
Architecting an Energy-Efficient DRAM System for GPUs

Niladrish Chatterjee∗, Mike O’Connor∗†, Donghyuk Lee∗, Daniel R. Johnson∗,
Stephen W. Keckler∗†, Minsoo Rhu∗, William J. Dally∗‡

∗NVIDIA †The University of Texas at Austin ‡Stanford University
{nchatterjee, moconnor, donghyukl, djohnson, skeckler, mrhu, bdally}@nvidia.com

Abstract—This paper proposes an energy-efficient, high-
throughput DRAM architecture for GPUs and throughput
processors. In these systems, requests from thousands of
concurrent threads compete for a limited number of DRAM
row buffers. As a result, only a fraction of the data fetched into
a row buffer is used, leading to significant energy overheads.
Our proposed DRAM architecture exploits the hierarchical
organization of a DRAM bank to reduce the minimum row
activation granularity. To avoid significant incremental area
with this approach, we must partition the DRAM datapath
into a number of semi-independent subchannels. These narrow
subchannels increase data toggling energy which we mitigate
using a static data reordering scheme designed to lower the
toggle rate. This design has 35% lower energy consumption
than a die-stacked DRAM with 2.6% area overhead. The
resulting architecture, when augmented with an improved
memory access protocol, can support parallel operations across
the semi-independent subchannels, thereby improving system
performance by 13% on average for a range of workloads.

I. INTRODUCTION

Graphics Processing Units (GPUs) and other throughput
processing architectures have scaled performance through
simultaneous improvements in compute capability and ag-
gregate memory bandwidth. To continue on this trajectory,
future systems will soon require more than 1 TB/s of band-
width, and systems used in Exascale systems are projected
to require 4 TB/s of bandwidth for each processor [1].
Satisfying this increasing bandwidth demand, without a
significant increase in the power budget for the DRAM, is
a key challenge. As Figure 1a shows, the off-package high-
speed signaling across a PCB used by traditional bandwidth-
optimized GDDR5 memories can consume a significant
portion of the system energy budget, becoming prohibitive
as bandwidths scale beyond 1 TB/s. The highest bandwidth
chips have recently adopted on-package stacked DRAM [2]–
[4] to, in part, address this energy consumption challenge.
These stacked memories, such as High Bandwidth Memory
(HBM), allow the processor and memory to communicate
via short links within a package, thereby reducing the cost
of data transfer on the interface between the DRAM stack
and the processor die. While this improved signaling reduces
the I/O energy (the energy on the link between the DRAM
and processor dies), the energy required to move data from
the DRAM bit cells to the I/O interface remains similar.
Consequently, as we project the bandwidth demands of
future GPUs, further energy reductions within the DRAM
itself are required to enable future high-bandwidth systems.

In addition to the I/O energy used to transfer the data from
the DRAM to the host processor, the energy for a DRAM
access can be decomposed into two primary components, the

0
100
200
300
400
500

330 1024 2048 4096DR
AM

	P
ow

er
	(W

)

Bandwidth	(GB/s)

GDDR5 HBM

(a) GPU memory system power vs bandwidth

0 2 4 6 8 10

Ideal
Average

Low

Energy	(pJ/b)
Ro

w
-L
oc
al
ity

Row	 Column I/O

(b) Stacked memory energy vs. locality

Figure 1. GPU memory energy consumption.

row energy or the energy to precharge a bank and activate a
row, and the column energy or the energy to access a subset
of data from the activated row and move it to the I/O pins.
The column energy of a DRAM access primarily depends
on the distance over which the data is moved, the rate of
switching on this data path, and the capacitance of these
wires. The row energy is determined by the fixed activation
and precharge energy required to activate a DRAM row,
sense and latch its data into the row buffer, restore the
bit cell values, and precharge the bit lines. The per-access
component of row energy is the sum of activation and
precharge energy averaged over the number of bits accessed
within a row. As a result, the row energy is highly dependent
on the spatial locality of the memory access stream. With
higher spatial locality, the cost of opening a new row is
amortized over a larger number of bit transfers. As shown
in Figure 1b, row energy accounts for nearly half of DRAM
energy on average in the workloads we study, and it can
dominate DRAM energy in low-locality workloads. Low
row locality can also cause performance problems, limiting
utilization of DRAM bandwidth and leading to workloads
limited by the DRAM row activation rate.

To address these problems, we propose an energy-
optimized DRAM and memory controller architecture,
called subchannels, which can also boost the perform-
ance of many memory-intensive GPU applications. The key
idea is to partition the DRAM storage in an area-efficient
manner to reduce wasted activation energy and partition the
datapath in the DRAM array and the periphery to enable
parallel operations to continue to utilize the full bandwidth
of the DRAM.

This paper makes the following contributions:

0
512
1024
1536
2048

ba
ck
pr
op bf
s

b+
tr
ee

he
ar
tw
al
l

ho
ts
po
t

km
ea
ns

la
va
M
D nw

pa
th
fin

de
r

sr
ad
_v
1

sr
ad
_v
2

st
re
am

cl
us
te
r

bh
dm

r
m
st sp

ss
sp

Co
M
D

HP
GM

G
lu
le
sh

M
CB

M
in
iA
M
R

Ne
kb
on
e

ST
RE

AM
GU

PS

(a) Compute applications

0

512

1024

1536

2048

74	Graphics	Applications	(games	and	rendering	engines)
(b) Graphics applications

Figure 2. Bytes accessed per activate from a 2KB row.

• We present a detailed analysis of memory energy con-
sumption in modern GPUs. This is comprised of a study
of the row access and data toggling patterns in compute
and graphics workloads, and a detailed energy model
for 3-D stacked high-bandwidth memory devices.

• We propose an area-efficient DRAM architecture,
subchannels, to reduce row energy, and augment
it with a data-burst reordering mechanism to cut down
column energy. The proposed design reduces DRAM
energy consumption by 35% over the baseline.

• We leverage the abundant parallelism in GPU applica-
tions to design a DRAM and memory controller archi-
tecture that provides an average of 13% improvement
in system performance compared to an HBM solution
across a wide range of workloads.

GPUs and other throughput processors routinely use
specialized memory devices to meet their high bandwidth
needs. In this paper, we show that future DRAM designs
require us to consider both the nuances of DRAM mi-
croarchitecture and the GPU’s memory access behavior. The
subchannels architecture leverages such co-design to
provide significant energy and performance benefits with
minimal additional area.

II. ROW LOCALITY IN GPUS

Figure 2a shows the average number of bytes accessed
per activated row in high-performance compute benchmarks
(see Section VII for methodology details). In the majority
of applications, fewer than 256 bytes are accessed from
the 2KB row before the bank is precharged. There are two
reasons for this behavior.

First, several GPU applications have intrinsically low
locality. Applications that often perform data dependent
memory accesses (pointer chasing) or sparse, irregular ac-
cesses to a data structure (bfs, bh, dmr, mst, sp, sssp,
MCB and MiniAMR) naturally have low spatial correlation
between successive accesses. GUPS, which is designed to
randomly access memory, is the most extreme example of
this behavior. All of these applications access one or two
DRAM atoms (32B each) per activate.

Second, even when applications tend to access dense data
structures, there is limited row-buffer locality due to interfer-
ence between the large number of simultaneously executing
threads. For example, the NVIDIA Tesla P100 [2], based
on the Pascal architecture, contains 122,880 threads across
all 60 Streaming Multiprocessors (SMs) accessing data in
a total of 32 HBM2 channels with 16 banks each. Thus,
on average, 240 threads contend for the single row-buffer in
each bank. Consequently, even with deep memory controller

queues and aggressive request reordering to harvest row
locality, GPUs suffer from frequent bank conflicts. Even
applications like STREAM that scan sequentially through
input and output arrays are able to utilize only approximately
a quarter of the row after activating it. HPGMG, lulesh,
Nekbone, kmeans, nw, and streamcluster also exemplify this
behavior. Two applications, pathfinder and hotspot, access
the majority an of an activated row because they either have
a very small working set size or very few active threads and,
thus, do not have these problems.

Even though graphics applications demonstrate higher
row-access locality than the compute applications (Fig-
ure 2b), in the majority of the cases, only a quarter of the row
is utilized on an activate. Emerging graphics applications,
such as ray tracing and particle systems, more closely
resemble compute workloads in terms of row locality.

