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ABSTRACT
Convolutional Neural Networks (CNNs) have emerged as a fun-
damental technology for machine learning. High performance and
extreme energy efficiency are critical for deployments of CNNs, es-
pecially in mobile platforms such as autonomous vehicles, cameras,
and electronic personal assistants. This paper introduces the Sparse
CNN (SCNN) accelerator architecture, which improves performance
and energy efficiency by exploiting the zero-valued weights that stem
from network pruning during training and zero-valued activations
that arise from the common ReLU operator. Specifically, SCNN em-
ploys a novel dataflow that enables maintaining the sparse weights
and activations in a compressed encoding, which eliminates unnec-
essary data transfers and reduces storage requirements. Furthermore,
the SCNN dataflow facilitates efficient delivery of those weights and
activations to a multiplier array, where they are extensively reused;
product accumulation is performed in a novel accumulator array.
On contemporary neural networks, SCNN can improve both perfor-
mance and energy by a factor of 2.7× and 2.3×, respectively, over a
comparably provisioned dense CNN accelerator.
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1 INTRODUCTION
Driven by the availability of massive data and the computational ca-
pability to process it, deep learning has recently emerged as a critical
tool for solving complex problems across a wide range of domains,
including image recognition [22], speech processing [3, 14, 18],
natural language processing [9], language translation [11], and au-
tonomous vehicles [23]. Convolutional neural networks (CNNs) have
become the most popular algorithmic approach for deep learning for
many of these domains. Employing CNNs can be decomposed into
two tasks: (1) training — in which the parameters of a neural network
are learned by observing massive numbers of training examples, and
(2) inference — in which a trained neural network is deployed in the
field and classifies the observed data. Today, training is often done
on GPUs [27] or farms of GPUs, while inference depends on the
application and can employ CPUs, GPUs, FPGAs or specially-built
ASICs.

During the training process, a deep learning expert will typi-
cally architect the network, establishing the number of layers, the
operation performed by each layer, and the connectivity between
layers. Many layers have parameters, typically filter weights, which
determine their exact computation. The objective of the training
process is to learn these weights, usually via a stochastic gradient
descent-based excursion through the space of weights. This process
typically employs a forward-propagation calculation for each train-
ing example, a measurement of the error between the computed
and desired output, and then back-propagation through the network
to update the weights. Inference has similarities, but only includes
the forward-propagation calculation. Nonetheless, the computation
requirements for inference can be enormous, particularly with the
emergence of deeper networks (hundreds of layers [19, 20, 29])
and larger inputs sets, such as high-definition video. Furthermore,
the energy efficiency of this computation is important, especially
for mobile platforms, such as autonomous vehicles, cameras, and
electronic personal assistants.

Recent published works have shown that common networks
have significant redundancy and can be pruned dramatically dur-
ing training without substantively affecting accuracy [17]. Our ex-
perience shows that the number of weights that can be eliminated
varies widely across the layers but typically ranges from 20% to
80% [16, 17]. Eliminating weights results in a network with a sub-
stantial number of zero values, which can potentially reduce the
computational requirements of inference.

The inference computation also offers a further optimization op-
portunity, as many networks employ as their non-linear operator
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the ReLU (rectified linear unit) function which clamps all negative
activation values to zero. The activations are the output values of
an individual layer that are passed as inputs to the next layer. Our
experience shows that for typical data sets, 50–70% of the activa-
tions are clamped to zero. Since the multiplication of weights and
activations is the key computation for inference, the combination of
these two factors can reduce the amount of computation required
by over an order of magnitude. Additional benefits can be achieved
by a compressed encoding for zero weights and activations, thus
allowing more to fit in on-chip RAM and eliminating energy-costly
DRAM accesses.

This paper introduces the Sparse CNN (SCNN) accelerator archi-
tecture, a new CNN inference architecture that exploits both weight
and activation sparsity to improve the performance and power of
DNNs. Our SCNN accelerator is designed to optimize the compu-
tation of the convolutional layers as state-of-the-art DNNs for com-
puter vision are primarily dominated by these compute-intensive
layers [24, 31]. Previous works have employed techniques for ex-
ploiting sparsity, including saving computation energy for zero-
valued activations and compressing weights and activations stored
in DRAM [7, 8]. Other works have used either a compressed en-
coding of activations [1] or compressed weights [34] in parts of
their dataflow to reduce data transfer bandwidth and save time for
computations of some multiplications with a zero operand. While
these prior architectures have largely focused on eliminating com-
putations and exploiting some data compression, SCNN is the first
sparse CNN accelerator that effectively handles both the ineffectual
activations and weights at the same time. Furthermore, SCNN em-
ploys both an algorithmic dataflow that eliminates all multiplications
with a zero and a compressed representation of both weights and
activations through almost the entire computation.

At the heart of the SCNN design is a processing element (PE)
with a multiplier array that accepts a vector of weights and a vector
of activations. Unlike previous convolutional dataflows [6, 8, 12, 28],
the SCNN dataflow only delivers to the multiplier array weights and
activations that can all be multiplied with one another in the man-
ner of a Cartesian product. To reduce data accesses, the activation
vectors are reused in an input stationary [7] fashion while being
multiplied with a series of weight vectors. Finally, only non-zero
weights and activations are fetched from the input storage arrays
and delivered to the multiplier array. As with any CNN accelerator,
SCNN must accumulate the partial products generated by the multi-
pliers. However, since the products generated by the multiplier array
cannot be directly summed together, SCNN tracks the output coordi-
nates associated with each multiplication and sends the coordinate
and product to a scatter accumulator array for summation.

To increase performance and capacity beyond a single PE, mul-
tiple PEs can run in parallel, each working on a disjoint 3D tile of
input activations. The compression and tiling of the CNN data en-
ables two energy-saving optizations. First, maintaining the weights
and activations in a compressed form throughout the pipeline re-
duces energy-hungry data staging and transmission costs. Second,
the entire volume of activations of larger CNNs can remain in on-die
buffers between layers, entirely eliminating expensive cross-layer
DRAM references for a large number of networks. Overall, this
design provides efficient compressed storage and delivery of input

Table 1: Network characteristics. Weights and activations as-
sume a data-type size of two bytes.

# Conv. Max. Layer Max. Layer Total #
Network Layers Weights Activations Multiplies

AlexNet [22] 5 1.73 MB 0.31 MB 0.69 B
GoogLeNet [31] 54 1.32 MB 1.52 MB 1.1 B

VGGNet [30] 13 4.49 MB 6.12 MB 15.3 B

operands, exploits high reuse of the input operands in the multiplier
array, and spends no time on multiplications with zero operands.

To evaluate SCNN, we developed a cycle-level performance
model and a validated analytical model that allows us to quickly
explore the design space of different types of accelerators. We also
implemented an SCNN PE in synthesizable System C and compiled
the design into gates using a combination of commercial high-level
synthesis (HLS) tools and a traditional Verilog compiler. Our re-
sults show that a 64 PE SCNN implementation with 16 multipliers
per PE (1,024 multipliers in total) can be implemented in approxi-
mately 7.4mm2 in a 16nm technology, which is a bit larger than an
equivalently provisioned dense accelerator architecture due to the
overheads of managing the sparse dataflow. On a range of networks,
SCNN provides a factor of 2.7× speedup and a 2.3× energy reduc-
tion relative to a comparably provisioned dense CNN accelerator.

