Unifying Equivalence-Based Definitions of Protocol Security™*

Anupam Datta', Ralf Kiisters!, John C. Mitchell!, Ajith Ramanathan!, and Vitaly Shmatikov?

! Stanford University
2 SRI International

Abstract. Several related research efforts have led to three different ways of specifying protocol se-
curity properties by simulation or equivalence. Abstracting the specification conditions away from the
computational frameworks in which they have been previously applied, we show that when asynchronous
communication is used, universal composability, black-box simulatability, and process equivalence ex-
press the same properties of a protocol. Further, the equivalence between these conditions holds for any
computational framework, such as process calculus, that satisfies certain structural properties. Similar
but slightly weaker results are achieved for synchronous communication.

1 Introduction

One appealing and relatively natural way to specify security properties is through simulation or equivalence.
Focusing on protocols and equivalence, we can say what protocol P should achieve by giving an ideal
functionality (Q and saying that P be equivalent to @) in the face of attack. For example, P may be a key
exchange protocol that operates over a public network, and @ an idealized protocol that uses some assumed
form of private channel to generate and distribute shared keys. If no adversary can make P behave differently
from @, then since () is impervious to attack by construction, we are assured that P cannot be successfully
attacked. While this intuitive approach may seem clear enough, more precise formulations involve a number
of details. For example, we may want to use one form of “ideal key exchange” with few messages to study
several competing protocols. This ideal key exchange protocol is distinguishable from key exchange protocols
that use different numbers of messages, but we can construct a simulator that uses the ideal key exchange
primitive to produce additional messages. Thus a natural variation is not to expect P to be equivalent to
@, but ask that P be equivalent to some extension of () that simulates P and retains the functionality of
(. Another issue is that we want users of the protocol to have the same positive outcome under all use
scenarios.

The main advantage of specification by simulation or equivalence is composability: if protocol P is indis-
tinguishable from ideal behavior @), and protocol R is similarly indistinguishable from S, then P composed
with R is indistinguishable from ) composed with S. Since many forms of security do not compose, the
importance of composability should not be underestimated. Another advantage is generality: simulation and
equivalence are meaningful when the protocol and the adversary operate in probabilistic polynomial time,
and meaningful with nondeterministic computation and idealized cryptography.

We examine three similar specification approaches, and compare the methods over any computational
framework satisfying familiar properties of process calculus. In this setting, we prove a very general cor-
respondence: universal composability, black-box simulatability, and process equivalence express the same
properties of a protocol, assuming asynchronous communication. Since our proofs hold for any process cal-
culus that satisfies certain equational principles, our results are robust and not dependent on specialized
properties of any specific computational setting. However, our results do not immediately apply to Turing
machine models [7 11] or I0 Automata models [18,4] unless the assumed structural properties can be es-
tablished for these models. If synchronous communication is available, one part of the equivalence becomes
weaker because synchronous communication allows processes to detect an intermediate process acting as a
buffer.
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Although our results may be most useful to researchers concerned with one of the three methods, some
high-level points may be understood more broadly. First, rather than finding technical differences between
competing approaches, we find that three approaches based on essentially similar intuition are in fact techni-
cally equivalent. Someone beginning to study this literature can therefore start with any of the approaches.
Second, results proved about one form of specification may be transferred to other forms, simplifying the
likely future development of this topic. Third, we believe that the equivalence of three different technical
definitions, and the fact that this equivalence holds for a broad range of computational models, strongly
suggests that there is a robust, fundamental notion underlying the three definitions.

Universal composability [7 9,11, 10] involves a protocol to be evaluated, an ideal functionality, two adver-
saries, and an environment. The protocol has the ideal functionality if, for every attack on the protocol, there
exists an attack on the ideal functionality, such that the observable behavior of the protocol under attack
is the same as the observable behavior of the idealized functionality under attack. Each set of observations
is performed by the same environment. Black-box simulatability [18,12,4] is a formally stronger notion in
which the two attacks must be related in a uniform way. Black-box simulatability involves a protocol to be
evaluated, an ideal functionality, a simulator, one adversary, and an environment. The protocol has the ideal
functionality if there exists a simulator such that the protocol and simulation are indistinguishable by any
user environment in the face of any network adversary. The difference between universal composability and
black-box simulatability is that in the first case, for every attack on the protocol, there must be an attack
on the ideal functionality. In the second case, the same is true, but the second attack must be the same as
the first attack, interacting with the the ideal functionality through a fixed simulator. An essential difference
between the adversary and the environment is that the adversary only has access to network communication,
while the environment interacts with the system through input/output connections that are not accessible
to the adversary.

While the first two methods were developed using sets of communicating Turing machines and probabilis-
tic I/O automata, the third method was developed using process calculus. In the third method, associated
with spi-calculus [2, 3], applied 7-calculus [1], and a probabilistic polynomial-time process calculus [16, 14,
17,19], a protocol P satisfies specification @ if P is observationally equivalent to (). The specification @
may be the result of combining some ideal process and a simulator. Observational equivalence is a standard
notion from the study of programming languages and concurrency theory [15]. Process P is observationally
equivalent to @, written P = () if, for every context C] ] consisting of a process with a place to insert P
or ), the observable behavior of C[P] is the same as C[()]. The reason observational equivalence is relevant
to security is that we can think of the context as an attack. Then P = () means that any attack on P
must succeed equally well on @, and conversely. In [16,14,17,19], an asymptotic form of process equivalence
is used, making observational equivalence the same as asymptotic indistinguishability under probabilistic
polynomial-time attack.

