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1 INTRODUCTION
File systems were developed to enable users to easily and efficiently
store and retrieve data. Early file systems such as the Unix Fast
File System [1] and ext2 [2] were simple file systems. To enable
fast recovery from crashes, crash-consistency techniques such as
journaling and copy-on-write were incorporated into file systems,
resulting in file systems such as ext4 [3] and xfs [4]. Modern file
systems such as btrfs [5] include features such as snapshots and
checksums for data, making the file system even more complex.

While the new features and strong crash-consistency guarantees
have enabled wider adoption of Linux file systems, it has resulted
in the loss of a crucial aspect: efficiency. File systems now maintain
a large number of data structures on storage, and both data and
metadata paths are complex and involve updating several blocks
on storage. In this paper, we ask the question: what is the IO cost
of various Linux file-system data and metadata operations? What
is the IO amplification of various operations on Linux file systems?
While this question is receiving wide attention in the world of key-
value stores [6, 7] and databases [8], this has been largely ignored
in file systems. File systems have traditionally optimized for latency
and overall throughput [9–12], and not on IO or space amplification.

We present the first systematic analysis of read, write, and space
amplification in Linux file systems. Read amplification indicates
the ratio of total read IO to user data respectively. For example, if
the user wanted to read 4 KB, and the file system read 24 KB off
storage to satisfy that request, the read amplification is 6×. Write
amplification is defined similarly. Space amplification measures
how efficiently the file system stores data: if the user writes 4 KB,
and the file system consumes 40 KB on storage (including data and
metadata), the space amplification is 10×.

We analyze five widely-used Linux file systems that occupy
different points in the design space: ext2 (no crash consistency
guarantees), ext4 (metadata journaling), XFS (metadata journal-
ing), F2FS (log-structured file system), and btrfs (copy-on-write
file system). We analyze the write IO and read IO resulting from
various metadata operations, and the IO amplification arising from
data operations. We also analyze these measures for two macro-
benchmarks: compiling the Linux kernel, and Filebench varmail. We
break down write IO cost by IO that was performed synchronously
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Measure ext2 ext4 xfs f2fs btrfs

File Overwrite

Write Amplification 2.00 4.00 2.00 2.66 32.65
Space Amplification 1.00 4.00 2.00 2.66 31.17

File Read (cold cache)

Read Amplification 6.00 6.00 8.00 9.00 13.00
File Read (warm cache)

Read Amplification 2.00 2.00 5.00 3.00 8.00

Table 1: Amplification for Data Operations. The table shows
the read, write, and space amplification incurred by different
file systems when reading and writing files.

(during fsync()) and IO that was performed during delayed back-
ground checkpointing.

We find several interesting results. For data operations such as
overwriting a file or appending to a file, there was significant write
amplification (2–32×). .Small random reads resulted in a read ampli-
fication of 2–8×, even with a warm cache. Metadata operations such
as directory creation or file rename result in significant storage IO:
for example, a single file rename required 12–648 KB to be written
to storage. Even though ext4 and xfs both implement metadata
journaling, we find XFS significantly more efficient for file updates.
Similarly, though F2FS and btrfs are implemented based on the log-
structured approach (copy-on-write is a dual of the log-structured
approach), we find F2FS to be significantly more efficient across all
workloads. In fact, in all our experiments, btrfs was an outlier, pro-
ducing the highest read, write, and space amplification. While this
may partly arise from the new features of btrfs, the copy-on-write
nature of btrfs is also part of the reason.

2 ANALYZING LINUX FILE SYSTEMS
We measure the read IO, write IO, and space consumed by different
file-system operations.
Data Operations. First, we focus on data operations: file read,
file overwrite, and file append. For such operations, it is easy to
calculate write amplification, since the workload involves a fixed
amount of user data. The results are presented in Table 1.
Metadata Operations. We now analyze the read and write IO (and
space consumed) by different file-system operations like file create,
directory create, and file rename. We have experimentally verified
that the behavior of other metadata operations, such as file link,

∗Work in Progress. Pre-print can be accessed at https://arxiv.org/abs/1707.08514

https://doi.org/10.1145/3124680.3124736
https://arxiv.org/abs/1707.08514


Measure ext2 ext4 xfs f2fs btrfs

File Create

Write Cost (KB) 24 52 52 16 116
fsync 4 28 4 4 68

checkpoint 20 24 48 12 48
Read Cost (KB) 24 24 32 36 40
Space Cost (KB) 24 52 20 16 116

File Rename

Write Cost (KB) 12 32 16 20 648
fsync 4 20 4 8 392

checkpoint 8 12 12 12 256
Read Cost (KB) 20 24 48 40 48
Space Cost (KB) 12 32 16 20 392

Table 2: IO Cost for Metadata Operations. The table shows
the read, write, and space IO costs incurred by different file
systems for different metadata operations. The write cost is
broken down into IO at the time of fsync(), and checkpoint-
ing IO performed later.

file deletion, and directory deletion, are similar to our presented
results. Table 2 presents the results.
Discussion. IO and space amplification arises in Linux file systems
due to using the block interface, from crash-consistency techniques,
and the need to maintain and update a large number of data struc-
tures on storage. Write amplification is high in our workloads
because we do small writes followed by a fsync(), which forces
file-system activity, such as committing metadata transactions.

With byte-addressable non-volatile memory technologies arriv-
ing on the horizon, using such block-oriented file systems will be
disastrous. We need to develop lean, efficient file systems where
operations such as file renames will result in a few bytes written to
storage, not tens to hundreds of kilobytes.

3 THE CREWS CONJECTURE
Inspired by the RUM conjecture [13] from the world of key-value
stores, we propose a similar conjecture for file systems: the CReWS
conjecture.

The CReWS conjecture states that it is impossible for a general-
purpose file system to provide strong crash (C)onsistency guarantees
while simultaneously achieving low (R)ead amplification, (W)rite
amplification, and (S)pace amplification.

Implications. The CReWs conjecture has useful implications for
the design of storage systems. If we seek to reduce write ampli-
fication for a specific application such as a key-value store, it is
essential to sacrifice one of the above aspects. For example, by
specializing the file system to a single application, it is possible to
minimize the three amplification measures. For applications seek-
ing to minimize space amplification, the file system design might
sacrifice low read amplification or strong consistency guarantees.
For non-volatile memory file systems [14, 15], given the limited
write cycles of non-volatile memory [16], file systems should be
designed to trade space amplification for write amplification; given

the high density of non-volatile memory technologies [17–21], this
should be acceptable. Thus, given a goal, the CReWS conjecture
focuses our attention on possible avenues to achieve it.
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