2 MOTIVATION
Convolutional Neural Network algorithms (CNNs) are essentially a
cascaded set of pattern recognition filters that need to be trained [23].
A CNN consists of a series of layers, which include convolutional
layers, non-linear scalar operator layers, and layers that downsample
the intermediate data, for example by pooling. The convolutional
layers represent the core of the CNN computation and are character-
ized by a set of filters that are usually 1×1 or 3×3, and occasionally
5×5 or larger. The values of these filters are the weights that are
learned using a training set for the network. Some deep neural net-
works (DNNs) also include fully-connected layers, typically toward
the end of the DNN. During inference, a new image (in the case
of image recognition) is presented to the network, which classifies
into the training categories by computing each of the layers in the
network, in succession. The intermediate data between the layers are
called activations, and the output activations of one layer becomes
the input activations of the next layer. In this paper, we focus on
accelerating the convolutional layers as they constitute the majority
of the computation [10].

Table 1 lists the attributes of three commonly used networks in im-
age processing: AlexNet [22], GoogLeNet [31], and VGGNet [30],
whose specifications come from the Caffe BVLC Model Zoo [5].
The increasing layer depth across the networks represents the suc-
cessively more accurate networks in the ImageNet [21] competition.
The Maximum Weights and Activations columns indicate the size
of the largest weight and activation matrices in the network. The
last column lists the total number of multiplies required to compute
a single inference pass through all of the convolutional layers of
the network. These data and computational requirements are de-
rived from the standard ImageNet inputs images of 224×224 pixels.
Processing larger, higher resolution images will result in greater
computational and data requirements.
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(a) AlexNet
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(b) GoogLeNet
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(c) VGGNet

Figure 1: Input activation and weight density and the reduction
in the amount of work achievable by exploiting sparsity.

Sparsity in CNNs. Sparsity in a CNN layer is defined as the
fraction of zeros in the layer’s weight and input activation matrices.
The primary technique for creating weight sparsity is to prune the
network during training. Han, et al. developed a pruning algorithm
that operates in two phases [17]. First, any weight with an absolute
value that is close to zero (e.g. below a defined threshold) is set
to zero. This process has the effect of removing weights from the
filters, sometimes even forcing an output activation to always be zero.
Second, the remaining network is retrained, to regain the accuracy
lost through naïve pruning. The result is a smaller network with
accuracy extremely close to the original network. The process can
be iteratively repeated to reduce network size while maintaining
accuracy.

Activation sparsity occurs dynamically during inference and is
highly dependent on the data being processed. Specifically, the rec-
tified linear unit (ReLU) function that is commonly used as the
non-linear operator in CNNs forces all negatively valued activations

Table 2: Qualitative comparison of sparse CNN accelerators.

Gate
MACC

Skip
MACC

Skip
Inner spatial

dataflow
buffer/

Architecture DRAM
access

Eyeriss [7] A – A Row Stationary
Cnvlutin [1] A A A Vector Scalar + Reduction
Cambricon-X [34] W W W Dot Product
SCNN A+W A+W A+W Cartesian Product

to be clamped to zero. After completing computation of a convolu-
tional layer, a ReLU function is applied point-wise to each element
in the output activation matrices before the data is passed to the next
layer.

To measure the weight and activation sparsity, we used the Caffe
framework [4] to prune and train the three networks listed in Ta-
ble 1, using the pruning algorithm of [17]. We then instrumented
the Caffe framework to inspect the activations between the convo-
lutional layers. Figure 1 shows the weight and activation density
(fraction of non-zeros or complement of sparsity) of the layers of the
networks, referenced to the left-hand y-axes. As GoogLeNet has 54
convolutional layers, we only show a subset of representative layers.
The data shows that weight density varies across both layers and
networks, reaching a minimum of 30% for some of the GoogLeNet
layers. Activation density also varies, with density typically being
higher in early layers. Activation density can be as low as 30% as
well. The triangles show the ideal number of multiplies that could
be achieved if all multiplies with a zero operand are eliminated. This
is calculated by by taking the product of the weight and activation
densities on a per-layer basis.

Exploiting sparsity. Since multiplication by zero just results in
a zero, it should require no work. Thus, typical layers can reduce
work by a factor of four, and can reach as high as a factor of ten. In
addition, those zero products will contribute nothing to the partial
sum it is part of, so the addition is unnecessary as well. Furthermore,
data with many zeros can be represented in a compressed form.
Together these characteristics provide a number of opportunities for
optimization:

• Compressing data: Encoding the sparse weights and/or
activations provides an architecture an opportunity to re-
duce the amount of data that must be moved throughout the
memory hierarchy. It also reduces the data footprint, which
allows larger matrices to be held in a storage structure of a
given size.

• Eliminating computation: For multiplications that have a
zero weight and/or activation operand, the operation can
be data gated, or the operands might never be sent to the
multiplier. This optimization can save energy consumption
or both time and energy consumption, respectively.

Table 2 describes how several recent CNN accelerator architecture
exploit sparsity. Eyeriss [7] exploits sparsity in activations by storing
them in compressed form in DRAM and by gating computation cy-
cles for zero-valued activations to save energy. Cnvlutin [1] is more
aggressive—the architecture moves and stages sparse activations
in compressed form and skips computation cycles for zero-valued
activations to improve both performance and energy efficiency. Both
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Figure 2: CNN computations and parameters.

these architectures are also able to partially elide inner-buffer ac-
cesses for weights if those weights were only to be multiplied with a
zero-valued activation. Conversely, the Cambricon-X [34] architec-
ture exploits sparsity by compressing the pruned weights, skipping
computation cycles for zero-valued weights, but it still suffers from
wasted computation cycles when the non-zero weight is to be multi-
plied with zero-valued activations.

In addition to the different approaches of exploiting sparsity,
these architectures also employ distinct dataflows [7] to execute
a sparse convolutional layer. The most relevant distinction among
these architectures’ dataflows is how the innermost computation
datapath exploits spatial reuse and sparsity patterns. Eyeriss uses a
row-stationary dataflow, multicasting weights and activations across
multiple scalar processing elements (PEs), with each PE indepen-
dently performing zero-activation detection. Cnvlutin multiplies a
single scalar non-zero activation across a vector of weights (orga-
nized by output-channel), and then reduces these output vectors
across different input-channels. Cambricon-X fetches activation vec-
tors across input-channels based on non-zero weight vectors and
computes their dot product, including unnecessary work for zero-
valued elements of the activation vector.

SCNN’s objective is to exploit sparseness in both activations
and pruned weights to eliminate as many computation cycles and
data movement and storage operations as possible. SCNN employs
a dense encoding of both sparse weights and activations so that
only non-zero data values are retrieved from DRAM and on-chip
buffers. Unfortunately, orchestrating a dataflow to deliver these
sparse datasets to an array of multipliers while maximizing data
reuse and multiplier utilization is non-trivial. Instead of coercing
any of the previously proposed dataflows to suit our purpose, we
employ a novel Cartesian product dataflow that exploits both weight
and activation reuse while delivering only non-zero weights and
activations to the multipliers. This dataflow performs an all-to-all
multiply of non-zero weight and activation vector elements that can
avoid any arithmetic based on zero-valued operands and achieve full
multiplier utilization in steady-state.

3 SCNN DATAFLOW
While the inner core of the dataflow in SCNN is based on a spatial
Cartesian product, the complete dataflow requires a deep nested
loop structure, mapped both spatially and temporally across mul-
tiple processing elements. We call the full dataflow PlanarTiled-
InputStationary-CartesianProduct-sparse, or PT-IS-CP-sparse. This

for n = 1 to N
for k = 1 to K

for c = 1 to C
for w = 1 to W

for h = 1 to H
for r = 1 to R

for s = 1 to S
out[n][k][w][h] +=

in[n][c][w+r-1][h+s-1] *
filter[k][c][r][s];

Figure 3: 7-dimensional CNN loop nest.

section first describes a simple CNN convolutional layer to provide
context for a detailed discussion of the construction of PT-IS-CP-
sparse.