Our main results are that with synchronous communication, process equivalence implies black box sim-
ulatability, and black box simulatability is equivalent to universal composability. With asynchronous com-
munication, all three notions are equivalent. These results are demonstrated using formal proofs based on
standard process calculus properties such as associativity of parallel composition, commutativity, renaming
of private channels, scope extrusion, and congruence, together with a few facts about processes that buffer
or forward messages from one channel to another. Since our proofs are based on relatively simple axioms, the
proofs carry over to any process calculus that satisfies these reasonable and well-accepted equational princi-
ples. Although the likely equivalence between universal composability and black-box simulatability has been
mentioned in other work [7], we believe this is the first general proof of a precise relationship; an independent
proof of the equivalence of black-box simulatability and universal composability is presented for a specific
model (I/O automata) in [5], which appeared between the time we submitted this paper for publication and
the time it appeared. Previous work on universal composability and black-box simulatability is not situated
in process calculus, making the kind of general result we present here, and comparison with process equiv-
alence methods, difficult. In future work, we hope to extend our analysis to include communicating Turing
machines (as in [7] and other work on universal composability) and I/O automata (as in [18,4] and related
work).

The rest of the paper is organized as follows. Section 2 describes process calculus syntax, the equational
principles used in the rest of the paper, and the differences between synchronous and asynchronous commu-



nication. In Section 3, we define universal composability, black-box simulatability and process equivalence
as relations on process calculus. Section 4 proves that universal composability is equivalent to black-box
simulatability. Section 5 shows that while process equivalence and black-box simulatability are equivalent
with asynchronous communication, the implication holds in one direction only with synchronous communi-
cation. The proofs presented in these sections rely just on the equational principles set forth in Section 2
and hence hold for any calculus in that class. Section 6 shows that two concrete calculi (the probabilistic
polytime process calculus of [19,20] and the spi-calculus [3]) satisfy the assumed equational principles and
therefore the theorems hold for them. Finally, in Section 7, we summarize our conclusions and mention some
directions for future work.

2 Process Calculus

Process calculus is a standard language for studying concurrency [15,21] that has proved useful for reasoning
about security protocols [3,20]. Two main organizing ideas in process calculus are actions and channels.
Actions occur on channels and are used to model communication flows. Channels provide an abstraction of the
communication medium. In practice, channels might represent the communication network in a distributed
system environment or the shared memory in a parallel processor. In this section, we describe a family of
process calculi by giving a sample syntax and a set of equational principles. Two example calculi that satisfy
our equational assumptions, spi-calculus [3] and the probabilistic polynomial-time process calculus of [20],
are discussed Section 6.

A process calculus provides a syntax and an associated semantics. For concreteness, we will use the syntax
defined by the following grammar, although additions to the language or changes in syntactic presentation
are not likely to affect our results.

P =0 (termination)
v.(P) (private channel)
inlec, z] .(P) (input)
out [e, T].(P) (output)
[T} = Ts).(P) (match)
(P|P) (parallel composition)
() (P) (bounded replication)

Intuitively 0 is the empty process taking no action. An input operator in [¢, z] .P waits until it receives a value
on the channel ¢ and then substitutes that value for the free variable z in P. Similarly, an output out [¢, T].P
evaluates the term T, transmits that value on the channel ¢, and then proceeds with P. Channel names that
appear in an input or an output operation can be either public or private, with a channel being private if
it is bound by a v-operator and public otherwise. For convenience, we always a-rename channel names so
that they are all distinct. The match operator [T} = Ts] executes the process following iff 77 have the T
value. The bounded replication operator has bound determined by the function f affixed as a subscript. The
expression !f(m).(P) is expanded to the f(z)-fold parallel composition P | --- | P before evaluation.

Since an output process out [c, T] .(P) only proceeds when another process is ready to receive its input, this
process calculus has synchronous communication. For maximal generality, we proceed using a synchronous
calculus, constructing asynchronous channels when desired by inserting buffer processes. In an asynchronous
setting, inserting an additional buffer on a channel would presumably have no effect, and our results would
therefore remain valid.

2.1 Equational Principles

~

A process calculus syntax and semantics give rise to an equivalence relation = called observational equiva-

observations, when executed in any context. Traditionally, observations are actions on public channels, with
actions on a channel ¢ bound by v.() private and unobservable.

We will assume the standard equational principles collected in Table 1. Rules TRN, SYM, and CONG
state that observational equivalence is a congruence. Rule REN AM E renames bound channels and SCOPE



allows us to “extrude” the scope of a private channel. Intuitively, with channels alpha-renamed apart, we can
enlarge the scope of a channel binding without changing the observable behavior of the process. Rule ZERO
says that the zero process produces no observable activity. Rules COM and ASC reflect the associativity
and commutativity of parallel composition.