Since a row-activate operation is very energy-intensive
(Section VII) a direct consequence of the observed low
spatial locality is high effective row-energy. The energy cost
of activating the whole row is averaged over only the small
number of bits that are read or written. Few accesses-per-
activate can also reduce bandwidth utilization in memory
intensive benchmarks. Before we explain our proposal for
mitigating these issues, we present a brief overview of the
main building blocks of modern DRAMs.

III. HIGH BANDWIDTH GRAPHICS DRAM
A DRAM die is a collection of independent storage arrays

called banks, each with its own row and column decoders.
The data signals from the banks are connected via a shared
bus to an I/O buffer (Figure 3a). The I/O buffer is the
same size as a DRAM atom, the unit of a single memory
transaction (32B in HBM and GDDR5), and is connected
to the external I/O interface using a DDR-style interconnect
(128-bits wide in HBM). In stacked memories, the I/O buffer
connects to the external interface through on-die wires,
inter-die TSVs, and finally wires on the base-layer to the
stack’s edge. Each bank is organized as a 2-D array of mats
(Figure 3b). Each mat is a 512× 512 array of DRAM cells,
and has a 512-bit sense-amplifier or row-buffer. A group
of 32 mats in the horizontal direction, called a subarray,
is activated in unison. Thus the 2KB row-buffer of the
subarray is physically spread across the mats, and a DRAM
atom is spread out over the entire subarray, with each mat
contributing 8 bits to the 32B atom. A row-activation signal
is hierarchical [5]–[7]; a Master Wordline (MWL) drives a
Local Wordline (LWL) in each of the mats in the subarray,
and each LWL turns on the access transistors of a row of
cells in a mat. The MWL is fashioned in higher level metal

Bank

I/O Buffer

DDR TSVs
Inter-Bank
R/W Bus

Sense Amps

MDLs

CSL

HFFs

LWL

LDL

LDL

LDL

LDL

Bitlines

LWD

a

b

c

0 1 31

R
o

w
 D

e
co

d
e

r

Subarray

Mat

MWLsActivated LWLs

Row-Buffer

LDL

Global
Sense Amps

LWD

MDL

CSL

Sense Amps

MWL

Column Decoder

8

Figure 3. High Bandwidth Memory architecture, showing a single channel
in a stack.

(M2) and has 4× the pitch of the LWL which is in silicided
polysilicon. After a row is activated and the bits are read into
the local sense-amplifiers, a column command triggers a set
of column select lines (CSLs) in each mat, which enables
the data latched in the sense amplifier to be delivered to the
DRAM periphery. The same CSL lines are asserted for each
mat in the subarray. As shown in Figure 3(c), a CSL connects
the sense-amplifier to the Master Data Lines (MDLs) via the
Local Data Lines (LDLs) (both differential) [5], [8]. At the
connection of each LDL-MDL pair is a helper flip-flop (HFF)
which helps drive the MDL down to the Global Sense Amps
(GSAs).

The 3 metal layers in a typical DRAM process include
M1 for the vertical bitlines in the mat, M2 for the MWLs and
LDLs in the horizontal direction, and M3 for the CSLs and
MDLs. The LWLs are in silicided polysilicon. The M2 pitch
is 4× the LWL pitch, while the M3 pitch is 4× the bitline
pitch. Thus the height and width of the mat is dictated by
the number of wiring tracks in these layers.

IV. ENERGY-EFFICIENT DRAM
To reduce DRAM row energy, we reduce the row-

activation granularity, i.e., the number of bits accessed by
an activate command. We employ two techniques to achieve
this without significant area overheads. First, a technique
called Master Wordline Segmentation leverages the hierar-
chical structure of the DRAM wordline to turn on only part
of a row [9]–[11]. Second, we map a DRAM atom such
that it is contained entirely within a single activated subset
of the row (instead of being dispersed over the whole row).
Crucially, to maintain density, we choose to read out the
DRAM atom from the activated region of the row using
only the fraction of the total bank datapath that is available
in that region. In effect, we create several narrow slices of
the DRAM bank storage, as well as datapath from the cells
to the I/O pins, each of which is called a subchannel. In the
rest of this section we describe the architectural details of
this subchannels architecture.
A. Reducing Activation Granularity

In existing DRAMs, when the master wordline (MWL) is
asserted, it drives a local wordline (LWL) in each of the
mats of a subarray by activating the corresponding local-
wordline driver (LWD) in the mat’s stripe. To achieve partial

Inactive LWLs

MAT
0

MAT
3

MAT
4

8

Active LDLs and MDLs

MAT
7

Inactive LDLs and MDLs

88

MAT
28

MAT
31

8 8 8 8

Inactive LDLs and MDLs

Activated LWLs

Segment
Selects

MWL

Figure 4. Master Wordline Segmentation. The LWLs are activated only
in mats 4 through 7 for a 256-byte effective row size. Per-mat bandwidth
is same as the baseline HBM architecture.

(a) Baseline - four mats in a subarray activated in unison

(b) Proposed - subarray partitioned into two groups of mats that can be
activated independently

Figure 5. Implementation of a segmented wordline. We show a simplified
example with four mats per subarray (32 in reality).

row activation, the wordline signal must reach the access
transistor of only those cells that we wish to activate. One
way to achieve this would be to segment the LWL, such that
only a part of the LWL in every mat is turned on. However,
since the LWL is laid out in silicided polysilicon inside
the densest part of the DRAM chip, intrusive changes that
disrupt the LWL layout are very area inefficient. Instead, we
modify the relationship between a MWL and its subservient
LWLs such that asserting a MWL leads to the assertion of the
LWLs in only a few of the mats in the subarray while the
other mats remain unaffected. Figure 4 shows this technique
being employed to activate only 1/8th of a row. Even though
the entire MWL has been driven, the corresponding LWLs
have been activated only in mats 4 through 7 consuming an
eighth of the original row-energy. When the MWL is driven,
the segment-select signals (SS) are appropriately asserted to
select the desired section of the row to activate.

To illustrate the implementation of this architecture in
a density-optimized modern DRAM, we use the simple
example in Figure 5a which shows an unmodified subarray
consisting of four mats and four MWLs. Since a MWL is 4×
wider than a LWL, each MWL is connected to four LWLs in

a mat. In conjunction with the assertion of the MWL signal,
a set of local wordline select signals, LWLsel [0:3], are
asserted to select one of the 4 LWLs connected to the MWL
in question. To activate the LWLs in the first two mats (mats
0 and 1), and not in the other two, we modify the subarray
as shown in Figure 5b. Since each LWD drives a LWL in a
mat on either side in the baseline (Figure 5a), we introduce
an extra LWD stripe between mats 1 and 2 to make sure
that these two mats can be driven independently. Second,
we add two Segment Select (SS) signals, each of which is
responsible for a single group of mats. The SS signal is used
as an enable for the LWD stripes belonging to a single group
of mats, and is AND-ed to the decoded LWLsel signals.
Thus if SS [0] is asserted, it turns on the LWDs of mats 0 and
1, in turn allowing the LWL selected by the LWLsel signals
to be driven by the MWL. To divide a 32 mat subarray into
8 such groups, we will need 7 extra LWD stripes, one each
at the boundary between two consecutive groups of mats
and eight SS lines. The area overheads of this architecture,
estimated to be 2.6%, are discussed in Section IV-C.

To use this architecture, the memory controller provides
not just the row address with an activate, but also infor-
mation about which segment must be activated (similar to
Posted-Column commands [12]) in the form of a mask. This
mask information is used to assert the SS signals and activate
part(s) of the row. Sending a mask also makes it possible to
activate multiple segments from a row simultaneously. Thus
not only can we turn on different non-contiguous segments
of a row, we can also turn on the entire row as in the baseline.