The core operation in a CNN convolutional layer is a 2-dimensional
sliding-window convolution of an R×S element filter over a W ×H
element input activation plane to produce a W ×H element output
activation plane. The data can include multiple (C) input activation
planes, which are referred to as input channels. A distinct filter is
applied to each input activation channel, and the filter outputs for
each of the C channels are accumulated together element-wise into a
single output activation plane or output channel. Multiple filters (K)
can be applied to the same volume of input activations to produce K
output channels. Finally, a batch of N groups of C channels of input
activation planes can be applied to the same volume of filter weights.
Figure 2 shows these parameters applied to the computation of a
single CNN layer.

The set of computations for the complete layer can be formulated
as a loop nest over these 7 variables. Because multiply-add opera-
tions are associative (modulo rounding errors, which we ignore in
this study), all permutations of these 7 loop variables are legal. Fig-
ure 3 shows an example loop nest based on one such permutation. We
can concisely describe this nest as N → K →C →W → H → R → S.
Each point in the 7-dimensional space formed from these variables
represents a single multiply-accumulate operation. For the remainder
of this paper, we assume a batch size of 1 (N = 1), which is common
for inferencing tasks.

This simple loop nest can be transformed in numerous ways to
capture different reuse patterns of the activations and weights and to
map the computation to a hardware accelerator implementation. A
CNN’s dataflow defines how the loops are ordered, partitioned, and
parallelized [7]. Prior work has shown that the choice of dataflow
has a significant effect on the area and energy-efficiency of an ar-
chitecture [7]. In fact, the choice of dataflow is perhaps the single
most significant differentiator between many prior works on CNN
architectures.

While the concept of dataflow has been studied for dense archi-
tectures, sparse architectures can also employ various alternative
dataflows, each with its own set of trade-offs. While an exhaustive
enumeration of sparse dataflows is beyond the scope of this paper,
we present a specific dataflow called PlanarTiled-InputStationary-
CartesianProduct-sparse, or PT-IS-CP-sparse. After examining a
range of different dataflows, we selected PT-IS-CP-sparse because
it enables reuse patterns that exploit the characteristics of sparse
weights and activations. This section first presents an equivalent
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dense dataflow (PT-IS-CP-dense) to explain the decomposition of
the computations and then adds the specific features for PT-IS-CP-
sparse.

3.1 The PT-IS-CP-dense Dataflow
Single-multiplier temporal dataflow. The IS term in PT-IS-CP-
dense describes the temporal component of the dataflow. First, con-
sider the operation of a scalar processing element (PE) with a single
multiply-accumulate unit. We employ an input-stationary (IS) com-
putation order in which an input activation is held stationary at
the computation units as it is multiplied by all of the filter weights
needed to make all of its contributions to each of the the K output
channels (a K ×R×S sub-volume). Thus each input activation will
contribute to a volume of K ×W ×H output activations. This order
maximizes the reuse of the input activations, while paying a cost
to stream the weights to the computation units. Accommodating
multiple input channels (C) adds an additional outer loop and results
in the loop nest C →W → H → K → R → S.

The PT-IS-CP-dense dataflow requires input buffers for weights
and input activations, and an accumulator buffer to store the partial
sums of the output activations. The accumulator buffer must perform
a read-add-write operation for every access to a previously-written
index. We call this accumulator buffer along with the attached adder
an accumulation unit.

One of the objectives of the SCNN architecture is to maximize op-
portunities to store compressed activations on-die between network
layers. This requires a moderately large input buffer, which can be
energy-expensive to access. The input-stationary temporal loop nest
amortizes the energy cost of accessing the input buffer over multiple
weight and accumulator buffer accesses. More precisely, the register
in which the stationary input is held over K ×R×S iterations serves
as an inner buffer that filters accesses to the larger input buffer.

Unfortunately, the stationarity of input activations comes at the
cost of more streaming accesses to the weights and to the partial
sums in the accumulator buffer. Blocking the weights and partial
sums in the output channel (K) dimension can increase reuse of these
data structures and improve energy efficiency. We therefore factor
the K output channels into K/Kc output-channel groups of size
Kc, and only store weights and outputs for a single output-channel
group at a time inside the weight and accumulator buffers. Thus the
sub-volumes that are housed in buffers at the computation unit are:

• Weights: C×Kc ×R×S
• Inputs: C×W ×H
• Partial Sums: Kc ×W ×H

An outer loop over all the K/Kc output-channel groups results
in the complete loop nest K/Kc → C → W → H → Kc → R → S.
Each iteration of this outer loop will require the weight buffer to be
refilled and the accumulator buffer to be drained and cleared, while
the contents of the input buffer will be fully reused because the same
input activations are used across all output channels.

Intra-PE parallelism. The CP term in PT-IS-CP-dense describes
how parallelism of many multipliers within a PE can be exploited
while maximizing spatial reuse. A vector of F filter-weights fetched
from the weight buffer and a vector of I inputs fetched from the
input activation buffer are delivered to an array of F×I multipliers to
compute a full Cartesian product (CP) of output partial-sums. This

all-to-all operation has two useful properties. First, each fetched
weight is reused (via wire-based multicast) over all I activations;
each activation is reused over all F weights. Second, each product
yields a useful partial sum such that no extraneous fetches or compu-
tations are performed. PT-IS-CP-sparse will exploit these same prop-
erties to make computation efficient on compressed-sparse weights
and input activations.

The multiplier outputs are sent to the accumulation unit, which
updates the partial sums of the output activation. Each multiplier
output is accumulated with a partial sum at the matching output
coordinates in the output activation space. These coordinates are
computed in parallel with the multiplications. The accumulation unit
must employ at least F×I adders to match the throughput of the
multipliers.

Inter-PE parallelism. Finally, the PT term in PT-IS-CP-dense
describes how to scale beyond the practical limits of multiplier count
and buffer sizes within a PE. We employ a spatial tiling strategy to
spread the work across an array of PEs so that each PE can operate
independently. The W×H element activation plane is partitioned into
smaller Wt×Ht element planar tiles (PT) that are distributed across
the PEs. Each tile extends fully into the input-channel dimension
C, resulting in an input-activation volume of C×Wt×Ht assigned to
each PE. Weights are broadcast to the PEs, and each PE operates on
its own subset of the input and output activation space.

Unfortunately, strictly partitioning both input and output activa-
tions into Wt ×Ht tiles does not work because the sliding-window
nature of the convolution operation introduces cross-tile dependen-
cies at tile edges. These data halos [13] can be resolved in one of
two ways:

• Input halos: The input buffers at each PE are sized to be
slightly larger than C×Wt ×Ht to accommodate the halos.
These halo input values are replicated across adjacent PEs,
but outputs are strictly private to each PE. Replicated input
values can be multicast when they are being fetched into
the buffers.

• Output halos: The accumulation buffers at each PE are
sized to be slightly larger than Kc ×Wt ×Ht to accommo-
date the halos. The halos now contain incomplete partial
sums that must be communicated to neighbor PEs for ac-
cumulation, which occurs at the end of computing each
output-channel group.

Our PT-IS-CP-dense dataflow uses output halos, though the effi-
ciency difference between the two approaches is minimal.