PlQ=Q|P (COM)
(PIQ)IR=P[(QIR) (ASC)
0|P=P (ZERO)

o(c) = o(d) (RENAME)

ve(P) 2 vg(PH/)
¢ € Channels(C[0])

ve(C[P]) = Clve(P)] (SCOPE)
gig (SYM)
o (CONG)

VC[ ] € Con: C[P] = C[Q]

Table 1. Equivalence Principles

For reasons that will become clear in later sections of the paper, we partition the set of public channel
names into two infinite sets: the network channels and the input-output channels. We use the abbreviation
net to refer to network channels and io for input-output channels. The difference between these two sets is
that network channels will carry communication accessible to the adversary, while io channels allow users
(the environment) to provide inputs to and observe the outputs produced by the protocol. We use vy.; to
indicate binding vy, . . ., v, of all network channels in a process, and similarly v;, for binding all i0 channels.

Throughout the paper, we use P, F, A, and S (with superscripts if necessary) for processes that represent
a real protocol, an ideal functionality, an adversary and a simulator. These may be arbitrary processes, except
that we impose restrictions on the names of public channels that each may contain. Specifically, all public
channel names in a protocol P, an ideal functionality F, and an adversary A must be network or input-output
channels, while all public channel names in a simulator S must be network channels. For any given protocol
‘P, the io channels of an adversary A attacking P must be disjoint from the io channels of P. The purpose
of these restrictions is to allow the adversary, for example, to connect to the network channels of a protocol
or ideal functionality, but not to its input-output channels. Also, by making all network channels private
when a protocol P is combined with an adversary A, we ensure that only the io channels are accessible to
the environment.

2.2 Buffers, dummy adversaries, and asynchronous communication

One of the main differences between process equivalence and the two other relations is that process equiva-
lence only involves one form of context (surrounding processes interacting with the protocol), as opposed to
separate adversary and environment contexts in the other two relations. Therefore, while investigating the
connection between process equivalence and the other relations, we will replace the adversary in the other
definitions by a “dummy adversary” that does nothing but pass messages to the surrounding context. Also,
since the underlying process calculus is assumed to be synchronous, we interpose “buffers” between processes
to enforce asynchronous communication when desired. Consequently, our proofs require certain equational
properties of buffers and simple processes that forward messages from one channel to another.

For any pair a and b of disjoint lists of channel names, both of the same length, we assume two processes
D’ and B?, which we will call a dummy adversary and a buffer process, respectively. Intuitively, the axioms



about D’ and B® below state that these processes forward data between channels ai, ..., a; and by, ..., b,
respectively. A dummy adversary may need to preserve message order to satisfy Axiom 1, but a buffer need
not preserve message order. We assume that D’ and B® have the channel names ai,...,a; and by,. .., b

free, and no other free channel names.

Axiom 1 (Dummy Adversary (DUMMY)). Let P be a protocol and A be an adversary. Then vpe (P |
A) = Unet,dummy (P | Dzztmmy | Aldwmmy/netly yyhere dummy is a set of fresh channels of cardinality |net|

used to communicate between the dummy adversary and the modified adversary.

Axiom 2 (Double Buffering (DBLBUF)). Let Bb, By and BS be three buffers, for disjoint lists of
channel names a, b, ¢ of the same length. Then, v, (B% | BY) = B.

Axiom 3 (Dummy and Buffer (DUMBUF)). Let BY, BY and B¢ be three buffers and let D and D°. be
dummy adversaries, for disjoint lists of channel names a, b, ¢ of the same length. Then, v, (B% | D) = B¢
and vy (Db | Bf) = B¢

Intuitively, Axiom 1 states that the interaction between a protocol and adversary through the network is
indistinguishable from a situation when the communication between the protocol and the adversary is routed
through the dummy adversary. Axiom 2 states that two buffers placed on a channel are indistinguishable from
one buffer on that channel and Axiom 3 states that placing a dummy adversary and a buffer in sequence on a
channel is equivalent to just having a buffer on that channel. Specific buffer and dummy adversary processes
are presented in Section 6.

3 Security Definitions

In this section, we define three relations on processes, universal composability, black-box simulatability and
process equivalence. These definitions are first presented in the synchronous form, then modified at the end
of the section to assume asynchronous communication by placing buffers between process, adversary, and
environment.

Definition 4. Universal Composability: A protocol P is said to securely realize an ideal functionality F if
for any adversary A attacking the protocol, there exists an adversary A* attacking the ideal functionality,
such that no context can distinguish whether it is interacting with P and A or with F and A*. Formally,

VAIA* . vpet(P | A) 2 et (F | A¥)

Figure 1 provides further intuition. The protocol as well as the ideal functionality communicate with the
respective adversary processes over the network channels (denoted net in the figure). These channels are
not visible to the context (or “environment” to use the terminology of [7,18]). However, the context gets
to communicate with these processes over the input-output channels (denoted io in the figure). All other
channels of P, A, F, and A* are private. The intuition behind the distinction between channels is that if you
are a user of SSL (Secure Sockets Layer), for example, your browser communicates with the implementation
of SSL through io channels, while an attacker on the network has control of traffic on net channels.

Since the two process expressions in the definition of Universal Composability are observationally equiv-
alent, this implies that if there is an attack on the real protocol, then there exists an equivalent attack on
the ideal functionality. Hence, if the ideal functionality is impervious to attack by construction, then a real
protocol that satisfies the above definition wrt the ideal functionality also cannot be attacked. While [7-9,
11,10] discuss an adversary and environment, the environment here is provided by the context used in the
definition of .