B. Subchannels
In the baseline, each 32B DRAM atom is interleaved

across all the mats in a subarray and is read out into the 256
global sense-amplifiers (GSAs) in one internal DRAM cycle
using all the MDLs. In our proposed architecture, this layout
is modified such that a DRAM atom is interleaved across
only the mats that are activated in unison, so that it can
be retrieved in its entirety from these mats alone. Reading
the DRAM atom from 1/8th of the mats in one cycle would
require increasing the output width of each mat from 8 bits
to 64 bits. However, increasing the datapath width (LDLs
and MDLs) by 8× increases the wiring tracks in the M2 and
M3 layers, thereby increasing the height and width of the
mat (Section III) and proportionally increasing the GSA area
needed in the periphery. This leads to prohibitively high area
overhead of 34.5% for high bandwidth mats (Section X),
which was ignored by previous work that read an atom
from a subset of mats [10], [11], [13]. Instead, we propose
to keep the per-mat bandwidth unaltered and transfer each
DRAM atom from the row-buffer over several cycles instead
of one internal DRAM cycle. From the point of view of
a DRAM transfer, it now appears that the data is stored
and fetched from a channel which is 1/8th the bandwidth
of a baseline channel with proportionally fewer mats and
datapath resources (LDLs, MDLs, GSAs, and I/Os). We call
each such narrow channel a subchannel. Section V-A details
mechanisms to enhance the subchannels architecture by
enabling parallel operations across subchannels to overcome
the increased data transfer time.
Pipelined Burst: In the baseline HBM architecture, the

whole DRAM atom is fetched from the row-buffer into
the I/O buffer in a single internal cycle. However, with 8
subchannels, the same transfer takes 8 internal cycles due
to the narrow datapath. Instead of waiting for the entire
DRAM atom to fill up the I/O buffer before the data burst
is initiated on the external I/O bus, we pipeline the internal
and external burst. Thus the first beat of the data appears
on the external I/O when the CAS latency time, tCAS, has
elapsed after the column-read command, the same as in the
baseline. However, the burst now takes 8 DDR cycles instead
of 1 DDR cycle. For a single burst, multiple Column-Select-
Lines (CSLs) must be asserted sequentially in a subchannel.
To generate the sequence of CSLs, the column address
sent with the CAS command is incremented using a small
3-bit ripple carry adder inside the DRAM in successive
cycles of a burst, avoiding any extra traffic on the external
column-address bus. The internal DRAM cycle time must be
sufficiently short to enable back-to-back column accesses to
each element of the burst in successive cycles. In current
devices, the CAS-to-CAS delay within the same bank (or
bank-group), tCCDL, defines this cycle time. This period is
generally limited by the time required for the assertion of
the CSL signal, the delay through the column-select mux
enables, the time required for selecting bits from the local
sense-amplifiers and for sending the selected bits to the
GSAs. We assume that the DRAM can be engineered to meet
the required cycle time on this path to allow gap-less reads
of a full burst of data from a subchannel. Modern GDDR5
parts already support a tCCDL of 2ns [14], enabling gap-less
bursts in a subchannel with HBM-like timings.

C. DRAM Overheads
There are two sources of area overheads for the sub-

channels architecture. First, the seven additional Local
Wordline Driver (LWD) stripes required to split a row into
8 segments increases the subarray area by 1.19% (each
LWD stripe is 5.7% the area of a mat). Second, additional
metal wires are required for the segment selection signals.
We place eight segment-select signals (SS) for every other
subarray (required for parallel activates as described in
Section V-A). Since the segment select signals are routed in
the same metal layer (M2) as the Master Wordlines (MWLs)
and Local Datalines (LDLs) in the horizontal direction, we
estimate the area overhead by counting the number wiring
tracks needed in this layer. Each subarray with 512 rows
or Local Wordlines (LWLs) has 128 M2 routing tracks for
MWLs (M2 pitch is 4× the LWL pitch) and 16 M2 routing
tracks for the 8 differential LDLs and 4 LWLsels. Thus
the additional M2 tracks for SS increases DRAM area by
2.68%. Combining these two overheads (from additional
LWDs and segment selection signals), each subarray is
increased by 3.87%. Assuming the bank storage area to be
60% of the total die area, the effective area overhead turns
to be 2.3%. The area overheads of the row and column
address registers (also required to enable subchannel-level
parallelism as described in Section V-A) is 0.3% of the
DRAM die [15], [16], which puts the total area overhead
of 8 subchannels at 2.6%.

Sending the subchannel mask from the memory controller
to the DRAM requires six additional command I/O signals.

G
lo

b
al R

o
w

D

e
co

d
e

r

32b 32b

A

B

Subchannel-0
Mats 0-3

Per-Subarray
Row Addr

Latches

Subchannel-1
Mats 4-7

Subchannel-7
Mats 28-31

Column
Decoder

16

Slice of I/O buffer

Per-Subchannel
Col Addr
Latches

Subchannel-0 I/Os Subchannel-7 I/Os

MDLs CSLs

MWL

Activated Segments

Segment
Select Lines

Inter-Bank R/W Bus
32

Global
SAs

32

32

32b

Bank

Local
SAs

8

Subarray

Figure 6. Subchannel Architecture. 8-subchannels per conventional DRAM
bank. Two different 256 B rows have been activated in parallel in different
subchannels, and different columns are being read in each. The row and
column address latches, and the segment-select lines have been added to
the baseline design.

The HBM architecture maintains two separate command
interfaces. The column-command interface sends read/write
commands and column addresses on two edges of the
clock. Therefore, the column-command interface requires 4
additional signals to send the 8-bit subchannel mask with
each command. The row-command interface sends activation
commands and the row address over 4 edges of the clock.
Thus, the 8-bit subchannel mask requires two additional
signals to send the mask over 4 edges. The precharge
commands have four unused bits which, coupled with the
two additional signals, can send the subchannel mask over
the 2 edges of a precharge command. Thus an 8-channel
HBM stack requires 48 extra signal bumps. These extra
bumps represent a 3.1% increase in the number I/O signals
required for each stack.

V. MANAGING NARROW SUBCHANNELS

This section describes techniques to deal with two prob-
lems due to the reduced datapath width in subchannels.
First, the effective bandwidth from a bank is reduced to 1/8th

of the baseline, creating a major performance bottleneck (as
shown by the SC-8_No_Parallelism bar in Figure 11).
The second problem is less obvious. We found that the re-
duced datapath width also leads to higher switching activity
on the internal and external data buses during a DRAM atom
transfer, causing higher column and I/O energy (Figure 7).

A. Architecting Parallel Subchannels
The performance degradation when only one subchannel

is active can be mitigated if all 8 subchannels are operated in
parallel. We describe the changes needed in the DRAM and
memory controller architecture to achieve this functionality.

Figure 6 shows the architecture of parallel subchannels in
a bank. Each subchannel already has a subset of the mats
and the datapath from the bank to the I/O buffer, including
a subset of the Master Data Lines (MDLs), Global Sense
Amplifiers (GSAs), the global I/O bus wires in the periphery.
Also, due to pipelining of the burst, each subchannel only
needs 1/8th the capacity of the I/O buffer and the I/O pins.
Thus the datapaths of the 8 subchannels are completely
independent. Also notice that if a 256B row is activated in a
subchannel, a different row can potentially be activated in a