Figure 4 shows pseudo-code for a single PE’s loop nest in the PT-
IS-CP-dense dataflow, including blocking in the K dimension (A,C),
fetching vectors of input activations and weights (B,D), and comput-
ing the Cartesian product in parallel (E,F). X and Y coordinates for
the accumulation buffer that are either negative or greater than Wt −1
and Ht −1 correspond to the locations of incomplete partial sums in
the halo regions. Communication of these halos to neighboring PEs
is not shown in the figure. The Kcoord (), Xcoord (), and Y coord ()
functions compute the k, x, and y coordinates of the uncompressed
output volume using a de-linearization of the temporal loop indices a
and w, the spatial loop indices i and f , and the known filter width and
height. Overall, this PT-IS-CP-dense dataflow is simply a reordered,
partitioned, and parallelized version of Figure 3.
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BUFFER wt_buf[C][Kc*R*S/F][F];
BUFFER in_buf[C][Wt*Ht/I][I];
BUFFER acc_buf[Kc][Wt+R-1][Ht+S-1];
BUFFER out_buf[K/Kc][Kc*Wt*Ht];

(A) for k' = 0 to K/Kc-1
{

for c = 0 to C-1
for a = 0 to (Wt*Ht/I)-1
{

(B) in[0:I-1] = in_buf[c][a][0:I-1];
(C) for w = 0 to (Kc*R*S/F)-1

{
(D) wt[0:F-1] = wt_buf[c][w][0:F-1];
(E) parallel_for (i = 0 to I-1) x (f = 0 to F-1)

{
k = Kcoord(w,f);
x = Xcoord(a,i,w,f);
y = Ycoord(a,i,w,f);

(F) acc_buf[k][x][y] += in[i]*wt[f];
}

}
}

out_buf[k'][0:Kc*Wt*Ht-1] =
acc_buf[0:Kc-1][0:Wt-1][0:Ht-1];

}

Figure 4: PT-IS-CP-dense dataflow, single-PE loop nest.

3.2 PT-IS-CP-sparse Dataflow
PT-IS-CP-sparse is a natural extension of PT-IS-CP-dense that ex-
ploits sparsity in the weights and input activations. The dataflow is
specifically designed to operate on compressed-sparse encodings of
the weights and input activations and produces a compressed-sparse
encoding of the output activations. At a CNN layer boundary, the
output activations of the previous layer become the input activa-
tions of the next layer. While prior work has proposed a number of
compressed-sparse representations [1, 15, 34], the specific format
used is orthogonal to the sparse architecture itself. The key feature is
that decoding a sparse format ultimately yields a non-zero data value
and an index indicating the coordinates of the value in the weight or
input activation matrices.

To facilitate easier decoding of the compressed-sparse blocks,
weights are grouped into compressed-sparse blocks at the granular-
ity of an output-channel group, with Kc×R×S weights encoded into
one compressed block. Likewise, input activations are encoded at the
granularity of input channels, with a block of Wt×Ht encoded into
one compressed block. At each access, the weight buffer delivers a
vector of F non-zero filter weights along with each of their coordi-
nates within the Kc×R×S region. Similarly, the input buffer delivers
a vector of I non-zero input activations along with each of their
coordinates within the Wt×Ht region. Similar to the dense dataflow,
the multiplier array computes the full cross-product of F×I partial
sum outputs, with no extraneous computations. Unlike a dense ar-
chitecture, output coordinates are not derived from loop indices in a
state machine but from the coordinates of non-zero values embedded
in the compressed format.

Even though calculating output coordinates is trivial, the multi-
plier outputs are not typically contiguous as they are in PT-IS-CP-
dense. Thus the F×I multiplier outputs must be scattered to discon-
tiguous addresses within the Kc×Wt×Ht output range. Because any
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Figure 5: Complete SCNN architecture.

value in the output range can be non-zero, the accumulation buffer
must be kept in an uncompressed format. In fact, output activations
will probabilistically have high density even with a very low density
of weights and input activations, until they pass through a ReLU
operation.

To accommodate the needs of accumulation of sparse partial
sums, we modify the monolithic Kc×Wt×Ht accumulation buffer
from the PT-IS-CP-dense dataflow into a distributed array of smaller
accumulation buffers accessed via a scatter network which can be im-
plemented as a crossbar switch. The scatter network routes an array
of F×I partial sums to an array of A accumulator banks based on the
output index associated with each partial sum. Taken together, the
complete accumulator array still maps the same Kc×Wt×Ht address
range, though the address space is now split across a distributed set of
banks. PT-IS-CP-sparse can be implemented via small adjustments
of Figure 4. Instead of a dense vector fetches, (B) and (D) fetch the
compressed sparse input activations and weights, respectively. In
addition, the coordinates of the non-zero values in the compressed-
sparse form of these data structures must be fetched from their
respective buffers (not shown). Then the accumulator buffer (F)
must be indexed with the computed output coordinates from the
sparse weights and activations. Finally when the computation for the
output-channel group has been completed, the accumulator buffer is
drained and compressed into the output buffer.

4 SCNN ACCELERATOR ARCHITECTURE
CNNs typically consist of a series of layers, including convolution,
non-linear, pooling, and fully-connected. As the convolution layers
typically dominate both arithmetic and computation time, the SCNN
architecture is optimized for efficiency on these layers. For example,
on GoogLeNet, the number of multiplies in the fully connected
layers only account for 1% of the total computation. However, SCNN
also includes dedicated logic for the simple localized non-linear and
pooling layers. The non-linear layer is applied on a per-element
basis at the end of a convolution or fully-connected layer, and is
often implemented using the ReLU operator. A pooling layer can be
applied after the ReLU layer; a typical 2×2 max pooling operator
retains the maximum value in a window of four elements, thus
reducing the volume of data passed to the next layer. While fully
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Figure 6: SCNN PE employing the PT-IS-CP-sparse dataflow.

connected layers are similar in nature to the convolution layers, they
do require much larger weight matrices. However, recent work has
demonstrated effective DNNs without fully connected layers [24].
Section 4.3 describes further how FC layers can be processed by
SCNN.

4.1 Tiled Architecture
A full SCNN accelerator employing the PT-IS-CP-sparse dataflow
of Section 3 consists of multiple SCNN processing elements (PEs)
connected via simple interconnections. Figure 5 shows an array of
PEs, with each PE including channels for receiving weights and
input activations, and channels delivering output activations. The
PEs are connected to their nearest neighbors to exchange halo values
during the processing of each CNN layer. The PE array is driven
by a layer sequencer that orchestrates the movement of weights
and activations and is connected to a DRAM controller that can
broadcast weights to the PEs and stream activations to/from the PEs.
SCNN can use an arbitrated bus as the global network to facilitate
the weight broadcasts, the point-to-point delivery of input activations
(IA) from DRAM, and the return of output activations (OA) back to
DRAM. The figure omits these links for simplicity.

4.2 Processing Element (PE) Architecture
Figure 6 shows the microarchitecture of an SCNN PE, includ-
ing a weight buffer, input/output activation RAMs (IARAM and
OARAM), a multiplier array, a scatter crossbar, a bank of accumu-
lator buffers, and a post-processing unit (PPU). To process the first
CNN layer, the layer sequencer streams a portion of the input image
into the IARAM of each PE and broadcasts the compressed-sparse
weights into the weight buffer of each PE. Upon completion of the
layer, the sparse-compressed output activation is distributed across
the OARAMs of the PEs. When possible, the activations are held in
the IARAMs/OARAMs and are never swapped out to DRAM. If the
output activation volume of a layer can serve as the input activation
volume for the next layer, the IARAMs and OARAMs are logically
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Figure 7: Weight compression.

swapped between the two layers’ computation sequences. Each layer
of the CNN has a set of parameters that configure the controllers in
the layer sequencer, the weight FIFO, the IARAMs/OARAMs, and
the PPU to execute the required computations.