In the definition of black-box simulatability and process equivalence, we use a simulator process whose
public channels correspond to the union of the network channels of the ideal functionality (denoted sim
below) and the network channels of the adversary (denoted net below).
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Fig. 1. Universal Composability

Definition 5. Black-box Simulatability: A protocol P is said to securely realize an ideal functionality F if
there exists a simulator S such that for any adversary A, no context can distinguish whether it is interacting

with P and A or with F, S and A. Formally,

ISNVA. Vpet(P | A) = Vnet (Weim (F | S) | A)

Figure 2 depicts this scenario. In effect, the simulator S uses the ideal functionality F to simulate the
real protocol P. The difference between universal composability and black-box simulatability is that in the
first case, for every attack on the protocol, there must be an attack on the ideal functionality. In the second
case, the same is true, but the second attack must be the same as the first attack, carried out on a simulation
of the protocol that may rely on the ideal functionality.

net Sim net

Fig. 2. Black Box Simulatability

Definition 6. Process Fquivalence: A protocol P is said to securely realize an ideal functionality F if there
exists a simulator S such that no context can distinguish whether it is interacting with P or with F and S.
Formally,

3S. P = vy (F | S)

Figure 3 depicts this situation. Note that, unlike the first two definitions, the context has access to both
the network and the input-output channels. Intuitively, the context used in the definition of observational
equivalence serves the roles of both the adversary and the environment.

For each of these three relations, we formulate below corresponding asynchronous conditions by interpos-
ing message buffers or “bags” [15] on the network, input-output, and simulation channels. A buffer is any
process satisfying the syntactic restrictions and axioms described in Section 2.2.



Fig. 3. Process Equivalence

UC - VAIA" vy pn.an.an (B, | P Byt | A|Bl) = vpn nan.sn (B, | F | Bfy | A | BY) )
BB :3dS8VA Vph,pn,h' ,ah’' (BZh | P ‘ an | A ‘ th,) = Vfh,fn,sn,sh,h',ah’' (B?h ‘ .7:| B;Z | S ‘ th | A ‘ th,)
PE : 3S. vpnpn(Byy | P | Bja) = Vin,gn,snsn(Bin | F | By, | S | BS,)

The binding of channels used in these definitions should be intuitively clear. In the UC condition, for
example, BZh buffers messages on P’s input-output channels; it forwards messages on the channels labelled
h to P's input-output channels (denoted ph). By binding the channels ph, we ensure that they are not
observable by the environmental context. Similarly, By} and BZ;, buffer messages on the network channels
between P and A and the io channels of A.

4 Black-box Simulatability and Universal Composability

In this section, we prove that universal composability and black-box simulatability are equivalent, for both
synchronous and asynchronous communication.

Theorem 7. Universal composability is equivalent to black-box simulatability with synchronous communi-
cation.

Proof. <: Follows immediately by scope extrusion (SCOPE), associativity of parallel-or (ASC) and re-
naming of private channels (RENAME). The formal proof is given in Table 2. A* is simply v, (SF | A%).
Thus, the combination of the simulator and the real adversary gives us the ideal process adversary demanded

by the universal composability definition.

BB 3S.YA. vaet(P | A) 2 vier(vaim (F | S) | A) (1)
(1), SCOPE, ASC 3S.YA. vnet(P | A) 2 vaim (F | vaes (S | A)) (2)
(2), RENAME 38.VA. vyet(P | A) = viet(F? | voim (ST | A7) (3)
(3) VAIA . vnet(P | A) = vpee(FR | A7) (4)

Table 2. Black-Box Simulatability implies Universal Composability (Synchronous Communication)

=: The formal proof is in Table 3. In Figure 4, the same proof is sketched out using intuitive diagrams of
the form introduced in Section 3. We use standard process calculus proof rules: congruence (CONG), asso-
ciativity of parallel-or (ASC), renaming of private channels (RENAME), and scope extrusion (SCOPE).
The only step in the proof that does not immediately follow from our general equational principles rules
is (4). We use the network-specific equivalence rule DUMMY (see Axiom 1) here. This rule captures the
intuition that the environment cannot distinguish whether it is interacting with a process P and adversary



A or it is interacting with P and 4 where the communication between them is forwarded through a “dummy
adversary”, D, which just forwards messages in the order in which it receives them. Naturally, a dummy
adversary process has to be defined and the assumed equivalence has to be proven in any concrete calculus
in which we wish to apply our general results. In particular, as discussed in a later section, the notion of
a “dummy adversary” is made rigorous in Definition 16 and the equivalence proved in Lemma 18 for the
probabilistic polytime process calculus of [20].

UC 3S. vnet(P | D) = vper(F | S) (1)

(1), CONG 3SVA. Vg (Unet (P | D | A™)) = v (Vnet (F | S) | AT) (2)

(2), SCOPE, ASC 3SNVA. et (P | v (D | A®)) 2 vy (vnee(F | S) | A®) (3)
(3), DUMMY 3SVA. vuei(P | A) = vy (et (F | S) | A®) (4)
(4), RENAME 3SVA. v3ei(P | A) 2 vner (vaim (FF | ST) | A) (5)

Table 3. Universal Composability implies Black-Box Simulatability (Synchronous Communication)

Theorem 8. Universal composability is equivalent to black-box simulatability with asynchronous communi-
cation.