different subchannel by driving another MWL and selecting
a different segment as long as the rows are not in the same
subarray. Since we assign a set of 8 Segment Select lines
(SS) to every group of two consecutive subarrays, we can
potentially activate a different row in different subchannels,
as long as they are not in the same subarray-group. The
main impediment to such parallel operation, however, is the
row and column address decoding and control circuitry that
is shared by the subchannels. So if a certain Column Select
Line (CSL) is asserted in one subchannel, no other CSLs
can be asserted in the other subchannels until that column
operation completes, preventing parallel reads and writes
across subchannels. Similarly, only one Master Wordline
(MWL) can be active preventing parallel activates across
subarrays.
Address Decoupling Registers: Adding a row-address latch
per subarray and a column-address latch per subchannel
solves this issue. As shown in Figure 6, the row-address latch
decouples the driving of the MWL from the output of the row
decoder. Once a row address is decoded and driven into the
row-address latch of the corresponding subarray, the latch
can drive the MWL, freeing up the row decoder to accept,
decode and drive a different row address into the latch of
another subarray in the next cycle leading to simultaneous
activates of different rows. Similarly, the column-address
latches allow the column decoder to assert different CSLs in
different subchannels in successive cycles to enable parallel
reads/writes from across subchannels.
Increased Performance: Creating parallel subchannels can
not only recover the performance loss from narrower chan-
nels, it can improve the performance of many memory
intensive workloads beyond the baseline. Most GPU work-
loads are latency insensitive [17] and are bottlenecked by
the delivered bandwidth of the system. In memory-intensive
applications with low spatial locality, the delivered band-
width can be low when the bank-level parallelism (BLP) is
not sufficient to cover for the tRC delay of precharging a
bank and activating a row. Even if there is high BLP, if the
accesses-per-activate is very low, the bandwidth utilization
is restricted by the activate-rate limits posed by current
delivery constraints (tFAW and tRRD). The subchannels
architecture with parallel operation across subchannels alle-
viates both of these problems. First, due to more parallel
subchannels, effectively there are more banks in the system
making it possible to overlap row-activations to different
rows of the same original bank. Second, due to the small
activation granularity, each activate places a lower burden
(approximately 1/8th the baseline) on the charge pumps
that supply the high Vpp voltage to the MWL. Thus in the
same tFAW period, the subchannels architecture can
perform 32 activate operations while the baseline can only
perform 4, accelerating activate-rate limited applications like
the ones that exhibit data dependent irregular accesses. Even
though the empty-pipe (unloaded) latency experienced by a
DRAM request is 7ns higher with 8 subchannels than the
baseline, the overall performance is improved by increasing
the effective throughput of the DRAM system.
Command Coalescing: The address-decoupling registers
and partitioned datapath allow overlapping commands to
the same bank in different subchannels. However all sub-

0%
50%
100%
150%
200%

ba
ck
pr
op bf
s

b+
tr
ee

he
ar
tw
al
l

ho
ts
po
t

km
ea
ns

la
va
M
D nw

pa
th
fin

de
r

sr
ad
_v
1

sr
ad
_v
2

st
re
am

cl
us
te
r

bh dm
r

m
st sp

ss
sp

Co
M
D

HP
GM

G
lu
le
sh

M
CB

M
in
iA
M
R

Ne
kb
on
e

ST
RE

AM
GU

PS

Figure 7. Datapath energy (column and I/O) for 8 Subchannels normalized
to the baseline.

channels in a channel share the address/command bus,
and the same bank in different subchannels share the row
and column decoders of that physical bank. We propose a
memory-controller optimization, command coalescing, that
can alleviate the contention for these shared resources to
improve subchannel performance.

When an application has high row-buffer locality, it might
require activating the same row in different subchannels. Not
only does this require more address/command bandwidth
compared to the baseline HBM system, the activates to
different subchannels must be separated by the inter-activate
command timing delay (tRRD) and constrained by the
four-activate window (tFAW). While more activates can be
performed in the tFAW period due to the reduced row size
of subchannels, activates are still subject to tRRD preventing
back to back issue of activates to different subchannels.
Today there is little pressure for DRAMs to reduce tRRD
to the limit of the row-decoder cycle time since the rate of
activates is also limited by tFAW. Since tRRD is more than
a single cycle, it introduces a constant overhead between
activates and consequently idle cycles on the data bus.
Thus when applications access several DRAM atoms across
multiple subchannels on the same row (high spatial locality),
tRRD introduces a performance overhead that is not there
in a baseline HBM channel, limiting the overlapping of
activates in subchannels.

To circumvent this problem, we perform activate coalesc-
ing in the memory controller. In this mechanism, the mem-
ory controller scans the command queues to find activate
commands directed to the same row in different subchannels,
and issues a single activate command for all of these re-
quests. The subchannel mask sent with the activate command
is set appropriately such that the same MWL is turned on
across all the subchannels needed. Activate coalescing thus
allows subchannels to mimic the performance of the HBM
baseline when there is high locality.

Similarly, the memory controller also performs read coa-
lescing and write coalescing, issuing a single RD (or WR)
command to multiple subchannels if the same column and
bank is accessed in each. The output of the column-decoder
is used along with the supplied subchannel mask to drive
the desired CSLs in each of the selected subchannels (via
the column-address registers). Thus the reads can progress
completely in parallel across subchannels. Compared to the
64 columns in the original row, a 8-subchannel system will
have only 8 columns per subrow, increasing the probability
of finding such coalescing opportunities.
B. Column Energy in Narrow Subchannels

Column energy for a DRAM part can be calculated
using the current drawn by column read (IDD4R) and write

(IDD4W) operations. However, these values are specified by
DRAM vendors assuming a 50% toggle rate of the datapath.
With higher toggle rates, the capacitive load on the datapath
has to be switched more frequently, leading to higher power
dissipation. Using our energy model (Section VII), we found
that for HBM, the column-energy is can vary between 1.5
pJ/bit when there is no toggling and 5.7 pJ/bit when the
toggle rate is 100%. Taking this data toggling energy into
account, we found that a design with 8 subchannels increases
the column-energy of the Exascale, Rodinia, and Lonestar
benchmarks by 23%, 10% and 25%, respectively, over the
baseline case, with the MiniAMR benchmark suffering a
90% increase (Figure 7). Clearly, the narrow datapath in
subchannels increases the switching activity on the wires.
Cause of Increased Toggling: The increase in switching
activity with subchannels is due to the structure of the data
elements in a DRAM atom. Often a 32B atom consists
of eight 32-bit values or four 64-bit values for which the
corresponding bytes of adjacent words are strongly corre-
lated. This characteristic forms the basis for many memory
compression schemes, e.g. [18]. With 8 subchannels, the
internal 256-bit wide datapath is initially partitioned into
8 slices 32-bits wide. As the data moves to the I/O bus,
the datapath narrows to 16-bits and the frequency doubles.
Figure 8 shows how a given 32-byte DRAM atom is
transferred over datapaths of different widths. In the baseline
memory, the 32B DRAM atom initially moves across a 256-
bit internal bus. All switching activity on this bus is due
to switching between successive DRAM atoms. As the data
moves to the DDR I/Os, the datapath narrows, and Figure 8a
shows a straightforward mapping of how data is serialized
onto the narrower 128-bit interface. As seen, the different
corresponding bytes of 4-byte (or 8-byte) words line up,
leading to relatively modest switching activity within the
transfer of an atom; though there is still significant potential
for switching activity between successive atoms.

With 8 subchannels, the data transfer using the straight-
forward baseline ordering on the 32-bit internal datapath is
shown in Figure 8b. Since adjacent 4-byte data words tend
to be more highly correlated than words 16-bytes away, the
internal switching rate tends to decrease for benchmarks
dominated by 32-bit datatypes. The increase in internal
switching seen in the double-precision focused Exascale
workloads arises because uncorrelated portions of a 64-bit
value are transmitted back-to-back. This effect is exacer-
bated for increased switching behavior on the narrower 16-
bit wide bus (Figure 8c).
Reordering to Reduce Toggle Energy: To reduce switching
activity, we remap the data within a burst as it is written/read
from the DRAM in a manner designed to cause highly
correlated bits to be transmitted on the same wires in
successive cycles. Based on the fact that commonly 32-
bit and 64-bit data values from an array are sent within a
DRAM atom, we developed a simple static ordering, shown
in Figures 8d and 8e, that is applied to all DRAM atoms.
Offsets of 8 bytes (well suited to double-precision values)
are favored in successive cycles, then the remaining bytes
at a 4-byte offset are transferred. The net result is that data
with highly correlated 8-byte or 4-byte values tend to have
reduced switching activity. Since there is more toggling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 0 2 8 10
4 5 6 7 16 18 24 26
8 9 10 11 28 30 20 22

12 13 14 15 12 14 4 6
16 17 18 19 1 3 9 11
20 21 22 23 17 19 25 27
24 25 26 27 29 31 21 23
28 29 30 31 13 15 5 7

0 1 0 2
2 3 8 10
4 5 16 18
6 7 24 26
8 9 28 30

10 11 20 22
12 13 12 14
14 15 4 6
16 17 1 3
18 19 9 11
20 21 17 19
22 23 25 27
24 25 29 31
26 27 21 23
28 29 13 15
30 31 5 7

Baseline

Order

(C) (E)

(B) (D)

16-bit Wide

Datapath

32-bit Wide

 Datapath

Reduced-Switching

Order

(A) 128-bit Wide Datapath

Figure 8. Data Ordering. Data from adjacent 32-bit or 64-bit words tends
to be highly correlated, requiring reordering on narrower datapaths to avoid
increased switching activity.

energy spent in the narrow 16-bit interface and I/Os, we
developed the mapping optimized for transfers across a 16-
bit bus (Figure 8e). This ordering of the data is statically
applied within the memory controller to every DRAM atom
when it is being stored in DRAM and requires no additional
hardware or meta-data storage. During a store operation
to DRAM, the data to be sent is loaded into the transmit
buffer on the memory-controller in the order specified by
Figure 8(e), and then sent to DRAM. On a read, the data
is returned from the DRAM in the toggle-efficient order
and reordered to form the original ordering. The reordering
scheme is built into the wiring the connects the transmit and
receive buffers with the buffers in the memory controller.