Input weights and activations. Each PE’s state machine oper-
ates on the weight and input activations in the order defined by
the PT-IS-CP-sparse dataflow to produce a output-channel group of
Kc ×Wt ×Ht partial sums inside the accumulation buffers. First, a
vector F of compressed weights and a vector I of compressed input
activations are fetched from their respective buffers. These vectors
are distributed into the F×I multiplier array which computes a form
of the Cartesian product of the vectors, i.e, every input activation is
multiplied by every weight to form a partial sum. At the same time,
the indices from the sparse-compressed weights and activations are
processed to compute the output coordinates in the dense output
activation space.

Accumulation. The F×I products are delivered to an array of A
accumulator banks, indexed by the output coordinates. To reduce
contention among products that hash to the same accumulator bank,
A is set to be larger than F×I. Our results show that A = 2×F×I
sufficiently reduces accumulator bank contention. Each accumulator
bank includes adders and small set of entries for the output channels
associated with the output-channel group being processed. The ac-
cumulation buffers are double-buffered so that one set of banks can
be updated by incoming partial sums while the second set of banks
are drained out by the PPU.

Post-processing. When the output-channel group is complete, the
PPU performs the following tasks: (1) exchange partial sums with
neighbor PEs for the halo regions at the boundary of the PE’s output
activations, (2) apply the non-linear activation (e.g. ReLU), pooling,
and dropout functions, and (3) compress the output activations into
the compressed-sparse form and write them into the OARAM. Aside
from the neighbor halo exchange, these operations are confined to
the data values produced locally by the PE.

Compression. To compress the weights and activations, we use
variants of previously proposed compressed sparse matrix represen-
tations [15, 33]. Figure 7 shows an example of SCNN’s compressed-
sparse encoding for R = S = 3 and K = 2 with 6 non-zero elements.
The encoding includes a data vector consisting of the non-zero values
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and an index vector that includes the number of non-zero values fol-
lowed by the number of zeros before each value. The 3-dimensional
R×S×K volume is effectively linearized, enabling full compression
across the dimension transitions. The activations are encoded in a
similar fashion, but across the H×W×C dimensions. As the activa-
tions are divided among the PEs, each tile of compressed activations
is actually Ht×Wt×C.

We use four bits per index to allow for up to 15 zeros to appear
between any two non-zero elements. Non-zero elements that are
further apart can have a zero-value placeholder without incurring
any noticeable degradation in compression efficiency. The original
(dense) coordinates of the weights and activations are recomputed by
keeping a running sum of the number of zero and non-zero elements
and the dividing by the appropriate dimension. Determining the
coordinates in the accumulator buffer for each multiplier output
requires reconstructing the coordinates from index vectors for F
and I and combining them with the coordinates of the portion of
the output activation space currently being processed. The encoding
scheme can be enhanced with optimizations such as rounding up the
dimension of each weight filter to a power of two to make division
easier or using the four index bits per entry to encode a non-uniform
number of zeros. While these optimizations would increase density
somewhat, they do not substantively affect the SCNN architecture
or our observed results.

4.3 Fully-connected Layers
While our Cartesian product-based SCNN dataflow dramatically
improves its efficiency at the convolutional layers, it does impose
some challenges when handling fully-connected layers. Concretely,
unlike a convolution filter, an individual weight connection in a fully-
connected layer is not reused across multiple input activations. Thus,
the Cartesian product approach of SCNN does not automatically
align non-zero weights and activations that must be multiplied. As
a result, the SCNN 4×4 multiplier array can only operate at a peak
rate of 4 multiplies per cycles (25% of peak throughput) because the
4 input activations and 4 weights can produce only 4 useful products.
Another challenge with fully-connected layers is aligning the sparse
weights and the sparse activations so that the appropriate non-zero
values are delivered into the multiplier array at the same time. The
SCNN’s logic for processing the activation and weight indices can be
reused to determine the alignment, but some additional multiplexing
hardware would be required to move the non-zero weights into
position.

While the loss of average throughput at the fully-connected layers
would make SCNN unattractive for networks that are dominated
by fully-connected layers, state-of-the-art CNNs for image classi-
fication, detection, and segmentation are primarily dominated by
the convolutional layers; in the networks we used in our study, the
fully-connected layers accounted for only 8%, 1%, and 2% of the
multiplication operations in AlexNet, GoogLeNet, and VGGNet,
respectively. In addition, networks for computer vision are decreas-
ing their reliance of fully-connected networks and in fact, recent
networks eliminate these layers completely [24]. Furthermore, the
fully-connected layers are generally memory-bandwidth limited as
they spend most of their execution time delivering network weights
from DRAM. While SCNN’s noticeable throughput reduction on

Table 3: SCNN design parameters.

PE Parameter Value
Multiplier width 16 bits
Accumulator width 24 bits
IARAM/OARAM (each) 10KB
Weight FIFO 50 entries (500 B)
Multiply array (F×I) 4×4
Accumulator banks 32
Accumulator bank entries 32

SCNN Parameter Value
# PEs 64
# Multipliers 1,024
IARAM + OARAM data 1MB
IARAM + OARAM indices 0.2MB

fully-connected layers is not ideal, it is not a significant performance
limiter for these memory-hungry layers. We argue that systems de-
siring optimal efficiency for both convolution and fully-connected
layers should consider employing both SCNN and an architecture
such as EIE that is optimized for fully-connected layers [15].

4.4 Temporal Tiling for Large Models
SCNN compresses weights and activations to reduce both arithmetic
operations and data movement. Ideally, the degree of compression
and the capacity of the IARAMs and OARAMs are large enough so
that the activations are never evicted to outer layers of the memory
hierarchy. While we size our activation RAMs to capture the capacity
requirements of nearly all of the layers in the networks we examined,
a few layers of VGGNet require activations to be saved to and
restored from DRAM. Like other accelerator architectures, SCNN
can temporally tile the activation space so that the collection of PEs
operate on a sub-volume of the activations at a time. This temporal
tiling can be applied in addition to the spatial tiling that SCNN
already employs to partition the activation volume across the PEs.

While a temporally tiled convolution layer still broadcasts weights
to all of the PEs, the input activation planes are partitioned into
coarse-grained tiles (across all channels) that each fit into the total
IARAM capacity of the accelerator. The output activation tile is
offloaded to DRAM and then reloaded into the IARAM when the
data is needed as the input activation to the next layer. This type of
tiling leads to a small halo at the edge of each input activation tile,
resulting in a few additional input activation fetches from DRAM.
The temporally tiled PT-IS-CP-sparse dataflow still exploits the reuse
of each input activation value from the IARAM R×S×Kc times.

In the networks we analyzed, only 9 of the 72 total layers fail
to fit entirely within the IARAM/OARAM structures, with all of
them coming from VGGNet. Our analysis shows that for both dense
and sparse architectures, the DRAM accesses for one temporal tile
can be hidden by pipelining them in tandem with the computation
of another tile. Our nominal DRAM bandwidth configuration of 50
GB/s provides ample bandwidth to absorb the additional activation
traffic. Only when DRAM bandwidth drops to around 4 GB/s does
performance degrade. On these 9 layers, the per-layer energy penalty
of activation data transfer ranges from 5–62%, with a mean of 18%.
This overhead is fairly low and will be born by all CNN architectures
with similar levels of on-chip RAM for activations; overheads will



SCNN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Table 4: SCNN PE area breakdown.