Proof. <: Follows immediately by scope extrusion (SCOPE), associativity of parallel-or (ASC) and renam-
ing of private channels (RENAME). The formal proof is exactly the same as the one for the synchronous
model. A* is simply vy o0 (S | B27 | A).

=: The formal proof is given in Table 4. The standard process calculus rules used in the proof are
congruence (CONG) and scope extrusion (SCOPE). The two non-standard rules used are (DBLBUF)
and (DUMBUF). As for (DUMMY) these rules need to be proven in any concrete calculus in which we
wish to apply our general results. These rules are formally proved for the probabilistic polytime calculus in
Lemma 19 and Lemma 20 respectively.

UC 3S. Vphpnoanan(By | P | Byn | D | Bin) = vin msncn (B | F | Bia | S| Bly) (1)
(1), CONG 38NYA vyh pnan.anpran (B | P | Ber | DI | BE, | A | Bl ) =

Vth fusmshontant (B | F | Bin | S| By | A | Biy) (2)
(2), SCOPE, DUMBUF 3SNYA vy o an (Bl | P | Bi2 | Bl | A | Bl =
Vth frsmshontant (B | F | Bin | S| By | A | Bly) (3)
(3),SCOPE,DBLBUF 3SVA v, punsan (Bl | P | Bl | A| Bl =
Vth frsmshontant (B | F | Bin | S| By | A | Bly) (4)

Table 4. Universal Composability implies Black-Box Simulatability (Asynchronous Communication)

5 Process Equivalence and Black-box Simulatability

Process equivalence and black-box simulatability are equivalent with asynchronous communication. With
synchronous communication, however, process equivalence implies black-box simulatability but not con-
versely.
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Fig. 4. Universal Composability implies Black Box Simulatability: Proof Sketch
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Theorem 9. Process equivalence implies black-box simulatability with synchronous communication.

Proof. By definition, we have 3S. P = vy, (F | S). Hence, by the congruence rule, CONG, we have that
ASNVA. Vet (P | A) = Vnet (Vsim (F | S) | A). This is precisely the definition of black-box simulatability in
the synchronous communication.

The reason that process equivalence is strictly stronger than black-box simulatability in the synchronous
case is that when the the adversary and environment are combined into one surrounding process con-
text, this context may use the global ordering of events on the net and io channels to distinguish be-
tween real and ideal processes. This global ordering is not available when the adversary and the environ-
ment are separate processes as in the definition of black-box simulatability. Consider the two processes
P = out[io, a] .out [io, ] .out [net, 5] and Q ::= out [io, a] .out [net, 3] .out [net,]. These two processes
satisfy the definition of black-box simulatability in a non-deterministic process calculus like spi-calculus (us-
ing a simulator that just forwards messages to the adversary). However, they do not satisfy the definition of
process equivalence since the global ordering of observables on the io and net channels is a, 7, 8 in one case
and a, 3,7 in the other.

Theorem 10. Process equivalence is equivalent to black-box simulatability with asynchronous communica-
tion.

Proof. =: By definition, 3S. vpnpn(Bly, | P | Bpy) = Vinpnshan(Bf, | F | Bit | S| BE,). Hence, by the
congruence rule, CONG, we have ASVA. vph pn.an,an(Bly | P | Ban | A | Bh) = Vth, fn,shysn,anah(Bfy | F |
Byl | S| By | Al B",). This is precisely the definition of black-box simulatability when communication is
asynchronous. The proof follows the same line of reasoning as the one for synchronous communication.

<: The formal proof is in Table 5. Besides scope extrusion, it uses (DBLBUF) and (DUMBUF) to
replace a dummy adversary and buffer process combination as well as two sequentially connected buffers by
a single instance of a buffer process.

BB 3S. Vph,pn,an,ah(th ‘ P ‘ BZZ | D;Z ‘ B(}:h) =

Vin fnshoaman.an(Bfn | F | B | S | Bon | Dan | Bly) (1)
(1), SCOPE, DUMBUF 3S. vy pn.an(B | P | B2 | BE) =
Vrn fnshaman (B | F | Bja | S | BSL | Bly) (2)
(2), SCOPE,DBLBUF 38S. uph,,pn,an(BZ'h \ P \ BZ;) =
Vin,fnshanan(Bin | F | Bih | S| Bl (3)

Table 5. Black-Box Simulatability implies Process Equivalence (Asynchronous Communication)

6 Applications to specific process calculi

In this section, we demonstrate that several standard process calculi used for reasoning about security
protocols (the probabilistic polynomial-time process calculus of [20], the spi-calculus [3], and the applied
w-calculus [1]) satisfy the equational principles used in the axiomatic proofs in the previous sections. The
proved relations between the various security definitions therefore hold in these calculi.

6.1 Probabilistic Poly-time Process Calculus

A probabilistic polynomial-time process calculus (PPC) for security protocols is developed in [16, 14, 17]; the
best current presentations are [19,20]. It consists of a set of terms that do not perform any communications,



expressions that can communicate with other expressions, and, channels that are used for communication.
Terms contain variables that receive values over channels. There is also a special variable n called the security
parameter. Each expression defines a set of processes, one for each choice of value for the security parameter.
Each channel name has a bandwidth polynomial in the security parameter associated with it by a function
called . The bandwidth ensures that no message gets too large and, thus, ensures that the expression can
be evaluated in time polynomial in the security parameter.