As earlier work (CLR [19]) has noted, dynamically re-
ordering the data within a cache-line or DRAM burst can
significantly reduce switching energy on the memory inter-
face. However, such techniques require evaluating dozens
of potential data permutations on each cache-line write,
and several meta-data bits to store the selected permutation.
We evaluated dynamic schemes which supported up to four
alternative data orderings (e.g., favoring 2, 4, 8, or 16-byte
interleaving) and which could have the permutation encoded
within two meta-data bits we could appropriate from the
ECC bits. Our simpler static scheme achieved 98% of the
benefit and it is much easier to deploy within a 32-channel,
high-bandwidth GPU.

VI. DRAM CONTROLLER ARCHITECTURE

Each subchannel is controlled by an independent memory
controller, and requests are appropriately directed into the
queues of the subchannel controllers based on their address.
Each subchannel controller performs request reordering and
picks a request to schedule every cycle if allowed by timing
constraints (similar to the baseline memory-controller [20]).

However, since the subchannels in a channel share the ad-
dress/command bus, only one subchannel can issue a request
in a cycle. HBM has separate row and column command
buses, so in a cycle one row and one column command can
be issued, potentially by different subchannels. A command
arbiter picks a command to issue from among the scheduled
commands in the different subchannels. When command
coalescing is enabled, the arbiter can merge several ready
commands from different subchannels into one command if
they are to the same row (activate) and bank or the same
column and bank (read/write).
Overhead: We modeled the area overhead of splitting a
memory controller into semi-independent subchannel con-
trollers by using the latch, flip-flop, and logic cells from
the NaNGate 45nm Open Cell library scaled to a 16nm
process [21]. Implementing 8 subchannels for a 16-bank
DRAM channel requires 0.07mm2 additional controller area
in 16nm (assuming typical 80% post-layout local cell-area
utilization). This additional area consists of the subchan-
nel/bank state and tracking logic (21%), arbitration and
coalescing logic among subchannel-requests (55%), per-
subchannel queue tracking (15%), and SERDES flops (9%).
Much of the area of a GPU memory-controller comes
from the transaction buffers and the associative search logic
that enables pending requests for the same DRAM row to
be grouped together. The peak bandwidth of a memory-
controller is not changed with subchannels, but the latency
is increased slightly due to the extra burst latency and the
additional memory controller arbitration cycle. These few
cycles of additional latency have negligible effect on average
latency. Thus, we did not increase the queue depths over the
baseline, and each subchannel has 1/8th the queue resources
of the parent channel. Overall, for a 4-stack HBM system
like in the NVIDIA P100, the total area increase across
all 32 memory channels would be 2.3 mm2, only 0.4%
of the total 610mm2 GPU die [2]. The incremental power
of the extra logic is insignificant as the contribution of
memory-controller power to overall system power is small;
conservatively assuming power increases proportionally to
the overall increase in die area, the additional memory
controller power would be less than 1W on this large 200+ W
GPU die. DRAM energy reductions with subchannels and
GPU energy savings from higher performance far outweigh
these overheads.

VII. METHODOLOGY
A. Energy Model

Our energy model uses the bottom-up methodology of
the Rambus power model [22], but has been adapted to
accurately model stacked memories in a modern process.
We model the physical layout of the HBM die to derive
detailed area estimates of the internal structures including
the cell array, datapath components, address decoders, and
the peripheral logic. We also model the 3D-stacked structure
in its entirety including the TSVs, the logic base layer,
and the silicon interposer as shown in Figure 9 using the
HBM floorplan from [23] and die shots of modern DRAMs.
For this model, we scale the DRAM process technology
parameters presented in [22] from 55nm to 28nm, use TSV
capacitance values reported in [24], and use the maximum

Figure 9. HBM model for energy estimation.

Table I
SYSTEM CONFIGURATION.

#SMs, Warps/SM, Threads/Warp 60, 64, 32
L2 cache (size, assoc., block, sector) 4MB, 16-way, 128B, 32B
DRAM (capacity, bandwidth) 16GB, 1TB/s (4stacks)

input capacitance for a given I/O frequency (1GHz) from
the HBM JEDEC specification [25] to model the energy of
the I/O channel on the silicon interposer.

We estimate the row energy by estimating the capacitances
switched on an activate per bitline and the voltage swing
during the sensing, restoration and precharge phases. This
energy is proportional to the number of bitlines on a row
and is estimated to be 112 fJ/bit or 1.8nJ for a 2KB row.
Previous work [13], [16] and CACTI-3DD [26] report even
higher values for row-energy (5-6 nJ per 2KB).

The datapath energy from the row-buffer to the GPU’s
pins can be broken down into the following components:
i) the energy for the column access on a HBM die, which
includes the energy to decode the column address and drive
the column-select lines (CSLs), data transfer from the row
buffer over the LDLs and MDLs to the global sense amps
(GSAs), and the data transfer in periphery to the I/O buffer,
ii) the energy for moving data within the stack from the
HBM die over the TSVs and then over base layer its I/O
drivers, and iii) the data transfer energy on the silicon
interposer. The first two items constitute the column energy
and the third is the I/O energy. The energy consumption on
the data path depends on the length of the wires and the rate
at which these elements are toggled, i.e., the actual bit values
transferred in successive cycles. Since the MDLs and LDLs
are precharged to a mid-value voltage before every transfer,
their energy consumption is toggle independent, unlike the
rest of the datapath. Considering the capacitance values on
the datapath, we find that the toggle-independent column
energy is 1.48 pJ/b, while the rest of the datapath consumes
2.85pJ/b at 50% toggle rate (2.31 pJ/b for column, 0.54 pJ/b
for I/O) and 5.7pJ/b at 100%.

We use DBI-AC [25], [27], as used in HBM, to reduce
the effect of toggling, and we evaluate the benefits of our re-
ordering scheme on top of this optimization. We also account
for the minor overheads for segment-select line charging
(negligible), latch power of the address decoupling registers
(tens of micro-Watts), and the static energy dissipated in
keeping multiple rows open (0.5mW) in subchannel energy.

Table II
HBM STACK CONFIGURATION.

Capacity, #I/Os, Bandwidth 4GB, 1024, 2Gbps/pin
#Channels, #Banks, Row-size 8, 16/channel, 2KB

tRC=47, tRCD=14, tRP=14
HBM tCL=14, tWL=2cyc, tRAS=33

Timing tRRDl=6, tRRDs=4, tFAW=16
Parameters tRTP=3.5, tBURST=1cyc

(in ns unless specified) tCCDl=2, tCCDs=1, tWTRl=8
tWTRs=3, tRTPl=4, tRTPs=3

B. Simulation Details
We simulate a modern GPU-system based on the NVIDIA

P100 chip [2] (configuration in Table I) using a detailed, in-
house GPU and memory simulator. The memory controller
model is optimized to harvest maximum bandwidth and thus
employs optimized address mapping, deep request buffers,
aggressive request reordering, and batched write-drains to
minimize write-to-read turnarounds (similar to the baseline
in [20]). The caches use a 32B sector size for higher
performance and energy-efficiency [28].

We evaluate memory intensive regions of 25 CUDA
applications from the Rodinia [29] and Lonestar [30] suites,
Exascale workloads [1], [31]–[35] (CoMD, HPGMG, lulesh,
MCB, MiniAMR, Nekbone), as well as two well-known
memory-bound applications with disparate access patterns,
STREAM [36] and GUPS [37], to show the effect of our
proposals on the spectrum of applications executed by a
GPU. We also investigate 74 graphics workloads including
desktop and mobile games, rendering engines, and profes-
sional graphics. To estimate the column energy of STREAM,
GUPS and MCB we used the average toggle-rate across the
applications since we do not have the actual data value traces
used by these applications.