PE Component Size Area (mm2)

IARAM + OARAM 20 KB 0.031
Weight FIFO 0.5 KB 0.004
Multiplier array 16 ALUs 0.008
Scatter network 16×32 crossbar 0.026
Accumulator buffers 6 KB 0.036
Other — 0.019
Total — 0.123

Accelerator total 64 PEs 7.9

be higher for accelerators that do not compress activations. While the
tiling approach is attractive, we expect some low power deployment
scenarios to motivate neural networks designers to size them so that
they fit completely in the on-chip SRAM capacity provided by the
accelerator implementation.

4.5 SCNN Architecture Configuration
While the SCNN architecture can be scaled across a number of
dimensions, Table 3 lists the key parameters of the SCNN design
we explore in this paper. The design employs an 8×8 array of PEs,
each with a 4×4 multiplier array, and an accumulator buffer with
32 banks. We chose a design point of 1,024 multipliers to match
the expected computation throughput required to process HD video
in real-time at acceptable frame rates. The IARAM and OARAM
are sized so that the sparse activations of AlexNet and GoogLeNet
can fit entirely within these RAMs so that activations need not spill
to DRAM. The weight FIFO and the activation RAMs each carry
a 4-bit overhead for each 16-bit value to encode the coordinates in
the compressed-sparse format. In total, the SCNN design includes
a total of 1,024 multipliers and 1MB of activation RAM. At the
synthesized clock speed of the PE of slightly more than 1 GHz in
a 16nm technology, this design achieves a peak throughput of 2
Tera-ops (16-bit multiplies plus 24-bit adds).

Area Analysis. To prototype the SCNN architecture, we designed
an SCNN PE in synthesizable SystemC and then used the Catapult
high-level synthesis (HLS) tool [25, 26] to generate Verilog RTL.
During this step, we used HLS design constraints to optimize the de-
sign by mapping different memory structures to synchronous RAMs
and latch arrays and pipelining the design to achieve full throughput.
We then used Synopsys Design Compiler to perform placement-
aware logic synthesis and obtain post-synthesis area estimates in a
TSMC 16nm FinFET technology. Table 4 summarizes the area of the
major structures of the SCNN PE. A significant fraction of the PE
area is contributed by memories (IARAM, OARAM, accumulator
buffers), which consume 57% of the PE area, while the multiplier
array only consumes 6%. IARAM and OARAM are large in size
and consume 25% of the PE area. Accumulator buffers, though
smaller in size compared to IARAM/OARAM, are heavily banked
(32 banks), contributing to their large area.

5 EXPERIMENTAL METHODOLOGY
CNN performance and power measurements. To model the per-
formance of the SCNN architecture, we rely primarily on a custom-
built cycle-level simulator. This simulator is parameterizable across

Table 5: CNN accelerator configurations.

# PEs # MULs SRAM Area (mm2)

DCNN 64 1,024 2MB 5.9
DCNN-opt 64 1,024 2MB 5.9

SCNN 64 1,024 1MB 7.9

dimensions including number of processing element (PE) tiles, RAM
capacity, multiplier array dimensions (F and I), and accumulator
buffers (A). The SCNN simulator is driven by the pruned weights
and sparse input activation maps extracted from the Caffe Python
interface (pycaffe) [4] and executes each layers of the network one
at a time. As a result, the simulator precisely captures the effects of
the sparsity of the data and its effect on load balancing within the
SCNN architecture.

We also developed TimeLoop, a detailed analytical model for
CNN accelerators to enable an exploration of the design space of
dense and sparse architectures. TimeLoop can model a wide range
of dataflows, including PT-IS-CP-sparse and PT-IS-CP-dense, as
well as the dataflows described in Table 2. Architecture parameters
to TimeLoop include the memory hierarchy configuration (buffer
size and location), ALU count and partitioning, and dense/sparse
hardware support. TimeLoop also includes DRAM bandwidth and
energy models for off-chip accesses. TimeLoop analyzes the in-
put data parameters, the architecture, and the dataflows, and then
computes (1) the number of cycles to process the layer based on
a bottleneck analysis, and (2) the counts of ALU operations and
accesses to different buffers in the memory hierarchy. We apply an
energy model to the TimeLoop events derived from the synthesis
modeling to compute the overall energy required to execute the layer.
TimeLoop also computes the overall area of the accelerator based on
the inputs from the synthesis modeling. For SCNN, the area model
includes all of the elements from the synthesizable SystemC imple-
mentation. For dense architectures, area is computed using area of
the major structures (RAMs, ALUs, and interconnect) derived from
the SystemC modeling.

Architecture configurations. Table 5 summarizes the major ac-
celerator configurations that we explore, including both dense and
sparse accelerators. All of the accelerators employ the same num-
ber of multipliers so that we can compare the performance of the
accelerators with the same computational resources. The dense DCNN
accelerator operates solely on dense weights and activations and
employs a dot-product dataflow called PT-IS-DP-dense. Dot prod-
ucts are usually efficient for dense accelerators because of reduced
accumulation-buffer accesses, although this comes at the cost of
reduced spatial reuse of weights and input activations. The opti-
mized DCNN-opt architectures have the same configuration as DCNN
but employ two optimizations: (1) compression/decompression of
activations as they are transferred out of/into DRAM, and (2) mul-
tiply ALU gating to save energy when a multiplier input is zero.
The DCNN architectures are configured with 2MB of SRAM for hold-
ing inter-layer activations, and can hold all of them for AlexNet
and GoogLeNet. The SCNN configuration matches the architecture
described in Section 4, and includes a total of 1MB of IARAM
+ OARAM. Because the activations are compressed, this capacity
enables all of the activation data for the two networks to be held on
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chip, without requiring DRAM transfers for activations. The larger
VGGNet requires the activation data to be transferred in and out of
DRAM. The last column of the table lists the area required for each
accelerator; for simplicity, we total only the area for the PE array
and SRAM banks, and omit any area for wiring among the PEs. As
the interconnect bandwidth requirements for SCNN are less than for
dense architectures due to the compression, including interconnect
area for both dense and sparse architectures would close the area
gap somewhat between the two. While SCNN has smaller activa-
tion RAM capacity, its larger size is due to the banked accumulator
buffers, as described in Section 4.

Benchmarks. As described in Section 2, we use AlexNet and
GoogLeNet for the bulk of our experiments. For GoogLeNet, we
primarily focus on the convolutional layers that are within the in-
ception modules [31]. VGGNet is known to be over-parameterized,
which results in an excessively large amount of inter-layer activation
data (6 MB or about 4× the largest GoogLeNet layer). Nonetheless,
we use VGGNet as a proxy for large input data (such has high-
resolution images) to explore the implications of coarse-grained
temporal tiling on accelerator architectures. We leverage two differ-
ent types of benchmarks to evaluate SCNN’s efficiency. First, we
developed synthetic network models where we can adjust the degree
of sparsity of both weights and activations. These synthetic models
are used to explore the sensitivity of the architectures to sparsity
parameters (detailed in Section 6.1.). Second, we generate the actual
sparse network models using the CNN pruning algorithm proposed
by Han et al. [17], which we employ in cycle-level performance
simulation. The pruned models have been retrained to achieve the
same level of classification accuracy provided by the dense model,
and we use this pruned model to obtain the post-ReLU activation
maps to feed it into our performance simulator.