The class of terms used must satisfy the following two properties:

1. If A is a term with &k variables, then there exists a probabilistic Turing machine My with k inputs and a
polynomial gp(z1,...,z) such that:
(a) The term 6, with aq, ..., ay substituted for its k variables, reduces to a with probability p if and only
if My(ay,...,ay) returns a with probability p; and,
(b) For any choice of ay,...,ar we have that My(ay,...,ax) halts in time at most gg(Jai], ..., ax|).
2. For each probabilistic polynomial-time function f: N™ — N, there exists a term 6 such that My computes

1.

Essentially, the term language completely captures the class of probabilistic polynomial-time Turing ma-
chines. One example of such a set of terms is based on a term calculus called OSLR studied in [16] (based
in turn on [6,13]).

Although any probabilistic polynomial-time function can be computed by a term, communication requires
additional syntactic forms. Ezpressions of PPC are given by the grammar in Section 2. The contexts, Con,
of PPC are obtained from the grammar by adding a placeholder symbol for a “hole” to be filled in, as usual.

Operational Semantics The evaluation of a variable-closed process proceeds in three steps: reduction,
selection, and communication. In the reduction step, all terms and matches that are not in the scope of an
input expression are evaluated. Since the expression is variable-closed and only inputs can bind variables, we
know that every term outside the scope of an input has no free variables. This step simulates computation.

In the selection step, we use a probabilistic scheduler to select an action to perform. Actions include the
silent action, 7; the input action in{c, a) that reads the value a from the channel ¢ into the variable z; the
output action out(c,a) that places the value a on the channel ¢; and the simultaneous action « - 8 where
one of @ and § is an input action from the channel ¢ of the value a and the other action is an output of the
value a on the channel ¢ obtained by using the action product - on a and 5. We will say that two actions are
of the same type if they are both inputs, outputs, or simultaneous actions with the same channel and value.
The scheduler picks a particular type of simultaneous action from the set of available simultaneous action
types according to the distribution defining the scheduler. However, silent actions must be performed if they
are available since silent actions have higher priority. Then, one action of that type is picked uniformly at
random from the set of available actions of that type. Further discussion may be found in [19].

In the communication step, we perform the indicated substitution taking care to truncate the value accord-
ing to the bandwidth associated with the channel name. This is important for preserving the polynomial-time
property of the process calculus.

We call this three-stage procedure an evaluation step; and evaluation proceeds in evaluation steps until
the set of schedulable actions becomes empty. We refer the reader to [19] for more details.

Theorem 11. Let P be a process. Then the evaluation of P can be performed in time polynomial in the
security parameter.

The proof proceeds by constructing a machine that evaluates P. The time-bound follows from the represen-
tation of terms and schedulers as probabilistic polynomial-time Turing machines.

A form of weak probabilistic bisimulation over asymptotically polynomial-time processes, or more simply
probabilistic bisimulation, is developed in [19,20] (see also [21]). Two processes P and @) are probabilistically
bisimilar just when

1. If P can take an action a and with probability p become P’, then ) must be able to take a to become
processes @1, ..., Q) with total probability p; and,

2. If () can take an action a and with probability p become @', then P must be able to take a to become
processes P, ..., P, with total probability p.



Using ~ to denote the bisimulation equivalence relation, [19,20] show that ~ is a congruence.
Theorem 12. VP,Q € ProcVC| | € Con: P~ Q = C[|P] = C[Q]

Definition 13. Let P and Q be two PPC expressions. Then P = Q if, for sufficiently large n, P™<" is
observationally indistinguishable from Q™ ™.

A more precise definition can be found in [19,20]. We also have the following theorem, proved in [19],
which states that if two processes are probabilistically bisimilar, then they are observationally equivalent (in
the sense of [19]). Hence, to prove observational equivalence, it is sufficient to demonstrate a probabilistic
bisimulation.

Theorem 14. P~ Q =— P = Q.

In [19], it is proved that all the equational principles of Table 1 hold in PPC. It remains to show that
(DUMMY), (DBLBUF), and (DUMBUF) hold in PPC. We give below precise definitions of the dummy
adversary and the buffer process in PPC, relegating proofs of the equivalences to Appendix A. Hence, we can
conclude that the results proved in the previous sections about the relationship between the various security
properties hold for PPC.

For simplicity we will construct uni-directional buffers, assuming that each public channel is directional
i.e., a channel name is used in a process only for inputs or only for outputs. We will say that a channel is an
input channel (resp. output channel) just when it is to be used only for inputs (resp. outputs). Bi-directional
buffers may be constructed by composing a pair of uni-directional channels.

Definition 15. Let A = {aq,..., ar} and B = {b1,...,bi} be two equinumerous sets of channel names such

that a; € A is an input channel iff b; € B is an output channel. We define BZZ as

.’q(.) . (in [(li,; U] .out [bi: 'U])

in the case that a; is an output channel, and

.’q(.) . (in [bi, y] .out [aj, U])

in the case that a; is an input channel. Then we define the asynchronous buffer between A and B, B%, as
the expression BIt | --- | BLx.

Essentially, an asynchronous buffer forwards messages between channels in A and channels in B without
preserving any message-ordering since, for example, it is possible that an input on a; is read, then a second
input on a; is read and forwarded onto b; before the first input on a; is forwarded onto b;.

