er). Let Bba, B
b and B
a be three asyn
hronous bu�ers and let D
b and Dbabe dummy adversaries. Then, �b(Bba j D
b) �= B
a and �b(Dba j B
b) �= B
aAn asyn
hronous bu�er just forwards messages without preserving the message order. Thus, intuitively,pla
ing it after any stru
ture that preserves message order or before any su
h stru
ture should be the sameas just using the asyn
hronous bu�er. The formal proof is similar to the proof of Lemma 19 and is omitteddue to spa
e 
onstraints.B Proof of Equivalen
e for Spi-Cal
ulusTheorem 21. Theorem 7 and Theorem 9 hold for spi-
al
ulus.Proof. The standard equivalen
e rules used in proving the two theorems: asso
iativity of parallel-or (ASC),renaming of private 
hannels (RENAME), 
ongruen
e (CONG), and s
ope extrusion (SCOPE) hold inspi-
al
ulus. The only non-standard step 
orresponds to DUMMY. The proof relies on the observation thatthe situation in whi
h pro
esses P and A 
ommuni
ate over a private 
hannel is observationally equivalentto the one in whi
h all su
h 
ommuni
ation is routed through a dummy pro
ess that just forwards messagesin both dire
tions. For simpli
ity, we 
onsider only the 
ase when there are two 
hannels 
0 and 
1 betweenP and A. Sin
e 
hannels are dire
tional, without loss of generality, we assume that 
hannel 
0 is from A toP (i.e., only A outputs messages on 
0, and only P re
eives messages on 
0), and 
hannel 
1 is from P to A.The proof extends dire
tly to the multiple-
hannel 
ase.Rewriting the statement using spi-
al
ulus formalism and letting Ad stand for A[d=
℄, we wish to demon-strate that (�
0; 
1)(P j A) ' (�
0; 
1; d0; d1)(P j ((�s0; s1)(D0 j D1) j Ad))where D0 = d0(y):
0hyi:s0h1i j ! s0(x):d0(y):
0hyi:s0h1iD1 = d1(y):
1hyi:s1h1i j ! s1(x):d1(y):
1hyi:s1h1i



We outline the proof in the dire
tion (�
0; 
1)(P j A) v (�
0; 
1; d0; d1)(P j ((�s0; s1)(D0 j D1) j Ad)).The proof in the other dire
tion is similar. For our purposes, it is suÆ
ient to re
all that, informally, P passesa test (R; �) if P produ
es an observable on a 
hannel named � when run in parallel with R. By de�nition,P1 v P2 if, for any test (R; �) passed by P1, P2 also passes the test.Let (R; �) be some test passed by (�
)(P j A). By Proposition 4 [3℄, this implies that there exist anagent A and a pro
ess Q su
h that (�
0; 
1)(P j A)jR �!� Q and Q �! A. Sin
e we assume that P andA 
ommuni
ate only via 
hannels 
0 and 
1, every rea
tion of P j A is a rea
tion of P , a rea
tion of A,or an intera
tion between P and A. In the latter 
ase, be
ause we assumed that 
hannels are dire
tional,P = 
0(x):P 0; A = 
0hmi:A0; P jA �! P 0[m=x℄jA0, or P = 
1hmi:P 0; A = 
1(x):A0; P jA �! P 0jA0[m=x℄. Toprove the lemma by indu
tion over all rea
tions of (�
0; 
1)(P jA)jR, it is suÆ
ient to demonstrate that, if P =
0(x):P 0; A = 
0hmi:A0; 
0(x):P 0j
0hmi:A0 �! P 0[m=x℄jA0, then 
0(x):P 0j((�s0; s1)(D0jD1)jd0hmi:A0d) �!P 0[m=x℄j((�s0; s1)(D0jD1)jA0d). The proof for the 
ase P = 
1hmi:P 0; A = 
1(x):A0; 
1hmi:P 0j
1(x):A0 �!P 0jA0[m=x℄ is symmetri
.
0(x):P 0j((�s0; s1)(D0jD1)jd0hmi:A0d) =
0(x):P 0j((�s0; s1)((d0(y):
0hyi:s0h1ij! s0(x):d0(y):
0hyi:s0h1i)jD1)jd0hmi:A0d) �!
0(x):P 0j((�s0; s1)((
0hmi:s0h1ij! s0(x):d0(y):
0hyi:s0h1i)jD1)jA0d) �!P 0[m=x℄j((�s0; s1)((s0h1ij! s0(x):d0(y):
0hyi:s0h1i)jD1)jA0d) �!P 0[m=x℄j((�s0; s1)((d0(y):
0hyi:s0h1ij! s0(x):d0(y):
0hyi:s0h1i)jD1)jA0d) =P 0[m=x℄j((�s0; s1)(D0jD1)jA0d)