6 EVALUATION
This section first evaluates the sensitivity of SCNN to the sparseness
of weights and activations using a synthetic CNN benchmark. We
then measure the performance and energy-efficiency of SCNN versus
a dense CNN accelerator, using AlexNet, GoogLeNet, and VGGNet.
For brevity, all the inception modules in GoogLeNet are denoted as
IC_id in all of the figures discussed in this section.

6.1 Sensitivity to CNN Sparsity
We first compare the performance and energy-efficiency of the SCNN,
DCNN, and DCNN-opt architectures as we artificially sweep the weight
and activation densities in GoogLeNet’s layers from 100% (fully
dense) down to 10%. The X-axis of Figure 8 simultaneously scales
both weight and activation density. The 0.5/0.5 point corresponds
to 50% weight density, 50% activation density, and 25% of the
multiplication operations relative to the fully-dense 1.0/1.0 point.
Figure 8a shows that at full density, SCNN only achieves about 79%
of the performance of DCNN/DCNN-opt1 because of SCNN’s dataflow
is more susceptible to certain multiplier underutilization effects than
DCNN’s dot-product dataflow. As density decreases to about 0.85/0.85,
SCNN starts to perform better than DCNN, ultimately reaching a 24×
improvement at the sparsest evaluated point with a density of 0.1/0.1.

1DCNN-opt performance is identical to DCNN because it only optimizes for energy.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.5/0.5 0.6/0.6 0.7/0.7 0.8/0.8 0.9/0.9 1.0/1.0

La
te

n
cy

 (
cy

cl
e

s)

Weight / Activation Density

DCNN/DCNN-opt SCNN

(a) Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.5/0.5 0.6/0.6 0.7/0.7 0.8/0.8 0.9/0.9 1.0/1.0

En
e

rg
y

Weight / Activation Density

DCNN DCNN-opt SCNN

(b) Energy

Figure 8: GoogLeNet performance and energy versus density.

Figure 8b first shows that DCNN-opt’s energy optimizations of
zero gating and DRAM traffic compression enable it to be better than
DCNN at every level of density. These energy optimizations are sur-
prisingly effective despite their minimal effect on the design of the
accelerator. At full density, SCNN consumes 33% more energy than
either dense architecture due to the overheads of storing and main-
taining the sparse data structures. SCNN becomes more efficient than
DCNN at about 0.83/0.83 density and more efficient than DCNN-opt
at 0.6/0.6 density. At the sparsest evaluated point of 0.1/0.1 density,
SCNN consumes 6% of the energy of DCNN and 23% of the energy
of DCNN-opt. Given the density measurements of the networks in
Figure 1, we expect SCNN to (a) significantly outperform the dense
architectures on nearly all the layers of the networks we examined,
(b) surpass the energy efficiency of DCNN on a majority of layers, and
(c) stay roughly competitive with the energy-efficiency of DCNN-opt
across most layers.

6.2 SCNN Performance and Energy
Performance. We compare the performance of SCNN to the base-
line dense DCNN accelerator and to an oracular SCNN design
(SCNN(oracle)) that represents an upper bound on performance.
The performance of SCNN(oracle) is derived by dividing the num-
ber of multiplication operations required for a Cartesian product-
based convolution (Section 3) by 1,024, the number of multipliers
in the architectures we examine. Figure 9 summarizes the speedups
offered by SCNN versus a dense CNN accelerator. Overall, SCNN
consistently outperforms the DCNN design across all the layers of
AlexNet, GoogLeNet, and VGGNet, achieving an average 2.37×,
2.19×, and 3.52× network-wide performance improvement, respec-
tively.
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Figure 9: SCNN performance comparison.

The performance gap between SCNN versus SCNN(oracle) widens
in later layers of the network, i.e., the rightmost layers on the x-axis
of Figure 9. SCNN suffers from two forms of inefficiency that cause
this gap. First, the working set allocated to each PE tends to be
smaller in the later layers (e.g., IC_5b) than in the earlier layers
(e.g., IC_3a). As a result, assigning enough non-zero activations and
weights in the later layers to fully utilize a PE’s multiplier array
becomes difficult. In other words, SCNN can suffer from intra-PE
fragmentation when layers do not have enough useful work to fully
populate the vectorized arithmetic units.

The second source of inefficiency stems from the way the PT-IS-
CP-sparse dataflow partitions work across the array of PEs, which
could lead to load imbalance among the PEs. Load imbalance results
in under-utilization because the work corresponding to the next
output-channel group Kc+1 can only start after the PEs complete the
current output-channel group Kc. The PEs effectively perform an
inter-PE synchronization barrier at the boundaries of output-channel
groups which can cause early-finishing PEs to idle while waiting for
laggards.

Figure 10 quantitatively demonstrates the intra-PE fragmentation
in the multiplier arrays. Fragmentation is severe in the last two
inception modules of GoogLeNet, with average multiplier utilization
at less than 20%. In this layer, three out of the six convolutional sub-
layers within the inception module have a filter size of 1×1, resulting
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Figure 10: Average multiplier array utilization (left-axis) and
the average fraction of time PEs are stalled on a global barrier
(right-axis), set at the boundaries of output channel groups.

in a maximum of 8 non-zero weights within an output-channel group
with a Kc value of 8. Nonetheless, later layers generally account for
a small portion of the overall execution time as the input activation
volume (i.e., H×W×C) gradually diminishes across the layers.

The right y-axis of Figure 10 demonstrates the effect of load
imbalance across the PEs by showing the fraction of cycles spent
waiting at an inter-PE barrier. Although the inter-PE global barriers
and intra-PE fragmentation prevents SCNN from reaching similar
speedups offered by SCNN(oracle), it still provides an average
2.7× network-wide performance boost over DCNN across the three
CNNs we examined.

Energy-efficiency. Figure 11 compares the energy of the three
accelerator architectures across the layers of the three networks. On
average, DCNN-opt improves energy-efficiency by 2.0× over DCNN,
while SCNN improves efficiency by 2.3× . SCNN’s effectiveness varies
widely across layers depending on the layer density, ranging from
0.89× to 4.7× improvement over DCNN and 0.76× to 1.9× improve-
ment over DCNN-opt. Input layers such as VGGNet_conv1_1 and
AlexNet_conv1 usually present a challenge for sparse architectures
because of their 100% input activation density. In such cases, the
overheads of SCNN’s structures such as the crossbar and distributed
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Figure 11: SCNN energy-efficiency comparison.

accumulation RAMs overshadow any benefits from fewer arithmetic
operations and data movement.

These results reveal that although the straightforward DCNN-opt
architecture is unable to improve performance, it is remarkably ef-
fective at achieving good energy-efficiency on moderately sparse
network layers. Nonetheless, SCNN is on average even more energy-
efficient across our benchmark networks while providing a tremen-
dous performance advantage over both DCNN and DCNN-opt.

6.3 PE Granularity
As outlined in Section 6.2, both cross-PE global barriers and intra-
PE multiplier array fragmentation can contribute to degradation in
the performance of SCNN. We quantify the effects of both of these
factors on system performance by conducting the following sensi-
tivity study. Assuming a fixed 1,024 multipliers for the accelerator,
we sweep the total number of PEs on-chip from 64 (8×8 PEs, 16
multipliers per PE) down to 4 (2×2 PEs, 256 multipliers per PE).

Table 6: Characteristics of evaluated accelerators.