Definition 16. Let A = {a4,..., ar} and B = {b1,...,bi} be two equinumerous sets of channel names such

that a; € A is an input channel iff b; € B is an output channel. We define DZZ as

in[a;,y] .out [b;,y] .out [syn;, 1] | /(). (in [syn;, 2] .in[a;,y] .out [b;, y] .out [syn;, 1])
in the case that a; is an output channel, and

in [b;,y] .out [a;,y] .out [syn;, 1] | /(). (in [syn;, ] .in[b;, y] .out [a;, y] .out [syn;, 1])

in the case that a; is an input channel. Then we define the dummy adversary between A and B, D%, as the

eTPression,
Vsyn(Dzil | T | DZZ)

The expression D simply forwards communications between each channel a; € A and b; € B. The channel
syn; is used to synchronize between the various inputs and outputs on the channel a; in Df to avoid situations
where, for example, a value has been read on the channel b; and, before it is forwarded, a new value is read
on the channel b; and then forwarded. Essentially, the use of syn; allows us to preserve the ordering on
communications on a; by guaranteeing that if DE receives the message o before o', it will transmit o before
o'. Thus a dummy adversary is just a message-order-preserving buffer.

Theorem 17. The equivalence principles (DUMMY), (DBLBUF), and (DUMBUF) hold in PPC.

We prove these equivalences by constructing a probabilistic bisimulation and then applying Theorem 14.
Proof sketches are available in Appendix A.



6.2 Spi-Calculus and Applied w-Calculus

Spi-calculus [3] and applied w-calculus [1] are two other process calculi that have been used to reason about
security protocols. All the standard structural equivalence rules: associativity of parallel composition (ASC),
renaming of private channels (RENAME), scope extrusion (SCOPE), congruence (CONG), which were
collected in Table 1, hold in these calculi. The network-specific equivalences are also satisfied with appropriate
definitions of dummy adversary and buffer processes. Hence the results proved in Section 4 and Section 5

also hold for these calculi. A representative proof for spi-calculus is given in Appendix B.

7 Conclusions

We compare three similar ways of specifying protocol properties by formulating universal composability,
black-boz simulatability, and process equivalence over process calculus. Our main results are that all three
are equivalent when asynchronous communication is used; with synchronous communication, the first two
are equivalent and implied by the third. While some process calculi provide synchronous communication, the
asynchronous case is closer to computational practice. Although we model asynchronous communication by
adding buffers to a synchronous calculus, we conjecture that the same results could also be achieved starting
with a purely asynchronous form of process calculus.

Since universal composability, black-box simulatability, and process equivalence are all based on similar
intuition about specifying security properties using indistinguishability, it is reassuring to know that they can
be proved technically equivalent. We expect this equivalence to be useful in further research, since it allows
us to transfer results about one form of specification to other forms. In addition, the equivalence of three
different technical definitions, and the fact that this equivalence holds for a broad range of computational
models, indicate the mathematical robustness of the underlying concept.

Our proofs use standard process calculus proof rules such as associativity of parallel composition, com-
mutativity, renaming of private channels, scope extrusion, and congruence. The only subtlety is that two
processes communicating over a private channel must be observationally equivalent to two processes com-
municating through a dummy process that just forwards messages in both directions. Therefore, the proofs
will carry over to any process calculus that has the necessary features (such as private channels) and satisfies
reasonable and well-accepted equational principles. In future work, we hope to extend our arguments to cover
communicating Turing machines (as in [7] and other work on universal composability) and I/O automata
(as in [18] and related work).

Acknowledgements Thanks to Andre Scedrov and Paulo Mateus for helpful discussions.
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A Proofs of Lemmas for PPC

Lemma 18 (Dummy Adversary). Let P be a protocol and A be an adversary. Then vy (P | A) =
Unet,dummy (P | plummy | pldummy/net]y yhere dummy is a set of fresh channels of cardinality |net| used to
communicate between the dummy adversary and the modified adversary.

Proof. (Sketch) From Definition 16, we see that D™ is of the form vy, (Dul*’™¥). The proof proceeds
by showing that for every path m in the evaluation graph of v, (P | A) there is a unique path 7’ in the
evaluation graph of vper dummy (P | Vsyn(Du,Zg"’my) | Aldummy/net]y guch that the probability of every edge in
7 is preserved by the matching edge in 7', and vice versa. It is easy to see that every transition of v,.;(P | A)
that does not signify a communication between P and A can be identified immediately with transitions of
Unet,dummy (P | usyn(DuZ’;;"my) | Aldummy/net]y The only concern are those communications between P and
A. These, though, can be simulated via a three stage procedure. Without loss of generality let us assume
that a message is going from A to P along a net channel. In the first stage, the message is transmitted
from Aldummy/net] ¢4 the dummy. In the second stage, the message is transmitted along the appropriate net
channel to P. Finally, a synchronization bit in the dummy is transmitted to allow further communications
to occur. While there is only one choice of transition for the first two stages, there are several choices for

the third since any one of the ¢(i) inputs for the synchronization bit in the dummy can receive the message.