VIII. RESULTS

A. Energy Improvement
Figure 10 shows the total DRAM access energy broken

down into the row, column and I/O components for three
different configurations — Baseline, eight subchannels
without burst reordering (SC-8_No_Reordering), and
eight subchannels with reordering to reduce toggle energy
(SC-8) from left to right on the graph. By effectively reduc-
ing the row activation granularity to 1/8th of the Baseline,
SC-8 (and SC-8_No_Reordering) achieves an average
74% reduction across the applications. The largest benefits
are obtained by applications that have low locality, either
due to irregular access patterns (bfs, bh, dmr, sp, sssp, MCB,
GUPS) or due to interference between memory accesses
from different threads (heartwall, kmeans, nw, MiniAMR).

However, the toggle-rate increases with the default narrow
subchannel design (SC-8_No_Reordering) leading to
significant increase in average column (1.12×) and I/O
energies (2×) across the evaluated benchmarks, with several
benchmarks (srad v1, mst, sssp, MiniAMR, lulesh) losing the
benefits of row energy reduction. However, our toggle-aware
burst reordering mechanism mitigates this issue making the
column and I/O energies closer to the baseline (1.02× and
1.001× respectively). Consequently, the total DRAM energy
consumption with SC-8 is 35% lower than the Baseline.

0

5

10

DR
AM

	E
ne

rg
y	(
pJ
/b
) Row	Energy Column	Energy I/O	Energy

Baseline
SC-8_No_Reordering
SC-8

Figure 10. DRAM access energy per bit (lower is better).

Graphics applications, which generally have higher row
locality than the compute applications, consume 10% lower
energy per access with SC-8 compared to Baseline. Re-
gardless of row locality, all applications now incur roughly
similar energy costs for accessing a bit from DRAM. By
precisely activating only the necessary part of a row, SC-8
decouples the total memory system power from row locality.

B. Performance
Figure 11 compares the performance of subchannels with-

out parallelism (SC-8_No_Parallelism), with paral-
lelism but no command coalescing (SC-8_No_Coalesc-
ing), and subchannels with both performance optimizations
(SC-8) against Baseline.

For applications that utilize only a small fraction of the
total DRAM bandwidth (b+tree, heartwall, hotspot, lavamd,
srad v1, bh, dmr, mst, and sp), there is little difference
in performance between the baseline and the subchannel
configurations. For the memory-intensive benchmarks (back-
prop, bfs, kmeans, nw, pathfinder, srad v2, streamcluster,
sssp, CoMD, HPGMG, lulesh, MCB, MiniAMR, Nekbone,
STREAM and GUPS) the effect of our proposals depends
on the memory access patterns. However, regardless of indi-
vidual characteristics, all memory intensive benchmarks see
significant drop in performance with SC-8_No_Paral-
lelism (average 74% degradation). This result is expected,
because reducing the row size in an area efficient manner
(i.e., not increasing the bandwidth of each mat) reduces the
bandwidth of the bank to 1/8th of the baseline.

Enabling parallel operation across subchannels (SC-8_-
No_Coalescing) can recover this performance loss, and
even lead to improvement over Baseline depending on
the application behavior. Applications that had high row-
buffer locality in the baseline, and were thus able to use the
bandwidth adequately (pathfinder, srad v2, streamcluster,
sssp, CoMD, HPGMG and Nekbone), have their bandwidth
requirements met by SC-8_No_Coalescing. Similar to
the baseline, the entire bank datapath is now engaged in
effective data transfer, although unlike the baseline, each
subchannel is servicing a different request. On the other
hand, applications which had low row-buffer locality but
high bandwidth demands, were bottlenecked by bank con-
flicts in the baseline. Such applications (bfs, kmeans, nw, sp,
MiniAMR, GUPS) are boosted by two beneficial features of
the subchannel architecture. First, parallel subchannels offer
additional bank-level parallelism that makes it possible to
overlap activations of different rows in the same bank in
different subchannels (and subarrays). Second, smaller rows
reduce row-activation current draw that then allows a higher

rate of activates. SC-8_No_Coalescing thus outper-
forms the baseline significantly in several bandwidth inten-
sive applications: bfs (19.9%), kmeans (13.6%), nw (41%),
sp (26.3%) MiniAMR (24.3%), GUPS (112%). A secondary
benefit of SC-8_No_Coalescing is that it reduces the
effect of write-drains on read performance by allowing reads
and writes to proceed in parallel in different subchannels
which benefits even high-locality, but bandwidth-bound,
write-intensive applications like lulesh (6%). Overall, SC-
8_No_Coalescing improves the Baseline perform-
ance by 8.1% across the evaluated benchmarks.

However, even with parallel subchannels, the command
bus that served one data channel is now shared by 8
subchannels. This bus becomes a bottleneck when multiple
activates must be sent to activate parts of the same row
in different subchannels (which required one activate in
Baseline). Consequently, the performance of our most
bandwidth-intensive application, STREAM, drops by 2.7%
with SC-8_No_Coalescing. Activate coalescing is able
to eliminate this bottleneck by issuing the activates to the
same row in different subchannels as a single command,
eliminating the performance drop in STREAM (the SC-
8 bar). While activate coalescing is a preventive measure
against activate/precharge command bandwidth inflation in
subchannels, read/write coalescing is an optimization that
can reduce the read/write command bandwidth over the
baseline by merging several reads (or writes) to different
subchannels in a bank into a single command if they have the
same column address. With only 8 distinct columns per sub-
channel (256B row), the memory controller can often find
such coalescing opportunities. Consequently, the SC-8 con-
figuration appreciably boosts the performance of bandwidth-
intensive benchmarks (bfs (66%), kmeans (35%), stream-
cluster (9.1%), sp (39%),lulesh (10%), MiniAMR (35%),
GUPS (152%)) leading to a 13% average improvement
across all workloads over the baseline. Graphics applications
see no significant change in performance with subchannels
owing to their regular access patterns.

IX. IMPACT ON ECC

ECC in the array: To support ECC in non-DIMM DRAMs,
extra storage is provided in the DRAM row to store the
ECC bits (e.g., ×9 RLDRAM or ECC-supporting ×144
HBM). This approach creates slightly longer non-power-of-
2 row sizes. To support a subchannel architecture, each mat
needs to be wider, e.g., 32 576×512 mats per subarray, each
supplying 9 bits. The ECC bits for a burst can be fetched
from the mats in a subchannel.
ECC on the I/Os: In the baseline HBM design, an 8-bit

0
0.5
1

1.5
2

2.5

No
rm

al
ize

d	
Pe
rf
or
am

nc
e

Baseline SC-8_No_Parallelism SC-8_No_Coalescing SC-8

Figure 11. Performance normalized to the baseline (higher is better).

Table III
SC-8 COMPARED TO PREVIOUS WORK.

Technique Avg. Energy Avg. Area
Savings Speedup Overhead

128-banks 36.8% 18% 34.5%
SC-8 35% 13% 2.6%
Half-DRAM 14% 2.1% 3%
SALP 11% 7.8% < 1%

ECC word provides SECDED protection for 64 bits of data,
with each 32B atom having four such 64-bit regions. Each
128-bit baseline HBM data channel has a 16-bit wide ECC
lane to transfer these bits. When the number of subchannels
increases, the number of signals used to transmit a single
DRAM atom is reduced. In the limit of 16 subchannels,
the I/O interface is 8 bits wide, with an additional 9th ECC
bit. All 32 ECC bits are still transmitted with a 32-byte
DRAM atom, but a sustained error on a given I/O signal
will now potentially affect up to 32 bits within a single
DRAM atom, and can produce errors that the four SECDED
ECC words cannot protect against. To solve this issue, we
propose using a robust CRC-based error-detection scheme
along with a retry mechanism in the event that an error is
detected (similar to DDR4 and GDDR5 systems [38]). The
CRC can be chosen such that it reliably detects many types
of sustained faults on the I/O signals. DRAMs with on-die
ECC can rely on this scheme to protect the I/Os, with the
ECC protecting the array.