Gate
MACC

Skip
MACC

Skip Skip
Inner Spatial

Dataflow
Architecture Buffer DRAM

Access Access

DCNN – – – – Dot Product
DCNN-opt A+W – – A+W Dot Product
SCNN-SparseA A A A A Cartesian Product
SCNN-SparseW W W W W Cartesian Product
SCNN A+W A+W A+W A+W Cartesian Product

Clearly, an SCNN with 4 PEs can better sustain the effects of the
global barriers than an SCNN with 64 PEs. However, the 4 PE con-
figuration is also more likely to suffer from intra-PE fragmentation
because each PE must now process a larger working set to fully
utilize the math units. When evaluated on GoogLeNet, SCNN with
64 PEs achieves an 11% speedup over the one with 4 PEs as it
does a better job utilizing the math arrays (average 59% math uti-
lization versus 35%). We observed similar trends for AlexNet and
VGGNet, concluding that addressing intra-PE fragmentation is more
critical than inter-PE barriers for system-wide performance with the
PT-IS-CP-sparse dataflow.

6.4 Effects of Weight and Activation Sparsity
While Figure 1 shows that sparseness is abundant in both activations
and pruned weights, isolating the effect of sparsity provides insight
into different accelerator architecture trade-offs. We run the density-
sweep experiments from Section 6.1 on two architectures derived
from the SCNN design. The SCNN-SparseA architecture only takes
advantage of sparsity in activations and is similar in spirit to Cn-
vlutin [1]. The SCNN-SparseW architecture only takes advantage of
sparsity in weights and is similar in spirit to Cambricon-X [34].

Table 6 tabulates the characteristics of these new architectures
alongside our baseline SCNN, DCNN, and DCNN-opt architectures.
These five architectures together cover a broad design space of
sparse architectures, and also encompass the types of sparsity ex-
plored in prior research, as described in Table 2. However, because
of significant differences in dataflow, buffer sizing/ organization, and
implementation choices (such as the use of eDRAM), our evaluated
architectures cannot precisely represent those prior proposals.

Figure 12 demonstrates that SCNN is consistently superior to the
SCNN-SparseA and SCNN-SparseW configurations in both perfor-
mance and energy across the entire density range. The only exception
is that at very high density levels (weight/activation density greater
than 0.9/0.9), SCNN-SparseA is slightly more energy-efficient be-
cause of the removal of overheads to manage sparse weights. The
input-stationary temporal loop around the Cartesian product makes
these architectures extremely effective at filtering IARAM accesses,
resulting in the IARAM consuming less than 1% of the total energy.
The weight FIFO is accessed more frequently in SCNN, resulting in
the weight FIFO consuming around 6.7% of total energy. Therefore,
removing the weight encoding overheads in SCNN-SparseA shows a
far greater benefit than removing the activation encoding overheads
in SCNN-SparseW. However, as density is reduced, the filtering ad-
vantage of the input-stationary loop starts diminishing relative to
the weight FIFO. At a density of 0.8/0.8, SCNN-SparseW surpasses
the energy-efficiency of SCNN-SparseA, ultimately reaching a 2.5×
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Figure 12: GoogLeNet performance and energy versus density
for sparse weights, sparse activations, and both

advantage at 0.1/0.1. For a nominal density of 0.4/0.4, SCNN achieves
performances advantages of 1.7× and 2.6× over SCNN-SparseW and
SCNN-SparseA, respectively; SCNN achieves energy-efficiency ad-
vantages of 1.6× and 2.1× over SCNN-SparseW and SCNN-SparseA,
respectively.

7 RELATED WORK
Previous efforts to exploit sparsity in CNN accelerators have focused
on reducing energy or saving time, which will invariably also save
energy. Eliminating the multiplication when an input operand is
zero is a natural way to save energy. Eyeriss [8] gates the multiplier
when it sees an input activation of zero. Because the sparsity of
weights is not significant for non-pruned networks, Eyeriss opted
not to gate the multiplier on zero weights. This gating approach will
save energy, but not execution time. Not only does SCNN obtain
energy efficiency by eliminating unnecessary multiplications, it also
reduces execution time by eliminating the dead multiplier cycles
inherent in zero-gating approaches.

Another approach to reducing energy is to reduce data transfer
costs when the data is sparse. Eyeriss uses a run length encoding
scheme when transferring activations to and from DRAM. This
approach saves energy (and time) by reducing the number of DRAM
accesses. However because the data is kept in an expanded form in
the on-chip memory hierarchy, such architectures cannot completely
eliminate energy on the data transfers from one internal buffer to
another internal buffer or to the multipliers. Eyeriss does, however,
save the energy for accessing the weight buffer when the associated
activation is zero. SCNN also uses a compressed representation for
all data coming from DRAM, but also maintains that compressed
representation in all the on-die buffers.

Other sparse CNN accelerator architectures do not exploit all of
the sparsity opportunities leveraged by SCNN. For example, Cn-
vlutin compresses activation values based on the ReLU operator, but
it does not employ pruning to exploit weight sparsity [1]. Cambricon-
X employs weight sparsity to keep only non-zero weights in its
internal buffers [34]. However, it does not compress activation data
between DRAM and the accelerator. Nor does it keep activations
in a compressed form in the internal buffers, except in the queues
directly delivering activations to the multipliers. In contrast, SCNN
keeps both weights and activations in a compressed form in both
DRAM and internal buffers. This approach saves data transfer time
and energy on all data transfers and allows the chip hold larger
models for a given amount of internal storage.

Avoiding delivery of zero-valued activations or weights to the
multipliers can save time by eliminating ineffectual multiplier cy-
cles. Cnvlutin selects only non-zero activation values for delivery
as multiplier operands, but does occupy a multiplier with zero-
valued weights. Cambricon-X can save a compute cycle for zero-
valued weights, but still wastes times computing multiplications for
operands with zero-valued activations. The Deep Learning Accel-
erator Core (DLAC) architecture paper mentions that it can skip
computation on zero-valued operands to improve performance, but
the architecture does not appear to employ zero compression [32].
SCNN does not deliver either zero activations or weights to the
multipliers and maximally exploits opportunities of CNN sparsity.

The EIE CNN accelerator uses a compressed representation of
both activations and weights, and only delivers non-zero operands
to the multipliers [15]. However, EIE is designed for the fully con-
nected layers of a CNN model, while SCNN targets the convolutional
layers, which encompass the vast majority of the computations in
CNNs [10, 24]. Finally, Alwani et al. propose to fuse adjacent layers
in a dense CNN accelerator so that intermediate activations between
layers can be kept on chip [2]. By compressing the activations,
SCNN can typically keep all of the activations on-chip, without
requiring a more complicated fused algorithm.

8 CONCLUSION
This paper presents the Sparse CNN (SCNN) accelerator architec-
ture for inference in convolutional neural networks. SCNN exploits
sparsity in both weights and activations using the sparse planar-tiled
input-stationary Cartesian product (PT-IS-CP-sparse) dataflow. This
approach enables SCNN to use a novel Cartesian product-based
computation architecture that maximizes reuse of weights and acti-
vations within a set of distributed processing elements. In addition, it
allows the use of a dense compressed representation for both weights
and activations to be used through almost the entire processing flow.
This allows for reduced data movement and increased on-die storage
capacity than alternatives approaches. Our results show that with
equivalent area, the SCNN architecture starts to beat an energy-
optimized dense architecture on energy efficiency when the weights
and activations are each less than 85% dense. On three contempo-
rary networks (AlexNet, GoogLeNet, and VGGNet) SCNN achieves
performance improvements over a comparably provisioned dense
CNN accelerator by a factor of 2.7×, while still being 2.3× more
energy-efficient.
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