However, each of the processes obtained after the third step are structurally identical (they only vary in
which of the ¢(i) remaining bridges between the dummy channel and its corresponding net channel accepts
the synchronization bit). Thus we can identify them and replace the final ¢(i)-fold step with a single step.
This means that every transition of v, (P | A) can be uniquely matched with either a transition or a
length-three path of Vet dummy (P | Vsyn(Du,ZT(j;"’my) | Aldummy/net]y The uniqueness of the mapping follows
from its construction. Thus we can infer the desired bisimilarity which implies observational equivalence.

Lemma 19 (Double Buffering). Let B%, B and BS be asynchronous buffers. Then, v, (B% | Bf) = B.

a

Proof. We will show that v, (B2 | Bf) is probabilistically bisimilar to B¢ from which it follows that the two
expressions are observationally equivalent. For simplicity, we will assume that |a| = |b| = |¢| = 1. Let us also
assume that a is an input channel (whence ¢ must be an output channel). In that case B¢ is just

la()-(in[a, y] .out ¢, y])

and v, (BY | Bf) is just
Ub(!q(_).(in [a,y] .out [b, y]) | !q(.).(in [b,y] .out [qy]))

We will identify expressions equivalent by virtue of the associativity and commutativity of |, the parallel
composition operator, and the equivalence P | 0 = P. Making use of these identifications, it is easy to verify
that the set of pairs

{(!q(.).(in [a,y] .out [qy]) | !q(.).(out [c, y]),
I/b(!q(.).(in [a,y].out [b, y]) | !q(.).(in [b,y] .out [(’,1/])) | !q(.).(out [(’,1/]))}

is a suitable probabilistic bisimulation.

Lemma 20 (Dummy and Buffer). Let BY, Bf and B¢ be three asynchronous buffers and let D§ and D"
be dummy adversaries. Then, vy(BS | D§) = BE and v, (DY | BE) = BE

An asynchronous buffer just forwards messages without preserving the message order. Thus, intuitively,
placing it after any structure that preserves message order or before any such structure should be the same
as just using the asynchronous buffer. The formal proof is similar to the proof of Lemma 19 and is omitted
due to space constraints.

B Proof of Equivalence for Spi-Calculus

Theorem 21. Theorem 7 and Theorem 9 hold for spi-calculus.

Proof. The standard equivalence rules used in proving the two theorems: associativity of parallel-or (ASC),
renaming of private channels (RENAME), congruence (CONG), and scope extrusion (SCOPE) hold in
spi-calculus. The only non-standard step corresponds to DUMMY. The proof relies on the observation that
the situation in which processes P and A communicate over a private channel is observationally equivalent
to the one in which all such communication is routed through a dummy process that just forwards messages
in both directions. For simplicity, we consider only the case when there are two channels ¢y and ¢; between
P and A. Since channels are directional, without loss of generality, we assume that channel ¢q is from A to
P (i.e., only A outputs messages on ¢y, and only P receives messages on ¢g), and channel ¢; is from P to A.
The proof extends directly to the multiple-channel case.

Rewriting the statement using spi-calculus formalism and letting A4 stand for A[d/c], we wish to demon-
strate that

(veo,e)(P | A) = (veo,er,do,di)(P | ((v50,51)(Do | Dv) | A))

where
Dy = do(y)-coly)
D, =di(y)er



We outline the proof in the direction (veg,ep)(P | A) T (veo, e, do,di)(P | ((vso,s1)(Do | D1) | A%)).
The proof in the other direction is similar. For our purposes, it is sufficient to recall that, informally, P passes
a test (R, ) if P produces an observable on a channel named # when run in parallel with R. By definition,
P, C P, if, for any test (R, 8) passed by Py, P, also passes the test.

Let (R, ) be some test passed by (vc)(P | A). By Proposition 4 [3], this implies that there exist an

agent A and a process @ such that (veg,c1)(P | A)|R 7" Q and @ 5 A. Since we assume that P and
A communicate only via channels ¢y and ¢y, every reaction of P | A is a reaction of P, a reaction of A,
or an interaction between P and A. In the latter case, because we assumed that channels are directional,
P = co(z).P',A = &(m).A",PIA 5 P'lm/z]|A", or P = &(m).P', A = c,(z).A',P|A 5 P'|A'[m/z]. To
prove the lemma by induction over all reactions of (vcg, ¢1)(P|A)|R, it is sufficient to demonstrate that, if P =
co(z).P', A = g(m). A" co(z).P'|eg(m). A" 55 P'[m/z]|A’, then co(az).P’\((uso,sl)(D0|D1)\d_0(m).A’d) 5
P'Im/2]|((vs0, $1)(Do|D1)|A'"). The proof for the case P = er(m).P', A = ¢, (2).A",e1(m).P'|cy(x).A" 5

P'|A'[m/x] is symmetric.

co(w).P'|((v50, 51)(Do|Dy)do (m). A"") = o
co(w)P'|((vs0, 51)((do (y)- T (y) 5o (1)]! s0(2).do(y).T(y) 5a(1))|D1)|do(m). A" 5
co(x)-P'|((vs0, 1) (@ (m) 5o(1)|! so(2)-do(y) T (y) 5o(1))|D1)[A") 5
P'[m/x]|((vs0, 1) ((So(1)|! s0(x)-do(y) To(y)-55(1))| D1)|A"") 5
P'[m/x]|((vs0, 1) ((do(y) T (y) -5o(1)|! s0(2)-do(y)-o(y)-5a(1))|D1)|A") =
P'[m/x]|((vso,51)(Do| D1)|A")