X. RELATED WORK

In this section we present a quantitative comparison of
SC-8 against relevant related work (Table III).
Banks with smaller rows: Dividing existing banks into
numerous smaller banks, each with 1/8th the row size, and
the same bandwidth as a baseline bank is obviously the best
choice for energy efficiency and high performance. However,
this requires 8× more LDLs and MDLs, increasing the height
and width of the mat respectively due to limited wiring
tracks. It also requires additional area for 8× GSAs and
the new address decoders, which makes the area overhead
a prohibitive 34.5%. Through the SC-8 architecture, we
can harvest most of these benefits with a much lower area
overhead of 2.6%. Several previous partial row-activation
techniques proposed fetching a DRAM atom from a subset
of the mats on a subarray and using an activation decoder
to pick the subset without creating new banks to avoid
replicating the address-decoders. However, some of these
techniques (e.g., FGRA [11] and SBA [10]) ignored the
practical layout of the mat datapath and did not account

for the high area overhead that would be required for their
implementation. Microbanks [39] acknowledges the need to
increase the datapath width, but reports little area overhead
as it underestimates the cost of the resultant taller LDL-
stripe (8-way microbanking requires 64 differential pairs of
LDLs, increasing the LDL-stripe height by 8×), and makes
the optimistic assumption that the microbank-select signals
can be routed in fine-pitch polysilcon. In essence, these
techniques assumed the advantages of narrower banks but
did not approriately estimate the area overheads.
Half-DRAM: To activate half of a row, Half-DRAM splits
each LWL into two halves, and activates the left-half in odd
mats and the right half in the even mats, using all mat
datapaths for transferring a DRAM atom, thus keeping the
baseline bandwidth unchanged. Clearly, Half-DRAM is a
single step design that cannot be scaled to smaller activation
granularities. Also, Figure 5a shows that in existing DRAMs
LWDs are staggered on either side of a mat with alternate
LWLs being driven from alternate sides as LWD pitch is 2X
the LWL pitch. Thus there is no space to add two LWDs per
LWL, one on each side, as required by Half-DRAM. Doing
so will require doubling the number of LWD stripes leading
to more area overhead than SC-8, but with lower energy
and performance benefits.
More Row-Buffers: The row-conflict rate and hence the
row energy can be reduced by keeping multiple rows active
in a bank. Unlike proposals to build separate row-buffer
caches on the base layer of a DRAM stack [40], [41] or
near the I/Os [42], [43] which incur bandwidth and area
overheads, Subarray-Level-Parallelism (SALP) [15] allows
access to the already existing row buffer of each subarray
in a bank. However, we found that speculatively keeping
a few extra rows open per bank (15 in SALP) to reduce
the number of row conflicts is less energy efficient than
reducing the energy cost of each row conflict (as done by
SC-8) as the number of threads accessing a bank is very
high in GPUs. Also, since SALP keeps the row size and
thus the activate current unchanged, only four activates can
be performed in a tFAW period, restricting the performance
benefit of SALP for irregular applications which are activate-
rate limited. However, SALP is very unintrusive to layout
and has very low area overhead.
Other work: The D-BANK architecture [9] is related to our
proposals because it activates a subset of mats connected to
a MWL to simplify the wiring in the periphery. However, the
total number of mats that are activated are the same as the
baseline, and thus there is no energy benefit or bandwidth
implication. Subranked memory systems [44]–[48] use a
subset of DRAM chips on a DIMM to fetch a single 64-
byte cache line and thus reduce DRAM energy. These

techniques share the same philosophy as the subchannel
design, but are not directly applicable to HBM or single-die
solutions. In fact, our data reordering proposal can improve
I/O and column energies in subranked memory systems.
Orthogonal to memory architecture improvements are efforts
in software and data placement to increase DRAM row-
buffer hit rates [49]–[51]. The baseline GPU memory con-
troller already aggressively reorders requests by using deep
buffers to harvest most of the row-locality [20], [52], and
is thus unlikely to benefit from these techniques. Some of
these mechanisms also expend precious DRAM bandwidth
for data migration, which renders them cumbersome and
inefficient to implement in the presence of many thousands
of threads in GPUs.

XI. CONCLUSION

Throughput oriented processors, such as GPUs, have a
history of using specialized DRAMs optimized for band-
width. As stacked, on-package DRAM technologies enable
increasing bandwidth, the intrinsic DRAM array access
energy is becoming significant. This row energy is par-
ticularly problematic in workloads that exhibit poor row
locality, requiring frequent bank activates and precharges.
The growing emergence of these low-locality workloads,
coupled with a high degree of DRAM bank contention due
to increasing parallelism in the processor, further motivate
the need for a DRAM architecture having high internal
parallelism and a small effective row size.

The proposed subchannel architecture creates smaller ef-
fective rows via master-wordline segmentation, while si-
multaneously providing additional internal parallelism by
forming a number of semi-independent subchannels. This
architecture is born out of practical considerations of DRAM
layout, and is very area efficient, increasing DRAM area
by 2.6%. Using 8× smaller rows and a well-crafted data
layout pattern, we achieve a 35% energy improvement over
HBM. The additional internal parallelism in this subchannel
architecture, along with the command coalescing optimiza-
tions we describe, provide a 13% performance improvement.
While evaluated in the context of GPUs, we believe that
this subchannel design is a promising approach for the
next generation of throughput-optimized DRAMs targeting
a range of throughput processing architectures.

XII. ACKNOWLEDGMENTS

This research was developed, in part, with funding from
the United States Department of Energy and, in part, with
funding from the Defense Advanced Research Projects
Agency (DARPA). The views, opinions, and/or findings
contained in this article/presentation are those of the au-
thor/presenter and should not be interpreted as representing
the official views or policies of the Department of Defense
or the U.S. Government.

REFERENCES

[1] O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nel-
lans, J. Luitjens, N. Sakharnykh, P. Wang, P. Micikevicius,
A. Scudiero, S. W. Keckler, and W. J. Dally, “Scaling the
power wall: A path to exascale,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), November 2014.

[2] NVIDIA, “Inside Pascal: NVIDIA’s Newest Computing Plat-
form,” 2016, https://devblogs.nvidia.com/parallelforall/inside-
pascal/.

[3] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel
Xeon Phi Processor,” in HotChips 27, 2015.

[4] AMD, “High Bandwidth Memory,” http://www.amd.com/en-
us/innovations/software-technologies/hbm.

[5] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit
Design - Fundamental and High-Speed Topics. IEEE Press,
2008.

[6] T. Schloesser, F. Jakubowski, J. v. Kluge, A. Graham, S. Sel-
sazeck, M. Popp, P. Baars, K. Muemmler, P. Moll, K. Wilson,
A. Buerke, D. Koehler, J. Radecker, E. Erben, U. Zimmerman,
T. vorrath, B. Fischer, G. Aichmayr, R. Agaiby, W. Pamler,
and T. Scheuster, “A 6f2 Buried Wordline DRAM Cell
for 40nm and Beyond,” in Proceedings of the International
Electron Devices Meeting (IEDM), December 2008, pp. 1–4.

[7] D. James, “Recent Advances in DRAM Manufacturing,” in
Proceedings of the SEMI Advanced Semiconductor Manufac-
turing Conference, July 2010, pp. 264–269.

[8] Q. Harvard and R. J. Baker, “A Scalable I/O Architecture
for Wide I/O DRAM,” in Proceedings of the International
Midwest Symposium on Circuits and Systems (MWSCAS),
August 2011.

[9] N. Sakashita, Y. Nitta, K. Shimomura, F. Okuda, H. Shimano,
S. Yamakawa, M. Tsukude, K. Arimoto, S. Baba, S. Komori,
K. Kyuma, A. Yasuoka, and H. Abe, “A 1.6-GB/s Data-Rate
1-Gb Synchronous DRAM with Hierarchical Square-Shaped
Memory Block and Distributed Bank Architecture,” in IEEE
Journal of Solid State Circuits, vol. 31, no. 11, Nov. 1996,
pp. 1645–1655.

[10] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubra-
monian, A. Davis, and N. Jouppi, “Rethinking DRAM Design
and Organization for Energy-Constrained Multi-Cores,” in
Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2010, pp. 175–186.

[11] E. Cooper-Balis and B. Jacob, “Fine-Grained Activation for
Power Reduction in DRAM,” IEEE Micro, vol. 30, no. 3, pp.
34–47, May/June 2010.

[12] J. T. Pawlowski, “Multi-bank Memory Accesses Using Posted
Writes,” 2005, United States Patent 6,938,142.

[13] S. O, Y. H. Son, N. S. Kim, and J. H. Ahn, “Row-Buffer
Decoupling: A Case for Low-Latency DRAM Microarchi-
tecture,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2014, pp. 337–348.

[14] Hynix, “Hynix GDDR5 SGRAM Part H5GQ1H24AFR
Datasheet Revision 1.0,” 2009.

[15] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for
Exploiting Subarray-Level Parallelism (SALP) in DRAM,”
in Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2012, pp. 368–379.

[16] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie,
“Half-DRAM: a High-bandwdith and Low-power DRAM
System from the Rethinking of Fine-grained Activation,” in
Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2014, pp. 349–360.

[17] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor,
and S. W. Keckler, “Page Placement Strategies for GPUs
within Heterogeneous Memory Systems,” in Proceedings of
the International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS),
March 2015, pp. 607–618.

[18] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Base-Delta-Immediate Com-
pression: Practical Data Compression for On-Chip Caches,”
in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2012.

[19] B. Childers and T. Nakra, “Reordering Memory Bus Transac-
tions for Reduced Power Consumption,” in Proceedings of the

https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm

Workshop on Languages, Compilers, and Tools for Embedded
Systems, June 2000, pp. 148–161.

[20] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and
R. Balasubramonian, “Managing DRAM Latency Divergence
in Irregular GPGPU Applications,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), November 2014.

[21] NanGate, “NanGate 45nm Open Cell Library,” 2008, http:
//www.nangate.com/page id=2325.

[22] T. Vogelsang, “Understanding the Energy Consumption of
Dynamic Random Access Memories,” in Proceedings of
the International Symposium on Microarchitecture (MICRO),
December 2010, pp. 363–374.

[23] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J.
Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H.
Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park, B. Chung,
and H. S, “A 1.2V 8Gb 8-channel 128GB/s High-Bandwidth
Memory (HBM) Stacked DRAM with Effective Microbump
I/O Test Methods Using 29nm Process and TSV,” in Pro-
ceedings of the International Solid State Circuits Conference
(ISSCC), 2014, pp. 432–433.

[24] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and
K. Goossens, “System and Circuit Level Power Modeling of
Energy-Efficient 3D-Stacked Wide I/O DRAMs,” in Proceed-
ings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2013.

[25] JEDEC, JEDEC Standard JESD235:High Bandwidth Mem-
ory(HBM), JEDEC Solid State Technology Association, Vir-
ginia, USA, 2013.

[26] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman,
and N. P. Jouppi, “CACTI-3DD: Architecture-level Modeling
for 3D Die-stacked DRAM Main Memory,” in Proceedings
of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), March 2012, pp. 33–38.

[27] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for
Low-Power I/O,” IEEE Transactions on Very Large Scale
Integraion (VLSI) Systems, March 1995.

[28] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A Locality-
Aware Memory Hierarchy for Energy-Efficient GPU Archi-
tectures,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), December 2013, pp. 86–98.

[29] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A Benchmark Suite for Het-
erogeneous Computing,” in Proceedings of the International
Symposium on Workload Characterization (IISWC), October
2009, pp. 44–54.

[30] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative
Study of Irregular Programs on GPUs,” in Proceedings of
the International Symposium on Workload Characterization
(IISWC), November 2012, pp. 141–151.

[31] “Coral benchmarks,” https://asc.llnl.gov/CORAL-
benchmarks/.

[32] J. Mohd-Yusof and N. Sakharnykh, “Optimizing comd: A
molecular dynamics proxy application study,” in GPU Tech-
nology Conference (GTC), March 2014.

[33] “Mantevo benchmark suite,” https://mantevo.org/packages.
[34] M. F. Adams, J. Brown, J. Shalf, B. V. Straalen, E. Strohmaier,

and S. Williams, “HPGMG 1.0: A Benchmark for Ranking
High Performance Computing Systems,” Lawrence Berkley
National Laboratory, Tech. Rep., 2014, LBNL-6630E.

[35] S. Layton, N. Sakharnykh, and K. Clark, “Gpu implementa-
tion of hpgmg-fv,” in HPGMG BoF, Supercomputing, Novem-
ber 2015.

[36] “STREAM - Sustainable Memory Bandwidth in High Perf-
ormance Computers,” http://www.cs.virginia.edu/stream/.

[37] “GUPS (Giga Updates Per Second),”
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

[38] JEDEC, JESD79-4: JEDEC Standard DDR4 SDRAM, 2012.

[39] Y. H. Son, S. O, H. Yang, D. Jung, J. H. Ahn, J. Kim, J. Kim,
and J. W. Lee, “Microbank: Architecting Through-Silicon
Interposer-Based Main Memory Systems,” in Proceedings of
the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC), November 2014.

[40] G. Loh, “A Register-file Approach for Row Buffer Caches
in Die-stacked DRAMs,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), December 2011,
pp. 351–361.

[41] D. Woo, N. Seong, and H. Lee, “Pragmatic Integration of an
SRAM Row Cache in Heterogeneous 3-D DRAM Architec-
ture using TSV,” IEEE Transactions on VLSI Systems, vol. 21,
no. 1, pp. 1–13, December 2012.

[42] S. Rixner, “Memory Controller Optimizations for Web
Servers,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), December 2004, pp. 355–366.

[43] E. Herrero, J. Gonzalez, R. Canal, and D. Tullsen, “Thread
Row Buffers: Improving Memory Performance Isolation
and Throughput in Multiprogrammed Environments,” IEEE
Transactions on Computers, vol. 62, no. 9, pp. 1879–1892,
September 2013.

[44] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and
Z. Zhu, “Mini-Rank: Adaptive DRAM Architecture For
Improving Memory Power Efficiency,” in Proceedings of
the International Symposium on Microarchitecture (MICRO),
November 2008, pp. 210–221.

[45] J. Ahn, N. Jouppi, and R. S. Schreiber, “Future Scaling
of Processor-Memory Interfaces,” in Proceedings of the In-
ternational Conference on High Performance Computing,
Networking, Storage and Analysis (SC), November 2009.

[46] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.
Schreiber, “Improving System Energy Efficiency with Mem-
ory Rank Subsetting,” ACM Transcations on Architecture and
Code Optimization, vol. 9, no. 1, pp. 4:1–4:28, March 2012.

[47] J. Ahn, J. Leverich, R. S. Schreiber, and N. Jouppi, “Multicore
DIMM: an Energy Efficient Memory Module with Inde-
pendently Controlled DRAMs,” IEEE Computer Architecture
Letters, vol. 7, no. 1, pp. 5–8, 2008.

[48] Rambus, “Rambus Module Threading,” http://www.rambus.
com/module-threading/.

[49] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasub-
ramonian, and A. Davis, “Micro-Pages: Increasing DRAM
Efficiency with Locality-Aware Data Placement,” in Pro-
ceedings of the International Conference on Architectural
Support for Programming Languages and Operation Systems
(ASPLOS), March 2010, pp. 219–230.

[50] H. Park, S. Baek, J. Choi, D. Lee, and S. H. Noh, “Regular-
ities Considered Harmful: Forcing Randomness to Memory
Accesses to Reduce Row Buffer Conflicts for Multi-core,
Multi-bank Systems,” in Proceedings of the International
Conference on Architectural Support for Programming Lan-
guages and Operation Systems (ASPLOS), March 2013, pp.
181–192.

[51] S. P. Muralidhara, L. Subramaniam, O. Mutlu, M. Kan-
demir, and T. Moscibroda, “Reducing Memory Interference in
Multicore Systems via Application-Aware Memory Channel
Partitioning,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), December 2011, pp. 374–
385.

[52] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian,
G. Loh, and O. Mutlu, “Staged Memory Scheduling: Achiev-
ing High Performance and Scalability in Hetergenous Sys-
tems,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2012, pp. 416–427.

http://www.nangate.com/page_id=2325
http://www.nangate.com/page_id=2325
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
https://mantevo.org/packages
http://www.rambus.com/module-threading/
http://www.rambus.com/module-threading/

